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Abstract: In this paper, we introduce an innovative mathematical model designed to capture the dynamics
of Acute Lymphoblastic Leukemia (ALL) under therapeutic interventions, employing delay-differential
equations to account for the time delays inherent in biological processes. The model consists of 13
delay-differential equations, incorporating six distinct delays to represent various time-dependent factors
such as drug effects, immune responses, and tumor growth cycles. To facilitate the analysis, we first
identified the equilibrium points, which serve as critical benchmarks for understanding the system’s
behavior under steady-state conditions, followed by a detailed stability analysis to assess the robustness of
these points against perturbations. Utilizing the critical case theorem, we translated the system by shifting
the equilibrium point to zero, simplifying the stability examination. A series of transformations were
applied to aid this process, allowing for deeper insights into the dynamics of ALL under treatment. Our
findings contribute to understanding treatment efficacy and tumor progression, offering a mathematical
framework that not only highlights the complex interplay between treatment, tumor dynamics, and time
delays but also provides a foundation for future research aimed at optimizing therapeutic strategies for
ALL management.

Key-Words: Acute Lymphoblastic Leukemia, mercaptopurine (6-MP), Erythrocytes, Leukocytes,
Lymphoblasts, Equilibrium points, Critical Case, Stability Analysis.

Received: April 16, 2024. Revised: August 22, 2024. Accepted: October 11, 2024. Published: November 28, 2024.  

1 Introduction

Delay differential equations (DDEs) are a type of
differential equation in which the rate of change of
the variables depends on the values of the variables
at the present time t and also on the values of
the variables at previous time moments. The
applications of DDEs cover important domains in
engineering and life sciences. The introduction
of delays in mathematical modelling opened new
possibilities for a better approximation of the
evolution of a natural phenomenon. DDEs have
also been used with success in biology at a
cellular level. Using time delays one obtains
a more accurate description of the phenomena
we want to model. The solutions of the delay
differential equations are more faithful to the
natural evolution of the quantities under study.
The literature concerning the dynamics of DDEs,

their properties, and applications is wide. For
more information, one can refer to [1], [2], [3], and
the references therein.

In 1977, a nonlinear delay-differential equation
that describes the changes in the concentration of
circulating blood cells was first introduced, [4].

In 2003, a model of the production and
regulation of circulating blood neutrophils was
proposed, [5].

In 2005, a more complex dynamics of blood
cells in Chronic Myeloid Leukemia (CML) was
described, [6]. The assumptions made in [5]
regarding stem cells and the differentiation process
were also used in [6].

Another important model was introduced,
which differs from those introduced before through
the fact that it is structured by age, thus offering
a better perspective on the cell cycle, [7]. The
authors took into account that there are two
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phases in a cell cycle (the resting phase and
the proliferating phase) and the fact that not all
cells divide at the same age (depending on their
type-pluripotent or committed stem cells).

In 2020, a physiological model of Acute
Lymphoblastic Leukemia under treatment
was studied [8]. The model was formed
of three compartments: a compartment for
erythropoiesis, a compartment for leukopoiesis,
and a compartment for lymphopoiesis, coupled
with the dynamics of 6-MP used in the
maintenance therapy.

In this article, we propose a complex
delay differential equations model for Acute
Lymphoblastic Leukemia under treatment. The
novelty of our model is that we take into account
the physiological evolution of erythrocytes,
leukocytes, and lymphocytes. The importance
of this study is an introduction to studying the
optimization of the treatment in the physiological
model in order to determine the exact amount
of medication needed at different stages of the
disease.

Cancer, characterized as a genetic disease,
arises from genetic alterations either inherited
from parents or acquired throughout a person’s
lifetime. These genetic mutations lead to
uncontrolled cell growth and the formation of
tumors, which can ultimately cause significant
bodily harm and mortality. The World Health
Organization (WHO) identifies cancer as a leading
cause of death globally, with approximately 10
million deaths in 2020, accounting for one in six
fatalities. There are over 100 types of cancer,
generally named based on the tissues or organs
where they originate, [9].

Leukemia, a category of blood cancers,
encompasses several types, including Chronic
Myeloid Leukemia (CML), Chronic Lymphocytic
Leukemia (CLL), Acute Myeloid Leukemia
(AML), and Acute Lymphoblastic Leukemia
(ALL). ALL, in particular, involves the malignant
transformation and proliferation of lymphoid
precursor cells in the bone marrow, blood,
and other regions. This disease results in
the production of approximately a trillion
nonfunctional leukemia cells from the initial
leukemia cell, which overcrowd healthy marrow
cells and fail to perform normal cellular
functions, [10]. Consequently, patients experience
anemia, increased bleeding risk, and heightened
susceptibility to infections due to reduced counts
of red cells, platelets, and neutrophils. ALL
rapidly invades the bloodstream and can spread
to various organs, such as the liver, spleen, and
lymph nodes, justifying its classification as an

acute condition due to its swift progression, [11].
The primary treatment for ALL is

chemotherapy, aimed at reducing or halting
the growth of cancer cells. Unlike surgery
and radiation, which target specific areas,
chemotherapy affects the entire body, making
it effective against cancer cells that have
metastasized beyond the original tumor site,
[12]. Chemotherapy’s objectives include
the complete destruction of cancer cells,
controlling their growth and spread, alleviating
symptoms by shrinking tumors, and preventing
cancer recurrence. Following chemotherapy,
maintenance therapy often involves oral
administration of mercaptopurine (6-MP),
which is crucial for slowing the growth of cancer
cells. Research underscores the importance of
maintenance therapy’s intensity, as insufficient
therapy can lead to persistent ALL, while overly
aggressive treatment can result in severe side
effects and secondary malignancies.

The complexity of ALL treatment is further
compounded by genetic polymorphism in the
enzyme Thiopurine Methyltransferase (TPMT),
which plays a vital role in metabolizing 6-MP.
6-MP, a pro-drug, follows two metabolic
pathways. The preferred pathway, catalyzed
by the enzyme Hypoxanthine-Guanine
Phosphoribosyltransferase (HGPRT),
produces 6-thioguanine nucleotide (6-TGN).
Conversely, TPMT converts 6-MP into
methyl-mercaptopurines (MeMP). The relative
activities of HGPRT and TPMT, determined by
genetic factors, influence the concentration of
active 6-TGN and, consequently, the treatment
outcome, [8].

In this article, we present an innovative
biological mathematical model for Acute
Lymphoblastic Leukemia (ALL) under treatment,
using delay-differential equations to represent
the disease’s progression and its reaction
to therapy, similar to the approaches used
in [8], [13], [14]. Our model comprises 13
delay-differential equations with six delays,
offering a comprehensive framework to understand
the interactions between leukemia cells, healthy
cells, and treatment effects. We identify the
equilibrium points of the system and conduct
a stability analysis to evaluate the conditions
under which the disease remains controlled or
progresses. By translating the system to zero and
performing several transformations, we apply the
critical case theorem, [15], to gain insights into
the model’s behavior. This work contributes to
the existing literature by providing a detailed
and dynamic representation of ALL treatment,
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potentially guiding future therapeutic strategies
and improving patient outcomes.

Furthermore, recent advancements in fractional
calculus have significantly enhanced our
understanding of complex biological systems.
Fractional differential equations, especially those
involving fractional calculus and hybrid fractional
models, offer a comprehensive framework for
analyzing the stability and dynamics of various
biological processes. These equations have proven
effective in capturing the complexities of biological
systems, providing critical insights into stability
and solution behaviors. Future research could
explore fractional delay models to extend these
findings, while theoretical analysis of solutions
could follow approaches similar to those outlined
in [16], [17], [18], [19], [20], [21]. By integrating
fractional calculus into our model, we aim to
enhance its predictive capabilities and offer a
more robust framework for studying the intricate
dynamics of ALL and its treatment.

2 Mathematical Model and
Equations for 6-Mercaptopurine
Therapy Dynamics

In this section, we use sτ = s(t − τ) to denote
delayed variables and employ delay-differential
equations to model and analyze the dynamics of
6-Mercaptopurine (6-MP) used in maintenance
therapy. The model consists of thirteen
delay-differential equations (DDEs) incorporating
six distinct time delays.

ṡ = fi(s, sτj ); i = 1, 13, j = 1, 6. (1)
First Equation:

ṡ1 = − δ0
1 + sε3

s1 −
R1s7
R2 + s7

s1 − (υ1e + υ2e)ϖe(s3)s1

−(1− υ1e − υ2e)ϕe(s1, s3)s1 (2)
+2s4(1− υ1e − υ2e)ϕe(s1τ1 , s3τ1)s1τ1
+υ1es4ϖe(s3τ1)s1τ1 .

Description: This equation models the dynamics
of stem-like short-term erythroid cells. The
parameters include δ0 for stem cell loss due to
mortality, ε for the death rate, and υ1e and υ2e
for the proportions of cells undergoing asymmetric
and symmetric divisions, respectively.
Second Equation:

ṡ2 = −δ2s2 + B̃eϖe(s3τ2)s1τ2 . (3)

Description: This equation represents the
uninfected erythrocytes. The term −δ2s2 accounts

for the random loss of red blood cells, with B̃e as
an amplification factor and τ2 as the maturation
time.
Third Equation:

ṡ3 = −qs3 +
p1

1 + sn2
. (4)

Description: This equation describes the
concentration of erythropoietin, where q is
the absorption rate.
Fourth Equation:

ṡ4 = s4

(
− δ0
1 + sε3

− R1s7
R2 + s7

+
δ0

1 + sε3τ1
+

R1s7τ1
R2 + s7τ1

)
.

(5)
Description: This variable represents the loss
during the cell cycle.
Fifth Equation:

ṡ5 = −j1s5 + p2. (6)

Description: This equation models the amount
of 6-MP in the gut, with j1 representing the
absorption rate and p2 the supply rate.
Sixth Equation:

ṡ6 = j1s5− f1s6−
g1(1− f2)

g2 + s6
s6−

h2f2
h1 + s6

s6. (7)

Description: This equation describes the amount
of 6-MP in plasma. The parameters include f1
for the elimination rate, g1 and h2 for conversion
rates, and f2 for the activity of the TPMT enzyme.
Seventh Equation:

ṡ7 =
j2g1(1− f2)

g2 + s6
s6 − f3s7. (8)

Description: This equation represents the
concentration of 6-TGN in red blood cells, with
j2 as the stoichiometric coefficient and f3 as the
elimination rate.
Eighth Equation:

ṡ8 = −δ1ls8 −H1v1(s11)s8 − υ1lϖl(s9)s8 (9)

−υ2lϖl(s9)s8 − (1− υ1l − υ2l)ϕl(s8)s8

+2e−δ1lτ3s10(1− υ1l − υ2l)ϕl(s8τ3)s8τ3

+υ1le
−δ1lτ3s10ϖl(s9τ3)s8τ3 .

Description: This equation models the
concentration of short-term stem-like white
blood cell precursors, accounting for mortality
rate δ1l and various rates of differentiation and
renewal.
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Ninth Equation:

ṡ9 = −δ2ls9 + B̃lϖl(s9τ4)s8τ4 . (10)

Description: This equation describes the dynamics
of adult leukocytes, with −δ2ls9 representing
random loss and B̃l as an amplification factor.
Tenth Equation;

ṡ10 = s10H1 [v1(s11τ3)− v1(s11)] . (11)

Description: This equation models the loss during
the cycle of leukocytes, where H1 represents the
drug’s maximum effect on white blood cells.
Eleventh Equation:

ṡ11 =
j2g1(1− f2)

g2 + s6
s6 − g3s11. (12)

Description: This equation represents the
concentration of 6-TGN in leukocytes, with g3 as
the elimination rate.
Twelfth Equation:

ṡ12 = −δ1lls12 − (υ1ll + υ2ll)ϖll(s13)s12 (13)

+υ1lle
−δ1llτ5ϖll(s13τ5)s12τ5 .

Description: This equation models short-term
stem-like progenitor cells in leukocytes, accounting
for mortality and differentiation rates.
Thirteenth Equation:

ṡ13 = −δ2lls13 + B̃llϖll(s13τ6)s12τ6 . (14)

Description: This final equation describes mature
leukocytes, with parameters δ2ll and B̃ll defining
loss and maturation rates, respectively.

2.1 Positivity of Solutions
The variables s in our model represent populations
of cells. As such, it is essential that we ensure
non-negative densities of cells, as negative values
would be biologically meaningless. Therefore,
demonstrating that the solutions to the system
remain positive is a crucial characteristic for the
validity of the original model (1).

Proposition 2.1. Let τ = max{τJ}, j = 1, 6,
and ϕ denote the initial conditions defined on the
interval [−τ, 0]. If the initial conditions ϕ of the
system (1) are positive, then the solutions s of the
system (1) remain positive for all t ≥ 0.

Proof. Assume that the initial conditions ϕ for
the system (1) are positive. To prove that the
solutions remain positive, we must show that
these solutions do not cross zero at any time
t > 0. Suppose, for contradiction, that a solution

becomes zero at some time t0 > 0, i.e., s(t0) = 0.
Given that sτj(t0) > 0 for j = 1, 6, it follows that

fi(0, sτj(t0)) ≥ 0 ⇒ ṡ(t0) ≥ 0, (15)

where i = 1, 13 and j = 1, 6. Hence, the rate
of change of the solution ṡ(t0) is non-negative at
t0. This implies that once the solution reaches
zero, it cannot decrease further into negative
values. Therefore, the solutions s of the system
will remain positive for all t ≥ 0, provided the
initial values are positive.

2.2 Analysis of Equilibrium Points
To identify the equilibrium points of the system,
we solve the following equations:

fi(s, sτj ) = 0; i = 1, 13, j = 1, 6 (16)

At equilibrium points, the system reaches a steady
state where variables do not change over time or
with delays, implying that s equals sτj . Therefore,
the system equations at equilibrium are simplified
as follows:

− δ0
1 + sε3

s1 −
R1s7
R2 + s7

s1 − (υ1e + υ2e)ϖe(s3)s1

−(1− υ1e − υ2e)ϕe(s1, s3)s1

+2s4(1−υ1e−υ2e)ϕe(s1, s3)s1+υ1es4ϖe(s3)s1 = 0.
(17)

−δ2s2 + B̃eϖe(s3)s1 = 0. (18)

−qs3 +
p1

1 + sn2
= 0. (19)

s4

(
− δ0
1 + sε3

− R1s7
R2 + s7

+
δ0

1 + sε3
+

R1s7τ1
R2 + s7

)
= 0.

(20)
−j1s5 + p2 = 0. (21)

j1s5−f1s6−
g1(1− f2)

g2 + s6
s6−

h2f2
h1 + s6

s6 = 0. (22)

j2g1(1− f2)

g2 + s6
s6 − f3s7 = 0. (23)

−δ1ls8 −H1v1(s11)s8 − υ1lϖl(s9)s8

−υ2lϖl(s9)s8 − (1− υ1l − υ2l)ϕl(s8)s8

+2e−δ1lτ3s10(1− υ1l − υ2l)ϕl(s8)s8

+υ1le
−δ1lτ3s10ϖl(s9)s8 = 0. (24)

−δ2ls9 + B̃lϖl(s9)s8 = 0. (25)
s10H1[v1(s11)− v1(s11)] = 0. (26)
j2g1(1− f2)

g2 + s6
s6 − g3s11 = 0 (27)
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−δ1lls12 − (υ1ll + υ2ll)ϖll(s13)s12

+υ1lle
−δ1llτ5ϖll(s13)s12 = 0. (28)

−δ2lls13 + B̃ll(2υ2ll + υ1ll)ϖll(s13)s12 = 0. (29)
Solving these equations yields the equilibrium
point E(0, 0, ŝ3, ŝ4, ŝ5, ŝ6, ŝ7, 0, 0, ŝ10, ŝ11, 0, 0).
This equilibrium point corresponds to the model
under treatment and represents the condition of
patient mortality.

3 Linearizing the System
The Jacobian matrix for the undelayed variables
is denoted as A = [aij ], where the non-zero entries
are:

a11 = − δ0
1 + sε3

− R1s7
R2 + s7

− (υ1e + υ2e)ϖe(s3)

− (1− υ1e − υ2e)

[
ϕe(s1, s3) + s1

∂ϕe
∂s1

(s1, s3)

]

a13 =
δ0s1εs

ε−1
3

(1 + sε3)
2
− (υ1e + υ2e)s1

∂ϖe

∂s3
(s3)

− (1− υ1e − υ2e)s1
∂ϕe
∂s3

(s1, s3)

a14 = 2(1− υ1e − υ2e)ϕe(s1, s3)s1 + υ1eϖe(s3)s1

a17 = − s1R1R2

(R2 + s7)2

a22 = −δ2

a32 = − np1s
n−1
2

(1 + sn2 )
2

a33 = −q

a43 =
δ0s4εs

ε−1
3

(1 + sε3)
2

a47 = − s4R1R2

(R2 + s7)2

a55 = −j
a65 = −j

a66 = −f1 −
g1g2(1− f2)

(g2 + s6)2
− h1h2f2

(h1 + s6)2

a76 =
g1g2j2(1− f2)

(g2 + s6)2

a77 = −f3

a88 = −δ1l −H1v1(s11)− υ1lϖl(s9)− υ2lϖl(s9)

− (1− υ1l − υ2l)

[
∂ϕl
∂s8

(s8)s8 + ϕl(s8)

]

a89 = −(υ1l + υ2l)s8
∂ϖl

∂s9
(s9)

a8,10 = 2e−δ1lτ3(1− υ1l − υ2l)ϕl(s8)s8

+υ1le
−δ1lτ3ϖl(s9)s8

a8,11 = −H1v
′
1(s11)s8

a99 = −δ2l
a10,11 = −s10H1v

′
1(s11)

a10,16 =
j2g1g2(1− f2)

(g2 + s6)2

a11,11 = −g3
a12,12 = −δ1ll − (υ1ll + υ2ll)ϖll(s13)

a12,13 = −(υ1ll + υ2ll)
∂ϖll

∂s13
s12

a13,13 = −δ2ll
The matrix of partial derivatives with respect to
the delayed variables is B = [bij ], where the
non-zero terms are:

b11 = 2s4(1− υ1e − υ2e)

[
∂ϕe
∂s1

(s1, s3)s1 + ϕe(s1, s3)

]
+ υ1es4ϖe(s3)

b13 = 2s4(1−υ1e−υ2e)
∂ϕe
∂s3

(s1, s3)s1+υ1es4
∂ϖe

∂s3
(s3)s1

b43 = −δ0s4εs
ε−1
3

(1 + sε3)
2

b47 = − s4R1R2

(R2 + s7)2

The matrix C = [cij ] has non-zero terms:

c21 = B̃eϖe(s3)

c23 = B̃e
∂ϖe

∂s3
(s3)s1

The matrix D = [dij ] has non-zero terms:

d88 = 2e−δ1lτ3s10(1− υ1l − υ2l)

[
∂ϕl
∂s8

(s8)s8 + ϕl(s8)

]
+ υ1le

−δ1lτ3s10ϖl(s9)

d89 = υ1le
−δ1lτ3s10

∂ϖl

∂s9
(s9)s8

d1011 = s10H1v
′
1(s11)

Let E = [eij ], where

E =
∂f

∂sτ4
.
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The non-zero terms of E are:

e98 = B̃lϖl(s9)

e99 = B̃l
∂ϖl

∂s9
(s9)s8

Let F = [fij ], where

F =
∂f

∂sτ5
.

The non-zero terms of F are:

f1212 = υ1lle
−δ1llτ5ϖll(s13)

f1213 = υ1lle
−δ1llτ5 ∂ϖll

∂s13
(s13)s12

Finally, let G = [gij ], where

G =
∂f

∂sτ6
.

The non-zero terms of G are:

g1312 = B̃ll(2υ2ll + υ1ll)ϖll(s13)

g1313 = B̃ll(2υ2ll + υ1ll)
∂ϖll

∂s13
(s13)s12

Stability analysis of the equilibrium point:
The general form of the characteristic is:

det(λIn −A−Be−λτ1 − Ce−λτ2) = 0

For the equilibrium point corresponding to
E(0, 0, ŝ3, ŝ4, ŝ5, ŝ6, ŝ7, 0, 0, ŝ10, ŝ11, 0, 0) we have:
the characteristic equation corresponding to E is:

λ2(λ− a11 − b11e
−λτ1)(λ− a22)

(λ− a33)(λ− a55)(λ− a66)(λ− a77)

(λ− a88 − d88e
−λτ3)(λ− a99)(λ− a1111)

(λ− a1212 − f1212e
−λτ5)(λ− a1313) = 0

So, λ = 0 is a root, and we are in a critical case
for the stability of the nonlinear system.

3.0.1 The real solutions of the characteristic
equation

The real solutions of the characteristic equation
are given by:

• λ1 = 0

• λ2 = a22 = −δ2 < 0

• λ3 = a33 = −q < 0

• λ4 = a55 = −j1 < 0

• λ5 = a66 = −f
1− g1g2(1−f2)

(g2+s6)2
− h1h2f2

(h1+s6)2
< 0

• λ6 = a77 = −f3 < 0

• λ7 = a99 = −δ2l < 0

• λ8 = a11,11 = −g3 < 0

• λ9 = a13,13 = −δ2ll < 0

3.1 Critical Case
The characteristic equation corresponding to E
has λ = 0 as a root, so we are in a critical case
for the stability of the nonlinear system. Since
we do not have the linear part equal to zero then
so we will proceed to bring the system (1) to the
canonical form. We perform a translation to zero
by xi = si − ŝi for i = 1, 13.

The new system becomes:

ẋ = fi(x, xτj ); i = 1, 13, j = 1, 6 (2)

where

ẋ4 = − (x4 + ŝ4)δ0
1 + (x3 + ŝ3)ε

−R1(x4 + ŝ4)(x7 + ŝ7)

R2 + (x7 + ŝ7)

+
(x4 + ŝ4)δ0

1 + (x3τ1 + ŝ3τ1)
ε

+
R1(x4 + ŝ4)(x7τ1 + ŝ7τ1)

R2 + (x7τ1 + ŝ7τ1)

= g(x3, x4, x7, x3τ1 , x7τ1)

with g(0) = 0 The matrices of partial derivatives
are:

A =
∂f

∂x
= [aij ], B =

∂f

∂xτ1
= [bij ],

C =
∂f

∂xτ2
= [cij ], D =

∂f

∂xτ3
= [dij ],

E =
∂f

∂xτ4
= [eij ], F =

∂f

∂xτ5
= [fij ] and

G =
∂f

∂xτ6
= [gij ]

The characteristic equation for the zero solution
of the new system is exactly that one for E. And
we have:

∂g

∂x3
(0) =

ŝ4δ0εŝ
ε−1
3

(1 + ŝ3)2

∂g

∂x7
(0) =

−R1R2

(R2 + ŝ7)2

∂g

∂x3τ1
(0) =

−ŝ4δ0εŝ
ε−1
3

(1 + ŝ3)2
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∂g

∂x7τ1
(0) =

R1R2

(R2 + ŝ7)2

Then the Theorem is not applicable since the
linear part is not equal to zero. Now, we write
system in a form to which Theorem is applicable.
Take:

Γ = β1x1 + β2x2 + β3x3 + β4x4
+β5x5 + β6x6 + β7x7 + β8x8
+β9x9 + β10x10 + β11x11 + β12x12 + β13x13

where ẋ = Ax, we have:

Γ̇ = β1ẋ1 + β2ẋ2 + β3ẋ3 + β4ẋ4
+β5ẋ5 + β6ẋ6 + β7ẋ7 + β8ẋ8
+β9ẋ9 + β10ẋ10 + β11ẋ11
+β12ẋ12 + β13ẋ13

so:

Γ̇ = β1a11x1 + β2a22x2 + (β3a33 + β4a43)x3
+(β5a55 + β6a65)x5
+(β6a66+β7a76 + β11a116)x6
+(β4a47 + β7a77)x7
+β8a88x8 + β9a99x9
+(β10a1011 + β11a1111)x11
+β12a1212x12 + β13a1313x13

Now, if one imposes Γ̇ = 0, it follows that:

β1 = β2 = β9 = β12 = β13 = β8 = 0

β3a33 + β4a43 = 0

β5a55 + β6a65 = 0

β6a66+β7a76 + β11a116 = 0

β4a47 + β7a77 = 0

β10a1011 + β11a1111 = 0

we get,
β4 = 1& β6 = 1

β3 =
−a43
a33

β7 =
−a47
a77

β5 =
−a65
a55

β11 =
a47a76 − a66a77

a77a116

β10 =
−a11a47a76 + a11a66a77

a77a116a1011

Remark that:

ẋ3τ1 = a33x3 +B3τ1

ẋ7τ1 = a77x7 +B7τ1

with B3τ1 and B7τ1containing terms of order
higher or equal to two. Now let,

Γ1 = β3x3 + x4 + β5x5 + x6
+β7x7 + β10x10 + β11x11

− b43
a33

x3τ1 −
b47
a77

x7τ1

Take x4 = Γ1 +
b43
a33
x3τ1 +

b47
a77
x7τ1 − β3x3 − β5x5 −

x6 − β7x7 − β10x10 − β11x11 and replace the forth
equation in (3) by the previous equation of Γ̇1 so
this equation has a zero linear part.

Substitute x4 in the equations of the system:
Now take

Γ2 = γ1z1+γ2z2+γ3z3+γ4Γ1+γ5z5+....+γ13z13,

where ż = Äz so,

Γ̇2 = γ1ż1+γ2ż2+γ3ż3+γ4Γ̇1+γ5ż5+ ....+γ13ż13

Now since Γ1 has no linear part in the system in
the z variables, it follows that:

Γ̇2 = γ1a11z1 + γ2a22z2 + γ3a33z3
+(γ5a55 + γ6a65)z5 +

(γ6a66 + γ7a76 + γ11a116)z6
+γ7a77z7 + γ8a88z8
+γ9a99z9 + (γ10a1011 + γ11a1111)z11
+γ12a1212z12 + γ13a1313z13

If one imposes Γ̇2 = 0 it follows that:

γ10a1011 + γ11a1111 = 0

for γ10 = 1,it follows that

γ11 = −a1111
a1011

We also have:

γ6a66 + γ7a76 + γ11a116 = 0

which indicates that:

γ6 =
a1111a116
a1011a66

We also have:

γ5a55 + γ6a65 = 0,
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which means that:

γ5 = −a1111a116a65
a1011a66a55

Then

Γ2 = γ5z5 + γ5z6 + z10 + γ11z11,

so the equation of Γ2 has no linear part. That
is Γ̇2 = R

(1)
4 with R

(1)
4 containing only terms of

order greater or equal to two. Take

z10 = Γ2 − γ5z5 − γ6z6 − γ11z11

Replacing the tenth equation by Γ̇2 so this
equation has a zero linear part. Substitute
z10 in the equations of the new system, so the
linear part of the tenth equation does not contain
Γ2 and the other equations do not contain Γ2

at all . Therefore, the Theorem of critical
case can be applied (see [15]) to study the
stability of the zero solution of system (2) and its
conclusions transferred to the study of stability of
the equilibrium point E of system (1).

Since a22 < 0, a33 < 0, a55 < 0, a66 <
0, a77 < 0, a99 < 0, a11,11 < 0 and a13,13 < 0
then the stability depends on the study of the
transcendental term in the characteristic equation.

Now consider the transcendental equations,

λ− a11 − b11e
−λτ1 = 0 (3)

The stability analysis of Equation (3) is classical
(see, for example, [1]).

b11 = 2ŝ4(1−υ1e−υ2e)ϕe(0, ŝ3)+υ1es4ϖe(ŝ3) > 0

a11 = − δ0
1 + sε3

− R1ŝ7

R2 + ŝ7

−(υ1e + υ2e)ϖe(ŝ3)

−(1− υ1e − υ2e)ϕe(0, ŝ3) < 1.

for τ1 = 0, we have a11 < 0 < 1
τ1

and b11 > 0.

Therefore equation (3) becomes:

λ− a11 − b11 = 0

0 = λ+
δ0

1 + ŝε3
+

R1ŝ7

R2 + ŝ7

+(υ1e + υ2e)ϖe(ŝ3) + (1− υ1e − υ2e)ϕe(0, ŝ3)

−2ŝ4(1− υ1e − υ2e)ϕe(0, ŝ3)

−υ1e ŝ4ϖe(ŝ3).

So,

λ = − δ0
1 + ŝε3

− R1ŝ7

R2 + ŝ7

−ϖe(ŝ3)(−υ1e − υ2e + υ1eŝ4)

+(2ŝ4 − 1)(1− υ1e − υ2e)ϕe(0, ŝ3).

Then if

− δ0
1 + ŝε3

− R1ŝ7
R2 + ŝ7

−

ϖe(ŝ3)(−υ1e − υ2e + υ1eŝ4)

+(2ŝ4 − 1)(1− υ1e − υ2e)ϕe(0, ŝ3)

< 0

then equation (3) is stable for τ1 = 0 and remains
stable for τ1 > 0.

Now Consider the equation:

λ− a88 − d88e
−λτ3 = 0 (4)

d88 = 2e−δ1lτ3 ŝ10(1− υ1l − υ2l)ϕl(ŝ8)

+υ1le
−δ1lτ3 ŝ10ϖl(ŝ9)

> 0

a88 = −δ1l −H1v1(ŝ11)− υ1lϖl(ŝ9)

−υ2lϖl(ŝ9)− (1− υ1l − υ2l)ϕl(ŝ8)

< 0

for τ3 = 0, we have a88 < 0 < 1
τ3 and d88 > 0.

Therefore equation (4) becomes:

λ− a88 − d88 = 0

λ = −δ1l −H1v1(ŝ11) +

+(e−δ1lτ3 ŝ10 − 1)υ1lϖl(ŝ9)− υ2lϖl(ŝ9)

+(2e−δ1lτ3 ŝ10 − 1)(1− υ1l − υ2l)ϕl(ŝ8).

So, if

−δ1l −H1v1(ŝ11) +

+(e−δ1lτ3 ŝ10 − 1)υ1lϖl(ŝ9)− υ2lϖl(ŝ9)

+(2e−δ1lτ3 ŝ10 − 1)(1− υ1l − υ2l)ϕl(ŝ8)

< 0

then equation (4) is stable for τ3 = 0 and remains
stable for τ3 > 0.

Now, consider the equation:

λ− a1212 − f1212e
−λτ5 = 0 (5)

f1212 = υ1lle
−δ1llτ5ϖll(ŝ13) > 0
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a1212 = −δ1ll − (υ1ll + υ2ll)ϖll(ŝ13) < 0

for τ5 = 0, we have a12,12 < 0 < 1
τ5

and d12,12 > 0.

Therefore equation (5) becomes:

λ− a12,12 − f12,12 = 0

λ+δ1ll+(υ1ll+υ2ll)ϖll(ŝ13)−υ1lle−δ1llτ5ϖll(ŝ13) = 0

λ = −δ1ll + (υ1lle
−δ1llτ5 − υ1ll − υ2ll)ϖll(ŝ13).

So, if

−δ1ll + (υ1lle
−δ1llτ5 − υ1ll − υ2ll)ϖll(ŝ13) < 0,

then equation (5) is stable for τ5 = 0 and remains
stable for τ5 > 0.

Conclusion 3.1. The equilibrium point E is stable
if equations (3), (4) and (5) are stable.

4 Conclusion
This study presented a detailed mathematical
model for Acute Lymphoblastic Leukemia (ALL)
treatment using delay-differential equations. Our
model, comprising 13 delay-differential equations
with six delays, effectively captures the complex
interactions between leukemia cells, healthy cells,
and treatment. Through stability analysis and
the application of the critical case theorem, we
identified equilibrium points and the conditions
for disease control or progression.

Our findings highlight the importance of
mathematical modeling in understanding ALL
dynamics and guiding therapeutic strategies.
Additionally, we proposed integrating fractional
calculus into our model to enhance its predictive
capabilities and robustness, given the effectiveness
of fractional differential equations in capturing
biological complexities.

In conclusion, this work provides a novel
and dynamic representation of ALL treatment,
emphasizing the role of mathematical models in
advancing cancer therapy and improving patient
outcomes.
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