[2] H. Alsaif, R. Guesmi, and Alshammari,
“A Novel Data Augmentation-Based
Brain Tumor Detection Using
Convolutional Neural Network,” Appl.
Sci., vol. 12, no. 8, 2022, doi:
10.3390/app12083773.
[3] N. Bhardwaj, M. Sood, and S. S. Gill,
“Artificial Intelligence-Empowered 3D
Bioprinting,” AI Big Data-Based Eng.
Appl. from Secur. Perspect., pp. 1–20,
Jun. 2023, doi: 10.1201/9781003230113-
1.
[4] J. O. Healthcare Engineering, “Retracted:
Brain Tumor Detection and Classification
by MRI Using Biologically Inspired
Orthogonal Wavelet Transform and Deep
Learning Techniques,” J. Healthc. Eng.,
vol. 2023, p. 9845732, 2023, doi:
10.1155/2023/9845732.
[5] H. Alsaif, R. Guesmi, and Alshammari,
“A Novel Data Augmentation-Based
Brain Tumor Detection Using
Convolutional Neural Network,” Appl.
Sci., vol. 12, no. 8, 2022, doi:
10.3390/app12083773.
[6] H. C. Shin, H. R. Roth, and Gao, “Deep
Convolutional Neural Networks for
Computer-Aided Detection: CNN
Architectures, Dataset Characteristics and
Transfer Learning,” IEEE Trans. Med.
Imaging, vol. 35, no. 5, pp. 1285–1298,
2016, doi: 10.1109/TMI.2016.2528162.
[7] M. S. I. Khan and Rahman, “Accurate
brain tumor detection using deep
convolutional neural network,” Comput.
Struct. Biotechnol. J., vol. 20, pp. 4733–
4745, 2022, doi:
10.1016/j.csbj.2022.08.039.
[8] R. Mehrotra, M. A. Ansari, and Agrawal,
“A Transfer Learning approach for AI-
based classification of brain tumors,”
Mach. Learn. with Appl., vol. 2, no.
October, p. 100003, 2020, doi:
10.1016/j.mlwa.2020.100003.
[9] F. Pereira, B. Lou, and Pritchett,
“Toward a universal decoder of linguistic
meaning from brain activation,” Nat.
Commun., vol. 9, no. 1, 2018, doi:
10.1038/s41467-018-03068-4.
[10] S. Deepak and P. M. Ameer, “Brain
tumor classification using deep CNN
features via transfer learning,” Comput.
Biol. Med., vol. 111, no. March, p.
103345, 2019, doi:
10.1016/j.compbiomed.2019.103345.
[11] H. Ucuzal, Ş. YAŞAR and C. Çolak,
"Classification of brain tumor types by
deep learning with convolutional neural
network on magnetic resonance images
using a developed web-based
interface," 2019 3rd International
Symposium on Multidisciplinary Studies
and Innovative Technologies (ISMSIT),
Ankara, Turkey, 2019, pp. 1-5, doi:
10.1109/ISMSIT.2019.8932761.
[12] N. Bhardwaj, M. Sood and S. Gill, "Deep
Learning Framework using CNN for
Brain Tumor Classification," 2022 5th
International Conference on Multimedia,
Signal Processing and Communication
Technologies (IMPACT), Aligarh, India,
2022, pp. 1-5, doi:
10.1109/IMPACT55510.2022.10029043.
[13] T. Sadad and Rehman, “Brain tumor
detection and multi-classification using
advanced deep learning techniques,”
Microsc. Res. Tech., vol. 84, no. 6, pp.
1296–1308, 2021, doi:
10.1002/jemt.23688.
[14] O. Özkaraca and Bağrıaçık, “Multiple
Brain Tumor Classification with Dense
CNN Architecture Using Brain MRI
Images,” Life, vol. 13, no. 2, 2023, doi:
10.3390/life13020349.
[15] R. Vankdothu and Hameed, “Brain tumor
MRI images identification and
classification based on the recurrent
convolutional neural network,” Meas.
Sensors, vol. 24, no. August, p. 100412,
2022, doi:
10.1016/j.measen.2022.100412.
[16] P. Tupe-Waghmare, P. Malpure, and
Kotecha, “Comprehensive Genomic
Subtyping of Glioma Using Semi-
Supervised Multi-Task Deep Learning on
Multimodal MRI,” IEEE Access, vol. 9,
pp. 167900–167910, 2021, doi:
10.1109/ACCESS.2021.3136293.
[17] “Br35H :: Brain Tumor Detection 2020 |
Kaggle”, [Online].
https://www.kaggle.com/datasets/ahmedh
amada0/brain-tumor-detection (Accessed
Date: August 3, 2022).
[18] S. Srinivasan and P. S. M. Bai, “Grade
Classification of Tumors from Brain
Magnetic Resonance Images Using a
Deep Learning Technique,” Diagnostics,
vol. 13, no. 6, 2023, doi:
10.3390/diagnostics13061153.
[19] S. Liu and W. Deng, "Very deep
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2024.21.17
Neha Bhardwaj, Meenakshi Sood, Ss Gill