
Gu, Y., Kumar, V., Hall, L.O., Goldgof, D.B., Li,
C.Y., Korn, R., Bendtsen, C., Velazquez,
E.R., Dekker, A., Aerts, H. and Lambin, P.,
2013. Automated delineation of lung tumors
from CT images using a single click ensemble
segmentation approach. Pattern
Recognition, 46(3), pp.692-702,
https://doi.org/10.1016/j.patcog.2012.10.005.
[8] Hofmanninger, J., Prayer, F., Pan, J., Röhrich,
S., Prosch, H. and Langs, G., 2020. Automatic
lung segmentation in routine imaging is
primarily a data diversity problem, not a
methodology problem. European Radiology
Experimental, 4(1), pp.1-13,
https://doi.org/10.1186/s41747-020-00173-2.
[9] Arabi, H. and Zaidi, H., 2017. Comparison of
atlas-based techniques for whole-body bone
segmentation. Medical Image Analysis, 36,
pp.98-112,
https://doi.org/10.1016/j.media.2016.11.003.
[10] Arabi, H. and Zaidi, H., 2016. Whole-body
bone segmentation from MRI for PET/MRI
attenuation correction using shape-based
averaging. Medical Physics, 43(11), pp.5848-
5861, https://doi.org/10.1118/1.4963809.
[11] Alsaaidah, B., Al-Hadidi, M.D.R., Al-Nsour,
H., Masadeh, R. and AlZubi, N., 2022.
Comprehensive survey of machine learning
systems for COVID-19 detection. Journal of
Imaging, 8(10), p.267,
https://doi.org/10.3390/jimaging8100267.
[12] Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng,
J., Ma, H., Liu, W. and Wang, X., 2020. Deep
learning-based detection for COVID-19 from
chest CT using weak label. MedRxiv,
pp.2020-03,
https://doi.org/10.1101/2020.03.12.20027185.
[13] Cao, Y., Xu, Z., Feng, J., Jin, C., Han, X.,
Wu, H. and Shi, H., 2020. Longitudinal
assessment of COVID-19 using a deep
learning–based quantitative CT pipeline:
illustration of two cases. Radiology:
Cardiothoracic Imaging, 2(2), p.e200082,
https://doi.org/10.1148/ryct.2020200082.
[14] Jin, S., Wang, B., Xu, H., Luo, C., Wei, L.,
Zhao, W., Hou, X., Ma, W., Xu, Z., Zheng, Z.
and Sun, W., 2020. AI-assisted CT imaging
analysis for COVID-19 screening: Building
and deploying a medical AI system in four
weeks. MedRxiv, pp.2020-
03, https://doi.org/10.1101/2020.03.19.20039
354.
[15] Ronneberger, O., Fischer, P. and Brox, T.,
2015. U-net: Convolutional networks for
biomedical image segmentation. In Medical
Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III
18(pp. 234-241). Springer International
Publishing. DOI: 10.1007/978-3-319-24574-
4_28.
[16] Wang, G., Liu, X., Li, C., Xu, Z., Ruan, J.,
Zhu, H., Meng, T., Li, K., Huang, N. and
Zhang, S., 2020. A noise-robust framework
for automatic segmentation of COVID-19
pneumonia lesions from CT images. IEEE
Transactions on Medical Imaging, 39(8),
pp.2653-2663,
DOI: 10.1109/TMI.2020.3000314.
[17] Gerard, S.E., Herrmann, J., Xin, Y., Martin,
K.T., Rezoagli, E., Ippolito, D., Bellani, G.,
Cereda, M., Guo, J., Hoffman, E.A. and
Kaczka, D.W., 2021. CT image segmentation
for inflamed and fibrotic lungs using a multi-
resolution convolutional neural
network. Scientific Reports, 11(1), p.1455.
[18] Müller, D., Rey, I.S. and Kramer, F., 2020.
Automated chest ct image segmentation of
covid-19 lung infection based on 3d u-
net. Informatics in Medicine Unlocked, (25)
2020,
https://doi.org/10.1016/j.imu.2021.100681.
[19] Trivizakis, E., Tsiknakis, N., Vassalou, E.E.,
Papadakis, G.Z., Spandidos, D.A.,
Sarigiannis, D., Tsatsakis, A., Papanikolaou,
N., Karantanas, A.H. and Marias, K., 2020.
Advancing COVID-19 differentiation with a
robust preprocessing and integration of
multi-institutional open-repository computer
tomography datasets for deep learning
analysis. Experimental and Therapeutic
Medicine, 20(5),
https://doi.org/10.3892/etm.2020.9210.
[20] Saood, A. and Hatem, I., 2021. COVID-19
lung CT image segmentation using deep
learning methods: U-Net versus SegNet. BMC
Medical Imaging, 21(1), pp.1-10.
[21] Oulefki, A., Agaian, S., Trongtirakul, T. and
Laouar, A.K., 2021. Automatic COVID-19
lung infected region segmentation and
measurement using CT-scans images. Pattern
Recognition, 114, p.107747,
https://doi.org/10.1016/j.patcog.2020.107747.
[22] Fan, D.P., Zhou, T., Ji, G.P., Zhou, Y., Chen,
G., Fu, H., Shen, J. and Shao, L., 2020. Inf-
net: Automatic covid-19 lung infection
segmentation from ct images. IEEE
Transactions on Medical Imaging, 39(8),
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2024.21.24