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Abstract: Recent advances in RNA technologies opened the avenue to the design of novel vaccines as wit-
nessed by the success of the COVID-19 vaccine and also by new ongoing vaccines for cancer. New drugs
based on non-coding RNA can also be developed at lower costs considering the relatively simple structure of
these molecules with respect to classical recombinant protein technologies. We recently developed RNA-KG, a
biomedical Knowledge Graph focused on RNA, collecting information from more than 50 public databases and
bio-medical ontologies to support the study of RNA and the design of novel RNA-based drugs. In this work
we show that, by applying inductive machine learning methods on top of embedded node and edges obtained by
applying classical Graph Representation Learning methods, we can accurately predict the entities and the rela-
tionships between entities included in RNA-KG. Our results open the way to the analysis and the discovery of
novel relationships between RNAs and other bio-molecules and medical concepts represented in RNA-KG.
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1 Introduction

RNA-based technologies introduced novel therapeu-
tics for the treatment and prevention of human dis-
eases, [1]. Indeed RNA molecules play a fundamen-
tal role in cell biology, performing a wide range of
functions either directly by regulating gene expres-
sion, exhibiting enzymatic activity, modifying and
regulating other RNAs and other bio-molecules, or
indirectly by being translated into proteins. Different
types of RNA are involved in regulatory processes:
small non-coding RNAs (sncRNAs) are associated
with RNA interference pathways, including short in-
terfering RNAs (siRNAs), microRNAs (miRNAs),
short hairpin RNAs (shRNAs), antisense oligonu-
cleotides (ASOs), piwi-interacting RNAs (piRNAs),
tRNA-derived fragments (tRFs), and tRNA-derived
small RNAs (tsRNAs). sncRNAs modulate mRNA
expression by inhibiting translation or facilitating the
degradation of the target transcript via complemen-
tary base pairing. Long non-coding RNAs (lncRNAs)
hold crucial importance in the onset and advancement
of diseases, [2], and are involved in competitive en-
dogenous RNA (ceRNA) regulation, transcriptional
and epigenetic regulation, [3].

More in general several studies revealed the func-
tional characteristics of a large variety of RNA
molecules, [4], [5], thus opening the door for the
design of mRNA-based vaccines for the COVID-19

pandemic, [6], for the treatment of melanom,a [7],
and for the development of new drugs that can target
both proteins and mRNA, as well as other non-coding
RNA, [8].

Recently we proposed RNA-KG, the first
ontology-based knowledge graph (KG) for repre-
senting coding and non-coding RNA molecules and
their interactions with other bio-molecules as well as
with pathways, abnormal phenotypes, and diseases to
support the study and the discovery of the biological
role of the “RNA-world”, [9]. RNA-KG represents
relationships between bio-molecules and bio-medical
concepts through Resource Description Framework
(RDF) triples extracted frommore than 50 public data
sources and also integrates related bio-medical con-
cepts coded through biomedical ontologies including
the Human Phenotype Ontology, [10], the Monarch
Merged Disease Ontology, [11], Chemical Entities
of Biological Interests, [12], and other fundamental
biomedical ontologies, [9].

RNA-KG exploits PheKnowLator, [13], a soft-
ware system for the construction of semantically rich,
large-scale biomedical KGs that are Semantic Web
compliant and amenable to automatic OWL reason-
ing. The current version of RNA-KG includes about
600K nodes and 9M of edges and can be exported in
different data formats. RNA-KG has been designed
not only to represent information related to RNA in a
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  Fig. 1: Pie-chart of: (a) node distribution according to node types. (b) edge distribution according to edge

                                                                                     types

relational graph format but also to provide a KG ready
to be analyzed through graph-based AI methods for
inferring new knowledge about the “RNAworld” and
supporting the discovery of new RNA-based drugs.

In this paper we show that Graph Representation
Learning (GRL) methods, [14], [15], can be applied
to the analysis of RNA-KG to both visually repre-
sent and to classify the different types of nodes and
edges that characterize the heterogeneous graph. We
model the entity and relation predictions in RNA-KG
as a multi-class classification problem, using graph
embedding methods to transform nodes and edges
into their vector representation and applying induc-
tive machine learning methods to classify the nodes
and edges of the KG.

2 The RNA Knowledge Graph

(RNA-KG)
RNA-KG is the first KG that aggregates biologi-
cal knowledge about RNAs from over 50 public
databases, integrating functional relationships be-
tween genes, proteins, chemicals, and ontologically
grounded biomedical concepts. The current release
of RNA-KG [16] has a single component with ap-
proximately 600K nodes and 9M edges, and it can be
queried via a SPARQL endpoint from the laboratory
website [17]. The nodes are typically mapped to ref-
erence biomedical vocabularies and ontologies, such
as NCBIGene Entrez identifiers for unique identifica-
tion of genes and various types of non-coding RNAs
(ncRNAs), the Human Phenotype Ontology for phe-
notypes, the Monarch merged disease ontology for
diseases, and the Gene Ontology, [18], for annotat-
ing genes. Furthermore, all possible interactions are
represented using the Relation Ontology (RO, [19]),

which ensures consistent semantics for the different
relationships extracted from the sources.

Fig 1a (adapted from [9]) illustrates the distri-
bution of nodes within RNA-KG. Nodes are di-
vided into those representing ontology terms and
bio-entities without a direct mapping. The bio-
entities category is further split into RNA nodes
(which includes sncRNA, mRNA, lncRNA, viral
RNA, and unclassified RNA nodes), and non-RNA
nodes (termed other bio-entities), including for
example gene and variant (SNP) nodes. Fig 1b dis-
plays the distribution of edges in RNA-KG. Edges
are sorted into three groups: (i) edges represent-
ing RO terms that denote interactions among RNA
molecules from various sources, (ii) edges represent-
ing the subClassOf relationships, and (iii) edges rep-
resenting other types of relationships not covered by
RO. The subClassOf relationship arises from the
integration of bio-ontologies into RNA-KG, along
with the absence of a dedicated ontology for RNA
molecules. When RNA molecules cannot be pre-
cisely mapped to a reference ontology, they are clas-
sified as subClassOf an appropriate category within
the SequenceOntology, [20], such as SO_0000276 for
miRNA molecules.

3 RNA-KG embedding

We constructed embedded representation of nodes
and edges of RNA-KG to assess whether their vector
representations can be used to visualize the resulting
graph in an Euclidean space and to predict the node
and edge types of the graph. In particular, we applied
node2vec, [21], and LINE, [22], embeddingmethods.
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   Fig. 2: t-SNE projections of RNA-KG embedding of the main node types generated by LINE. (Left) First order

                                                          LINE; (right) Second order LINE

3.1 Node2vec and LINE embedding
Node2vec uses random walks (RWs) to obtain se-
quences of nodes to “linearize” the graph and then
applies a shallow neural network to obtain a vectorial
representation of the nodes and edges, using an ap-
proach similar to word2vec to embed text, [23]. More
precisely, the node2vec second order RW is defined
by a transition probability of the form:

πrvx = αp,q(x, v, r) · wv,x. (1)

where πrvx is the probability of moving from node v
to node x coming from node r. In eq. 1 the term wv,x

denotes the weight of the edge (v, x) ∈ E, and αp,q

are node2vec parameters defined as:

αp,q =


1
p if dr,x = 0

1 if dr,x = 1
1
q if dr,x = 2

where dr,x denotes the graph distance between the
nodes r and x, whereby d ∈ {0, 1, 2}. By tun-
ing the parameters p and q we can both leverage the
homophily (through a Depth-First Sampling (DFS)-
like visit) and the structural (through a Breadth-First
Sampling (BFS)-like visit) characteristics of the input
graph, thus obtaining embeddings that can capture the
topological features of the graph.

LINE (Large-scale Information Network Embed-
ding) provides embeddings that scale nicely with big

graphs, [22]. The proposed model optimizes an ob-
jective function that preserves the first and second or-
der proximity of nodes in the embedded spaces. First-
order proximity is defined as the local pairwise prox-
imity between two vertices, indicated by the weight of
the edge connecting them. Second-order proximity is
instead defined as the similarity between the neigh-
borhoods of the two vertices. The first-order LINE
model optimizes an objective function that considers
the following function:

O1 =
∑
i,j∈E

KL(p̂1(vi, vj), p1(vi, vj))

where KL is the Kullback-Leibler divergence be-
tween the joint probability p1(vi, vj) =

1
1+exp(−uT

i ·uj)

and the empirical probability p̂1(vi, vj) = wij

W , with
vi and vj ∈ V and ui, uj are their corresponding em-
bedding in a vector space, andwij is the weight of the
edge (vi, vj), withW =

∑
(i,j)∈E wij .

Similarly second-order LINE minimizes the KL
divergence between the second-order proximity em-
pirical distribution and the second-order proximity
distribution in the embedded space, [22].

3.2 Embedded representations of RNA-KG

We generated 100-dimensional representations of the
nodes through the LINE algorithm. Fig. 2 shows the t-
SNE, [24], two-dimensional projections of the nodes
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obtained by LINE, while Fig. 3 shows the same em-
beddings obtained with node2vec. In both figures the
main sevenmost numerous node types are shown. We
can observe that all the embeddings methods can rea-
sonably separate the different node types. However
node2vec can neatly separate the node types, espe-
cially with the second-order Depth-First-like (DFS:
p = 5, q = 0.2) and Breadth-First-like (BFS: p =
0.2, q = 5) RWs; in particular while node2vec is able
to separate genes (brown points) from proteins (or-
ange points), this is not the case with LINE embed-
dings (Fig. 2 and Fig. 3).

A reasonable separation has been also achieved
with respect to edge types, even if for both LINE and
node2vec the separation of the different edge types is
not so clearly defined as for node types (Fig. 4).

4 Classification of embedded nodes

and edges
The embedded representations of nodes and edges are
used to train different learning machines for the pre-
diction of the node and the edge types of RNA-KG.

4.1 Experimental set-up

We applied the followingmodels to classify the nodes
and edges of RNA-KG: Decision tree classifier, [25],
random forest ensembles, [26], a linear perceptron
classifier, a support vector machine classifier with
Gaussian kernel and a multi-layer perceptron (MLP)
classifier with one hidden layer.

We applied multiple hold-out (70% training and
30% test) on 2-dimensional t-SNE projections, [24],
of the 100-dimensional embedding of randomly sam-
pled nodes (20K from about 600K) and edges (10K
from about 9M) of RNA-KG. We also evaluated dif-
ferent multi-class classification tasks, considering for
node type prediction the classification of the 7 most
represented classes of nodes, and also the multi-class
classification of the 20 and 54 most represented node
types. For edge type classification we considered re-
spectively the 7, 15, 40 and 74 most represented edge
types.

We performed limited model selection with de-
cision trees (tuning of the maximum depth of the
tree) and random forest (tuning of the number of base
learners) and no model selection at all for the Percep-
tron, MLP (one hidden layer with 100 neurons, ReLU
activation function, ADAM for weight optimization
and maximum number of iterations set to 500), and a
gaussian SVM with regularization parameter C = 1
and maximum number of iterations set to 200. All the
models have been implemented using the scikit-learn
Python library and the embeddings have been com-
puted using the GRAPE library, [27].

4.2 Classification of node and edge types of

the RNA-KG

Fig. 5 summarizes RNA-KG node and edge type pre-
dictions across the different classification tasks and
the different models using the 2-dimensional t-SNE
projections of the BFS-like node2vec embeddings.

Node type classification, decision trees, random
forests and SVMs achieved a balanced accuracy
across the 7most represented classes larger than 90%
and also with 20 classes we obtained a balanced ac-
curacy close or larger than 90%. With 54 node types,
a reasonable accuracy of about 50% is obtained (con-
sider that a random balanced accuracy with 54 classes
would be about 2%). The linear perceptron obtained
worse results, since classes are surely non linearly
separable (see Fig. 3).

Reasonable, but significantly worse results are ob-
tained for edge type classification (Fig. 5, bottom).
With random forests (the best performing method) we
obtained a balanced accuracy of about 75% with 7
classes but performances decrease with other models
or, as expected, when the number of classes is higher.

Fig. 6 shows the effect of model parameters in de-
cision trees (Fig. 6 a) and b) and random forests (Fig. 6
c).

Summarizing, results show that edge and espe-
cially node types of RNA-KG are predictable using
also simple prediction models (e.g., decision trees)
trained on top of the node and edge node2vec embed-
dings.

4.3 Prediction of the overall nodes and

edges of RNA-KG

Previous results were obtained on a random sample of
20K nodes of RNA-KG. Here we present the results
obtained on the analysis of larger numbers of nodes
till to the overall about 600K nodes of RNA-KG.

Table 1 and Table 2 report the results of the deci-
sion trees and random forest trained on different num-
ber of classes and including the original sample of
20K nodes but also a larger random sample of 100K
till to the overall 600K nodes of RNA-KG. Also in
this case we performed a multiple hold-out (repeated
5 times) by splitting the available data with 70% of
training and 30% test set.

5 Discussion
We predicted node and edge types of RNA-KG, us-
ing relatively simple embedding and classification
methods. Embeddings of nodes and edges visual-
ized through t-SNE projections show that the differ-
ent types of nodes and edges can be separated in the
euclidean space, even if edge types show a less clear
separation (Fig. 2, Fig.3, Fig. 4).
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Fig. 3: t-SNE projections of RNA-KG embedding of the main node types using node2vec according to three

                  different graph visiting strategies: a) DFS-like RW b) BFS-like RW c) First order RW

    Fig. 4: Embedding of the main edge types of RNA-KG using second-order LINE (left) and DeepWalk (right)
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  Fig. 5: RNA-KG node and edge type classification. (top) Comparison of balanced accuracy results between
models on the most represented 7, 20, 54 node types; (bottom) Comparison of balanced accuracy results between
models on the most represented 7, 14, 40, 71 edge types. Vertical lines on top of the bars represent the standard

                                                                                   deviation
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(a) (b)

(c) (d)

  Fig. 6: Effect of the learning parameters on decision tree and random forest balanced accuracy performance.

(a) Decision tree node type prediction results with respect to the maximum tree depth; (b) Decision tree edge type
prediction results with respect to the maximum tree depth; (c) Random forest node type prediction results with
respect to the number of base learners. (d) Random forest edge type prediction results with respect to the number

                                                                         of base learners

These results are also confirmed by the classifica-
tion performance obtained by machine learning mod-
els trained on top of the embeddings. All the models,
except the linear perceptron, achieve a reasonable bal-
anced accuracy (Fig. 5) for all the classification tasks.

The results on edge embeddings (Fig. 5, bottom),
even if significantly better than random guessing, are
worse with respect to node type prediction since cur-
rent edge type definitions in RNA-KG are too general
to functionally characterize the distinct types of edges
of RNA KG. For instance general relationships, such
as “interacts with” or “regulates activity of” can in-
volve different types of nodes, e.g. genes or proteins
or miRNA and mRNA, and refers to different func-

tional relationships all “pushed” into the same type of
edge.

Classification results on the overall nodes of RNA-
KG show a certain decrement in the performance of
decision trees and random forest classifiers, even if
with 7 classes we obtained a balanced accuracy larger
than 80%with both decision trees and random forests
(Table 1 and Table 2). This may be due to the reduced
input dimension and also to the fact that we did not
perform a thorough model selection, or to a possible
larger presence of outliers.

Summarizing this preliminary analysis shows that
embeddings methods coupled with off-the-shelf clas-
sification methods can obtain good results on the pre-

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.30

Francesco Torgano, Emanuele Cavalleri, 
 Jessica Gliozzo, Federico Stacchietti, 

 Emanuele Saitto, Marco Mesiti, 
Elena Casiraghi, Giorgio Valentini

E-ISSN: 2224-2902 308 Volume 21, 2024



Table 1. Decision tree node type prediction results on
RNA-KG. Balanced accuracy and empirical compu-
tational time are reported considering different num-
bers of classes and nodes of the graph.

#cl. #nodes balanced_acc time

7 20 000 92.81% ± 0.57% 0.45
7 100 000 92.34% ± 0.27% 2.81
7 578 384 81.84% ± 0.14% 12.93
20 20 000 90.18% ± 0.58% 0.51
20 100 000 89.73% ± 0.22% 3.22
20 578 384 77.19% ± 0.06% 14.75
54 20 000 55.43% ± 2.50% 0.67
54 578 384 42.14% ± 0.41% 19.00
68 100 000 52.77% ± 1.66% 4.37
68 578 384 33.39% ± 0.39% 20.90
81 578 384 32.36% ± 0.53% 22.72

Table 2. Random forest node type prediction re-
sults on RNA-KG. Balanced accuracy and empirical
computational time are reported considering different
numbers of classes and nodes of the graph. Est. rep-
resents the number of estimators (base learners).

#cl. #nodes #est. balanced_acc time

7 20 000 50 94.32% ± 0.22% 6.77
7 100 000 200 94.11% ± 0.23% 136.48
7 578 384 500 83.72% ± 0.11% 194.26
20 20 000 50 92.07% ± 0.43% 7.92
20 100 000 200 91.74% ± 0.44% 133.67
20 578 384 500 80.29% ± 0.19% 248.77
54 20 000 50 55.45% ± 2.78% 10.47
54 578 384 500 42.12% ± 0.44% 369.31
68 100 000 200 52.28% ± 2.89% 169.01
68 578 384 500 33.59% ± 0.33% 412.86
81 578 384 500 32.20% ± 0.67% 452.37

dictions of node and edge types of RNA-KG. This
is quite surprising since we used relatively simple
prediction methods without performing an accurate
model selection. We foresee that better results could
be obtained through fine-tuned models (some prelim-
inary results seem to confirm this hypothesis, data not
shown).

Moreover we used only bi-dimensional t-SNE pro-
jections of the embeddings to train the classifiers, but
by using full embeddings we could in principle further
improve the classification performances.

We also observe that for the embeddings we used
methods conceived for homogeneous graph embed-
dings. By applying graph embeddings for heteroge-
neous graphs, [28], we could further improve the re-
sults since RNA-KG is a heterogeneous graph com-
posed of a large number of different nodes and edge
types.

Our results show that GRL methods can be suc-
cessfully applied to the analysis of RNA-KG with ac-
curate predictions. These findings open the door to
more refined analyses of RNA-KG to detect novel
edges to support the investigation of the “RNAworld”
and the discovery of new RNA-based drugs.

For future research we foresee that the applica-
tion of graph embeddingmethods aware of the hetero-
geneity of the RNA-KG, [29], [30], can significantly
improve the predictions of novel relationships be-
tween non coding RNAs and other target molecules,
as well as associations between ncRNA with abnor-
mal phenotypes and diseases. Another futuew re-
search direction is represented by the application of
graph neural networks that can solve the edge predic-
tion problem with a direct end-to-end approach, [31],
[32].
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