XGBoost fusion-based affective state
recognition using EEG spectrogram image
analysis. Scientific Reports, (2022) 12:14122,
https://doi.org/10.1038/s41598-022-18257-x.
[15] Biscione, V., & Bowers, J. S., Convolutional
Neural Networks Are Not Invariant to
Translation, but They Can Learn to Be,
Journal of Machine Learning Research, 22
(2021) 1-28, [Online].
https://www.jmlr.org/papers/volume22/21-
0019/21-0019.pdf (Accessed Date: May 30,
2024).
[16] Yan, J.; Li, J.; Xu, H.; Yu, Y.; Xu, T. Seizure
Prediction Based on Transformer Using Scalp
Electroencephalogram. Appl. Sci., 2022, 12,
4158, https://doi.org/10.3390/app12094158.
[17] Lu, X., Wen, A., Sun, L., Wang, H., Guo, Y.,
& Ren, Y., An Epileptic Seizure Prediction
Method Based on CBAM-3D CNN-LSTM
Model, IEEE Journal of Translational
Engineering in Health and Medicine, 11,
pp.417-423, 2023,
https://doi.org/10.1109%2FJTEHM.2023.329
0036.
[18] Xiong, Z.; Wang, H.; Zhang, L.; Fan, T.;
Shen, J.; Zhao, Y.; Liu, Y.; Wu, Q. A Study
on Seizure Detection of EEG Signals
Represented in 2D. Sensors, 2021, 21, 5145,
https://doi.org/10.3390%2Fs21155145.
[19] Ilias, L., Askounis, D., & Psarras, J. (2023).
Multimodal detection of epilepsy with deep
neural networks, Expert Systems with
Applications, 213(B), 2023,
https://doi.org/10.1016/j.eswa.2022.119010.
[20] Benfenati, L., Unsupervised and Self-
Supervised Machine-Learning for Epilepsy
Detection on EEG Data, Data Science and
Engineering, 2023, [Online].
https://webthesis.biblio.polito.it/27685/
(Accessed Date: May 30, 2024).
[21] García, F. P., & UCL., Towards a data-driven
treatment of epilepsy: computational methods
to overcome low-data regimes in clinical
settings, Dept. of Medical Physics and
Biomedical Engineering, University College
London, 2023, [Online].
https://discovery.ucl.ac.uk/id/eprint/10164304
/2/FernandoPerez-Garcia_PhD_thesis.pdf
(Accessed Date: May 30, 2024).
[22] Park, S., & Medium.com. (2021). Predicting
the true probability in Neural Networks:
Confidence Calibration, [Online].
https://medium.com/codex/predicting-the-
true-probability-in-neural-networks-
confidence-calibration-fa6c6d712ff (Accessed
Date: May 30, 2024).
[23] Wildberger, J., Siyuan Guo, A. B., &
Schölkopf, B., On the Interventional
Kullback-Leibler Divergence.
arXiv:2302.05380, 2023,
https://arxiv.org/abs/2302.05380v1
[24] Chen, J., Tam, D., Raffel, C., Bansal, M., &
Yang, D., An Empirical Survey of Data
Augmentation for Limited Data Learning in
NLP. Transactions of the Association for
Computational Linguistics, 2023; 11 191–211,
https://doi.org/10.1162/tacl_a_00542.
[25] Maksimenko, Maksimenko, V.A., van
Heukelum, S., Makarov, V.V. et al. Absence
Seizure Control by a Brain Computer
Interface. Sci. Rep., 7, 2487 (2017),
https://doi.org/10.1038/s41598-017-02626-y
[26] Tuncer, S. A., & Alkan, A., Classification of
EMG signals taken from arm with hybrid
CNN-SVM architecture. Concurrency and
Computation: Practice and Experience, 34(5),
pp.1-11, 2022,
https://doi.org/10.1002/cpe.6746.
[27] Faust, O., Acharya, U. R., Adeli, H., & Adeli,
A., Wavelet-based EEG processing for
computer-aided seizure detection and epilepsy
diagnosis, Seizure, 26, 56-64, 2015,
https://doi.org/10.1016/j.seizure.2015.01.012.
[28] Shah, K., & Kaggle.com. (2020). Data
Augmentation Tutorial: Basic, Cutout,
Mixup., [Online].
https://www.kaggle.com/code/kaushal2896/da
ta-augmentation-tutorial-basic-cutout-mixup
(Accessed Date: May 30, 2024).
[29] Jing, J., Lin, Z., Yang, C., Chow, A., Dane, S.,
Sun, J., & Westover, M. B. (2024). HMS -
Harmful Brain Activity Classification,
[Online].
https://kaggle.com/competitions/hms-harmful-
brain-activity-classification (Accessed Date:
May 30, 2024).
[30] Kim, B., & Seo, S., EfficientNetV2-based
dynamic gesture recognition using
transformed scalogram from triaxial
acceleration signal. Journal of Computational
Design and Engineering, 10(4), 1694–1706,
2023, https://doi.org/10.1093/jcde/qwad068.
[31] Tan, M., & Le, Q. V., EfficientNetV2:
Smaller Models and Faster Training. Proc. of
the 38th International Conf on Machine
Learning, PMLR, 139, 2021,
https://arxiv.org/pdf/2104.00298.pdf.
[32] Li, S., Wang, Z., An, Y., Zhao, J., Zhao, Y., &
Zhang, Y.-D., EEG emotion recognition based
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2024.21.27
Denis Manolescu, Neil Buckley, Emanuele Lindo Secco