
Sensitivity Analysis in Mathematical Models of the
Hypothalamus-Pituitary-Thyroid Axis

CLARA HORVATH, ANDREAS KÖRNER
Intitute of Analysis and Scientific Computing

TU Wien
Wiedner Hauptstraße 8
Vienna, AUSTRIA

Abstract: Mathematicalmodels are promising and important for advancing the currentmedical practice in the field
of endocrinology. To assess the reliability of the range of mathematical models describing the hypothalamus-
pituitary-thyroid axis and to establish their applicability in clinical decision support, we conducted a local and
global sensitivity analysis of the model. Thyroid regulation in euthyroid and diseased individuals may be quan-
tified and dynamic behavior predicted through mathematical models, thereby revolutionizing the current clinical
practice. We investigated the influence of model parameters of a selected mathematical model utilizing ordinary
differential equations describing the HPT-axis. Motivated by a graphical depiction of the varying influence of the
model parameters, feasible methods such as a local sensitivity analysis are conducted. Furthermore, to account
for the influence of parameters on the output variance of the considered model, the theory of Sobol’ indices is uti-
lized. Although the system of differential equations describing the hormone concentrations of thyroid-simulating
hormones and unbound Thyroxine has similar equation structures, the results of the sensitivity analyses varied
according to the equation.
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1 Introduction
Thyroid diseases affect an estimated 200 million
people globally, with an additional 60% of those
affected believed to be undiagnosed, making this an
increasingly important area of research [1], [2]. A
promising approach to gain insight into the functional
interactions of the thyroid gland lies within the field
of mathematical modeling. Throughout the years of
research varying mathematical modeling approaches
were utilized to describe aspects of the endocrine
system such as the functionality of the thyroid gland.

In general, the feedback loop of hormonal signals
starts in the hypothalamus, continues to the pituitary
gland and terminates in a specific target gland. In
the case of the thyroid gland, models consisting of
systems of differential equations were established
to describe this process. A prominent model was
introduced by DiStefano et al. [3], which describes
the course of thyroid hormone concentrations over
time using a large system of differential equations.
Additionally, a sub-model was incorporated to ex-
plore the effects of oral medication in the case of
hypothyroidism, a condition in which the thyroid
gland does not produce enough thyroid hormones.
Berberich et al. [4] investigated how their model
accounts for the influence of the circadian rhythm on
the functionality of the thyroid gland. Furthermore,
the interaction between various organs, such as liver
and heart are also included to better understand

hormone homeostasis. Making [4] a rare exception,
a sensitivity analysis was conducted as well. A very
recent contribution includes Pompa et al. [5] with
their work on compartment models. The function-
ality of the thyroid gland is described by including
concentrations of thyrotropin-releasing hormone
and thyroglobulin with additionally considering
the effect of iodine in the modeling process. Also
utilizing differential equations, Leow [6] proposed
an exponential connection between hormones of the
pituitary and thyroid gland. Utilizing approaches
from control theory, Sharma et al. [7] introduce an
approach to introduce an automated dosage recom-
mendation of levothyroxine for patients suffering
from Hashimoto’s Thyroiditis.

However, thorough analysis of the mathematical
properties of these models, although crucial for their
clinical reliability, is missing. To better understand
the underlying properties of the considered mathe-
matical models, we conducted a sensitivity analysis of
a model introduced in [8]. Based on this analysis, the
reliability of a model and its usability in clinical de-
cision support can be established. To offer a compre-
hensive treatment of the topic, the biological mech-
anisms underlying the endocrine system and the the-
oretical background of the mathematical approaches
will be presented in the following sections.
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2 Physiological Background
The central aspect of the endocrine system and start-
ing point of signaling pathways is located in the brain
and consists of the hypothalamus and pituitary gland
leading to the stimulation of target glands such as the
thyroid gland. This sequence of stimuli will be ref-
ered to as the Hypothalamus-Pituitary-Thyroid-axis
(HPT-axis) and is responsible for maintaining overall
homeostasis of the human body. Additionally, vital
functions including brain development, metabolism,
and regulating the cardiac cycle are associated with
the HPT-axis, which makes the presence of diseases
all the more consequential. The production of thy-
roid hormones is initialized by the hypothalamus and
its release of Thyrotropin-Releasing Hormone (TRH)
in the hypophysiotropic neurons. Afterwards, TRH
is transported through blood vessels in the infundibu-
lum, the connection between the hypothalamus and
pituitary gland. Thereby, the thyrotrophs located in
the anterior pituitary are stimulated, which leads to the
production of Thyroid-Stimulating Hormones (TSH).
The thyroid gland is located above the collar and be-
low the larynx, consisting primarily of follicular cells.
TSH connects to the outside membrane of these cells
and initializes the transcription of a protein called
thyroglobulin, which after additional processes leads
to the release of the thyroid hormones Triiodothyro-
nine (T3) and Thyroxine (T4). Serum concentrations
of the thyroid hormones are regulated by a negative
feedback loop, which means that the production of
TRH and subsequently TSH will cease if a certain
threshold is reached in the blood stream. According to
[9], thyroid hormones T3 and T4 are produced in the
ratio 1:10 and occur in the blood as bound or unbound
moities. Through this connection to plasma proteins
called Thyroxin Binding Globulin (TBG) the half-life
of thyroid hormones is prolonged to approximately 1
day for T3 and 7 days for T4. About 1% is freely
distributed in the blood, therefore unbound, making
them biologically more active.

3 Mathematical Models of the
Thyroid Gland

Since Danzinger and Elmergreen pioneered the use
of non-linear differential equations to model the
negative-feedback control of the HPT-axis in 1954
[10], numerous mathematical models have been de-
veloped to better understand the complex dynamics
of this endocrine system. More recent publications in-
clude [11], [2], that account for diseases related to the
thyroid gland e.g. hypothyroidism, Grave’s disease or
Hashimoto’s thyroidism in the introduced mathemati-
cal models. Among these models, introduced models
extend the base models by accounting a more general
description of the HPT-axis.

3.1 Physiological Considerations
In the context of mathematically modeling the HPT-
axis, free T4 (FT4) is of particular importance as
this hormone is transformed through deodinase to T3
in target cells such as liver or kidneys, which is re-
sponsible for the transcription of hormone-dependent
genes. Unlike TSH, TRH is not considered in math-
ematical models as acquiring data for validation is
hardly possible without invasive procedures. Thus,
the Hypothalamus-Pituitary complex (HP-complex)
is considered as single compartment and represented
by the concentration of TSH in the mathematical
models, see Fig. 1.

Fig. 1: Illustration of the aspects considered in mod-
eling the HPT-axis.

Furthermore, the functionality of the thyroid gland
is represented by the hormone concentration of FT4.
There are different opinions in the scientific commu-
nity about the normal range of hormone concentra-
tions of TSH and FT4 in blood samples [12]. The
considered normal ranges by the scientific commu-
nity vary only slightly in the case of both hormones,
therefore we choose the following as normal ranges
given in Table 1.

Hormone Concentration Normal range Unit
TSH 0.4− 4 mU/L
FT4 7− 18 pg/mL

Table 1: Normal ranges and units of TSH and FT4.

Based on the model structure in Fig. 1, the follow-
ing two models are considered and further analyzed
through a sensitivity analysis.

3.2 Underlying Model
The first model we will consider, consists of four dif-
ferential equations and describes the negative feed-
back loop of the HPT-axis in the case of the au-
toimmune disease Hashimoto’s thyroiditis [13]. This
disease is characterized by the presence of thyroid
antibodies in blood samples, which attack and de-
stroy the follicular cells of the thyroid gland and
therefore cause hypothyroidism. According to [14], [15],
Hashimoto’s thyroiditis is the most common cause of
hypothyroidism, affecting approximately 30% of pa-
tients with thyroid disorders. Patients with hypothy-
roidism can experience fluctuating body weight, fa-
tigue, weakness and mood swings, which can signifi-
cantly reduce their quality of life.
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The model presented in [13] aims to incorporate
significant characteristics of the disease Hashimoto’s
thyroiditis into the model the HPT-axis, which focus
on the following assumptions stated in [13].

1. Anti-thyroid peroxidase antibodies recognize
and attack the functional thyroid gland (precisely
thyroid peroxidase (TPO) enzymes in the follic-
ular cells).

2. The damaged part of the gland is no longer func-
tional (active) in secreting thyroid hormones.

3. TSH stimulates the functional (active) part of the
thyroid gland for growth and hormonal secretion.

4. TSH disappears from the blood through a non-
specific excretion mechanism.

5. TSH distributes uniformly throughout the func-
tional part of the gland.

6. The hypothalamus–pituitary function is intact.

7. The blood concentration of iodine is sufficient for
synthesis of hormonal production.

8. The total TSH receptor concentration in the
thyroid gland is unaffected in the presence of
Hashimoto’s thyroiditis. [16]

Based on this the system of differential equations is
given by

dx
dt

= k1 −
k1y

ka + y
− k2x, x(t0) = x0,

dy
dt

=
(k3z)x

kd + x
− k4y, y(t0) = y0,

dz
dt

= k5

(x
z
−N

)
− k6zw, z(t0) = z0,

dw
dt

= k7zw − k8w, w(t0) = w0,

(1)

with initial conditions x0, y0, z0, w0 ≥ 0 at time t0 is
introduced. The variables x, y, w represent the hor-
mone concentrations of TSH, FT4 and Anti-Thyroid
Peroxidase Antibodies (TPOAb) at time t in days re-
spectively. Furthermore, z accounts for the functional
(active) size of the thyroid gland since Hashimoto’s
thyroiditis reduces the size of the thyroid gland. The
model also includes the parameters ki, N ∈ R

+,
i ∈ {1, . . . , 8, a, d}. These parameters were derived
from literature and simulation studies. A stability
analysis of the system of differential equations (1)
has already been carried out in [13]. Furthermore,
through bifurcation a parameter is identified which in-
dicates the transition from euthyroid states to disease
states.

3.3 Reduced Model
The secondmathematicalmodel, derived from (1) and
introduced in [8], aims to describe the HPT-axis in a
healthy (euthyroid) state, without considering the ef-
fects of specific thyroid disorders. The original sys-
tem of four differential equations (1) is reduced by
omitting the equations in z and w resulting in the sys-
tem of two differential equations given by

dx
dt

= k1 −
k1y

ka + y
− k2x, x(t0) = x0, (2)

dy
dt

=
k3x

kd + x
− k4y, y(t0) = y0, (3)

with initial conditions (x0, y0)
T with x0, y0 ≥ 0.

The variables x and y keep their original meaning,
and the model parameters get reduced to k1, k2, k3,
k4, ka, kd ∈ R+. Since the variable z is no longer
considered, only the term k3z

kd+x in the second equation
changes, whereas the rest remains unchanged. This
is compensated by k3.

In [17], the reduced model has been the subject
of much investigation as to whether it can be used
to present clinical data through calibration of selected
model parameters. Furthermore, the above model is
similar to the differential equations introduced in [2],
however, it does not include time-dependent model
parameters. Similar to the analysis in [2], we perform
a sensitivity analysis using the following mathemati-
cal theory.

4 Sensitivity Analysis
As mathematical models become increasingly com-
plex, it becomes more challenging to understand how
small errors or perturbations in the input data affect
the simulation results produced by these models. The
theory of sensitivity analysis deals with the changes
in simulation results due to the variation of model pa-
rameters, which grants essential information regard-
ing model development and design optimization [18].
Particularly in the context of calibrating model pa-
rameters to fit a mathematical model to real-world
data, identifying model parameters that have a signif-
icant impact on model output is a critical step in the
optimization process.Therefore, the theoretical back-
ground to conduct a local and global sensitivity anal-
ysis is introduced.

4.1 Local Sensitivity Analysis
The underlying approach of this subsection is based
on [19] and introduces the theory of local sensitiv-
ity analysis, which refers to calculating derivatives of
a solution to a differential equation with respect to
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model parameters. The following representation of
a system of differential equations is given by

∂z(t, θ)

∂t
= f(t, z(t, θ), θ), (4)

with the function z : I × G → R
n, z = z(t, θ) for

I ⊆ R, G ⊆ Rm open and f : I×Rn×G → R
n con-

tinuous and locally Lipschitz continuous with respect
to z. The solution z and additionally the function f
are dependent on the vector θ ∈ G, which represents
the model parameters. Furthermore, we assume that
the solution z is partially differentiable in θ, which
allows the approximation

zk(t, θ)− zk(t, θ
∗) ≈

m∑
j=1

∂zk(t, θ
∗)

∂θj
(θj − θ∗j ) (5)

for a fixed parameter vector θ∗ and k = 1, . . . , n
using Taylor’s theorem. Thereby, the local sensitivity
of the state vector z with respect to model parameters
θj for j ∈ {1, . . . ,m} at time t is defined as

∂zk(t, θ
∗)

∂θj
, (6)

where θ∗ is a given parameter. According to [19], a
simple approach to calculate model sensitivities is the
use of numerical differentiation given by

∂z(t, θ)

∂θj
=

z(t, θ +∆θj)− z(t, θ)

∆θj
+O(∆θj) (7)

for j = 1, . . . ,m, where θ + ∆θj stands for the
mathematical expression of only adding the value
∆θj to the j-th component of θ. However, this
method has some drawbacks as the accuracy of the
approximation (7) strongly depends on the choice
of ∆θj . As mentioned in [20], if ∆θj is chosen
unnecessarily large, the corresponding error term of
the approximation becomes indecently large as well.
If ∆θj is set too small, the error can increase, as well
due to floating point cancellations in the calculation.

To avoid these errors, Matlab toolbox for Sensi-
tivity Analysis for ODEs and DAEs is used, as it em-
ploys a suitable strategy described in [20] for the cal-
culation of ∆θj . The Matlab function sens_sys is
used to compute the local sensitivities defined in (7).
In the case the a local sensitivity analysis, only in-
formation about the influence of a single parameter
is provided while the remaining parameters are fixed.
To gain additional insight into the collective influence
of parameters the global sensitivity analysis based on
Sobol’ indices is introduced in the following section.

4.2 Global Sensitivity Analysis
In contrast to local sensitivity, global sensitivity pro-
vides information about the collective influence of
multiple model parameters. In that regard, themethod
of Sobol’ is used, which conducts a global sensitivity
analysis on the basis of variance decomposition, see
[21], [22]. We consider a rudimentary modeling ap-
proach and assume, that each model can be described
as

Y = f(X) = f(X1, . . . , Xn), (8)

where f : Rn → R, and Y represents the model out-
put, which serves the simple propose of introducing
the theory assumed to be a scalar, but higher dimen-
sional output is permitted as well. Regarding the input
X = (X1, . . . , Xn) ∈ [0, 1]n, elements within the n-
dimensional unit hypercube are considered, where the
values (X1, . . . , Xn) are uniformly distributed within
[0, 1]n. This condition may be assumed without loss
of generality since any input space can be transformed
to [0, 1]n. Furthermore, we assume that the Hoeffding
decomposition for the model output Y holds, and is
given by

Y = f0 +

n∑
i=1

fi(Xi) + . . .

+

n∑
i=1

n∑
j=i+1

fij(Xi, Xj) + . . .

+ f1,...,n(X1, . . . , Xn).

(9)

A necessary condition for (9) to be fulfilled, is
given by∫ 1

0
fi1,i2,...,is(Xi1 , Xi2 , . . . , Xis) dXik = 0, (10)

for 1 ≤ i1 < i2 < · · · < is ≤ k and
ik ∈ {i1, i2, . . . , is}. This results in f0 = C, where
C is a constant. Additionally, (9) is unique and the
summands are mutually orthogonal. The functions
fi1,i2,...,is are obtained by

f0 = E(Y ), fi = EX∼ i
(Y |Xi)− E(Y ),

fij = EX∼ij
(Y |Xi, Xj)− fi − fj − E(Y ),

(11)

where higher-order terms follow the same pattern.
The expression X∼i refers to the set of all variables
exceptXi. Using the expressions defined in (11), the
partial variances are denoted to

Vi = V(fi(Xi)) = VXi
(EX∼i

(Y |Xi)),

Vij = V(fij(Xi, Xj)),
(12)
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in which case again higher order expression are ob-
tained by following the same pattern. Based on (12)
and assumption (9) an expression for the variance de-
composition is achieved as

V(Y ) =

n∑
i=1

Vi +

n−1∑
i=1

n∑
j=i+1

Vij + · · ·+ V1,...,n.

Through the use of Sobol’ sensitivity indices Si, Sij

the variance contributions to the total variance of indi-
vidual parameters and the variance accounting for the
interaction between parameters are determined. The
Sobol’ indices are given by

Si =
Vi

V(Y )
, i = 1, . . . , n

Sij =
Vij

V(Y )
, 1 ≤ i < j ≤ n

(13)

which denotes the ratio to of the corresponding partial
variance to the total variance and are determined us-
ing a Python script. The calculation of Sobol’ indices
make it necessary to calculate a large variety of dif-
ferent numerical solutions for varying sets of param-
eters. Thereto, Python libraries such as SALiB and
SciPy including functions like saltelli.sample
and solve_ivp, are used.

5 Results
This section is based on [23] and presents the results
of the local and global sensitivity analysis, starting
with a graphical motivation. Understanding the ef-
fects of changes in the output of (2) and (3) due to
variation in model parameters provides useful infor-
mation about the extent to which the model is able to
represent clinical data. First, a graphical motivation
is given to investigate the parameter influence on a
fundamental level.

5.1 Graphical Analysis
In this approach, the model parameters are changed
individually and the corresponding solutions are
plotted. The reduced model (2) and (3) is considered
with initial conditions (x0, y0)

T = (1, 13)T for the
starting concentrations of TSH and FT4 respectively.
They are chosen in accordance with [13] and are
situated within the normal ranges of the respective
hormone. In the course of this graphical motivation
the initial conditions of the differential equations (2)
and (3) are not varied, only the underlying model
parameters. The initial values of the model parame-
ters ki ∈ R+, i ∈ {1, 2, 3, 4, a, d} are assigned to
k1 = 5000, k2 = 16.63, k3 = 1.1262, k4 = 0.099,
ka = 0.0434, kd = 0.0021 and taken from literature
sources in [13] or in the case of the parameter k3

results from [17] were taken into account. Since (2)
and (3) originate from a larger system of differential
equations, the omitted quantity of the thyroid size
denoted as z in (3) is compensated by the value of
k3. This consequence has been thoroughly discussed
in [17] through the calibration of model parameters
including k3 to clinical data. To conduct a graphical
presentation of the solutions of (2) and (3), the
parameters are individually increased by a factor
s ∈ [0.1, 1000]. For each set of model parameters,
(2) and (3) are solved using the Matlab function
ode15s. Each model parameter is increased twice,
therefore resulting in three different solutions for
each hormone concentration and each parameter.
The resulting curves are displayed in Fig. 2 and
Fig. 3.

The solution associated with the starting parame-
ter set is represented by a continuous line, and those
resulting from modified parameters by a dashed line.
An increase of the model parameters k1, k4, ka, kd
leads to an increase of the resulting solutions for TSH.
The exact opposite can be observed for the model pa-
rameters k2, k3. Even though the model parameters
k3, k4, kd are only contained in (3), their increase re-
sults in a noticeable change in the solutions of (2).
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Fig. 2: Solutions of (2) with singularly varied model
parameters ki, i ∈ {1, 2, 3, 4, a, d}. The default
values are k1 = 5000, k2 = 16.63, k3 = 1.1262,
k4 = 0.099, ka = 0.0434, kd = 0.0021.

By comparison to the above observation, the
model parameters k1, k2, ka are only included in (2)
and their alteration lead to no changes in the solutions
of (3). This lies in contrast to the model parameters
k3, k4, kd, which influence the solution of both hor-
mone concentrations, whereas the exact opposite can
be observed for k4 and ka.
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Fig. 3: Solutions of (3) with singularly varied model
parameters ki, i ∈ {1, 2, 3, 4, a, d}. The default
values are k1 = 5000, k2 = 16.63, k3 = 1.1262,
k4 = 0.099, ka = 0.0434, kd = 0.0021.

A first indication of the influence of model param-
eters on model output is provided by the graphical
representation of different solutions with various un-
derlying parameter sets.

5.2 Results of Local Sensitivity Analysis
To support the conclusions drawn from the previous
section, a local sensitivity analysis is conducted. The
Matlab function sens_sys included in the toolbox
Sensitivity Analysis is utilized to calculate the local
sensitivity introduced in (6) of the reduced model.
The resulting local sensitivities ∂x

∂kj
and ∂y

∂kj
for

j ∈ {1, 2, 3, 4, a, d} are shown in Fig. 4 and the fol-
lowing influences on the solution are deduced.

Starting with the model parameters k1 and ka, the
local sensitivities ∂x

∂k1
, ∂y

∂k1
, ∂x

∂ka
and ∂y

∂ka
show the

same influence on the model output as indicated in
the graphical motivation. We observe that the indi-
vidual variation of the model parameters k1 and ka
only lead to changes in the trajectories representing
the hormone TSH whereas no change is observable
in the trajectory representing FT4. Continuing with
the model parameter k2, similar behavior to k1 and
ka is noticeable. No change regarding the hormone
concentration of FT4 is deduced from ∂y

∂k2
and an in-

crease in the parameter value leads to a decrease of
the trajectory representing TSH. In the case of k4 and
kd, there is almost no influence on the resulting so-
lution of TSH. However, the individual variation of
these parameters leads to a decrease in the trajectory
representing FT4. When k4 is varied, the local sen-
sitivity ∂y

∂k4
even indicates a significant change in the

model output.
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Fig. 4: Local sensitivities for all parameters
k1, k2, k3, k4, ka, kd included in (2) and (3). The sen-
sitivities for the differential equations (2) and (3) rep-
resenting the concentration of TSH and FT4 are rep-
resented in blue and red, respectively.

Lastly, similar to k4 and ka the variation of k3 does
not alter the trajectory representing TSH, however an
increase of the parameter value leads to an increase in
the solution of FT4.

5.3 Results of Global Sensitivity Analysis
The goal of conducting a global sensitivity analysis
is to quantify the relative importance of each input
variable on the value of an assigned output response
[24]. First and second order Sobol’ indices are
calculated to quantify the contribution of each model
parameter, or a combination of them, to the response
variance decomposition [25].

The first step is to decide which parameters to in-
clude in the Sobol’ analysis. The model parameters
k1, k2 and k4 are not included in the analysis as they
are attributed to physiological properties such as se-
cretion and excretion rate, therefore only the parame-
ters k3, ka, kd are included. Additionally, the contri-
bution of the initial conditions (x0, y0)T is accounted
for in the following global sensitivity analysis. In
[17], the first measurement of a times series of clinical
data were used as initial values for subsequent simula-
tions of (2), (3), which varied widely. For this reason
it is important to understand how the different initial
values will affect the further course of the simulation.
For the five selected parameters k3, ka, kd, x0, y0 the
following intervals for variation given in Table 2 are
chosen due to the results of the graphical motivation
and the respective normal ranges for the concentra-
tions of TSH and FT4.
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Parameter Variation Intervall
k3 [1, 2]
ka [0.01, 2]
kd [0.001, 2]
x0 [7, 18]
y0 [2.5, 4]

Table 2: Intervals considered for variation of the pa-
rameters k3, ka, kd and initial conditions (x0, y0)T in
the global sensitivity analysis.

Next, the Python function saltelli.sample is
utilized to generate a certain amount of different sets
of parameters k3, ka, kd, x0, y0. This amount is de-
termined byN · (2D+2), whereN is a chosen value,
in this case N = 512 and D stands for the num-
ber of parameters considered in the analysis, therefore
D = 5. This results in a total of 6144 different sets
of parameters. To generate a numerical solution of
(2) and (3), the Python function solve_ivp is used to
solve the mathematical model for each set of param-
eters generated by the function saltelli.sample.
For the solution of the mathematical model a time
interval of t ∈ [0, 1000], unit in days, but only the
last evaluation point is considered. The resulting first
and second order Sobol’ indices, determined using
the function sobol.analyze, are displayed in a heat
map, see Fig. 5.

Fig. 5: Global sensitivities for model parameters
k3, ka, kd and initial values (x0, y0)

T regarding (2)
and (3). The Sobol’ indices are displayed in a
heatmap, the left graphic displays the results for TSH
and the right for FT4.

The Sobol’ indices for (2) and (3) are displayed
in the left and right graphic of Fig. 5, respectively.
We start with discussing the Sobol’ indices for (2).
Interestingly, the variation of the initial conditions
(x0, y0)

T in combination with any other considered
parameter does not influence the output variance
of the mathematical model in the case of TSH. In
addition, the influence of the parameter k3 is rather
insignificant in comparison to ka and kd. The first
order Sobol’ indices, displayed generally on the
diagonal, of ka and kd stand out in particular. To a

small extent, the combined variation of these two
parameters lead to a variation of the output variance
of (2).

The results of the global sensitivity analysis in the
case of (3) representing the hormone concentration of
FT4 displayed on the right hand side of Fig. 5 differ
greatly from the results for TSH. In combination
with the model parameter kd, both initial conditions
(x0, y0)

T influence the response variance decomposi-
tion. Furthermore, the single variation of kd results in
a significant alteration of the output model variance,
which is concluded from the first order Sobol’ index.
Even in combination with k3 influential effects are
observable.

Additionally, some further numerical examples re-
garding the global sensitivity analyses are presented
in Fig. 6.

0 20 40 60
time

0

5

10

15

20

25

30

35

40

45

50
x

90.0% region
median value
model simulation

0 20 40 60
time

8

10

12

14

16

18

20

y

90.0% region
median value
model simulation

Fig. 6: Mean model response is displayed by the or-
ange line, the shaded region on blue represents 90%
of the simulation results and the dotted line additional
simulation results.

Utilizing the Matlab function sbiomodel, the re-
duced mathematical model is implemented as Sim-
Biology Model and afterwards the first- and to-
talorder Sobol indices are calculated using the func-
tion sbiosobol. These numerical results show that
even a small variation of the parameters k3, ka, kd in
accordance with Table 2 lead to a significant variation
of the model output.

6 Discussion
The primary objective of this scientific research
comprises a local and global sensitivity analysis of a
system of differential equations aiming to model the
dynamics of the HPT-axis. The conducted analysis
revealed key model parameters which strongly influ-
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ence the model output. The hormone concentration of
TSH is described through secretion minus excretion
rate, where the secretion rate is described through
two terms. The first term k1 represents the maximum
secretion rate of TSH and the second term k1y

ka+y

accounts for the inhibition rate of FT4 present in the
bloodstream using Michaelis-Menten kinetics [26].
The result that k1 is a highly influential parameter
is very plausible from a physiological point of view.
Furthermore, variation of the model parameter ka,
which is also included in the term attributed to
Michaelis-Menten kinetics, led to a change in the
model output. Interestingly, the excretion rate k2 has
no effect on the model output in the case of TSH.
Future research is necessary to relate the finding
to physiological characteristics of the HPT-axis.
According to the global sensitivity analysis and the
resulting first order Sobol’ indices, ka and kd equally
influence the output variance of the mathematical
model in the case of TSH, even though kd is only
included in the equation of FT4. This finding is to
a certain extent in contradiction with the results of
the local sensitivity analysis. The discrepancy may
arise due to an insufficient sample number for the
calculation of the Sobol’ indices.

In the case of FT4, the hormone concentration
is described using two terms, the secretion minus
the excretion rate. In contrast to the excretion rate
of TSH, the results of the local sensitivity analysis
suggest that the excretion rate of FT4 k4 is highly
influential on the model output regarding FT4. In
addition, the model parameters that are included in
the Michaelis-Menten term also show an influence to
a certain extent. This result aligns with the findings of
the global sensitivity analysis, as the Sobol’ indices
suggest that the model parameter kd has a strong
influence on the output variation in the case of FT4.
In addition, the second order Sobol’ indices of kd and
all other considered parameters except ka showed a
significant influence. Further research is required to
account for the influence of varying initial conditions
on model output in the case of FT4 vs. TSH and the
resulting physiological and clinical implications.

The findings concerning the model parameter
k1 align with previous studies [2], which partially
also conducted a sensitivity analysis of a very
similar system of differential equations describing
the HPT-axis and incorporating thyroid diseases
e.g. Hashimoto’s thyroiditis, and Graves disease.
However, in [2] only a partial sensitivity analysis is
conducted for selected parameters, which are in addi-
tion time-dependent and dependent on the considered
thyroid disease. The identification of significant

model parameters may lead to implications for
understanding thyroid disorders. We concluded that
small changes in certain parameters result in drastic
changes in the output of the mathematical model.
By understanding the characteristics of the model
parameters, we aimed to put mathematical aspects
into context with physiological and pathological
conditions. However, in depth studies are necessary
to gain further insight. Additionally, through clinical
trails, this insight could suggest treatment strategies
by managing thyroid-related diseases by targeting
sensitive parameters. Despite the high potential
and fundamental findings regarding the sensitivity
analysis, further research is necessary to bridge the
gap between model parameters and physiological
and pathological characteristics. Additionally, the
simplifications made in the model by assuming
constant parameter values may overlook dynamic
changes in the endocrine system.

In conclusion, the analysis of mathematical mod-
els of the HPT-axis is essential to understand its regu-
latory mechanisms and connect physiological charac-
teristics with properties of the derived model. These
findings enhance our understanding of thyroid regu-
lation and pave the way for targeted therapeutic inter-
ventions. The outlook is to analyze models targeting
different hormonal axes, such as the hypothalamus-
pituitary-ovary axis, to combine different techniques
in order to accurately depict clinical data.
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