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Abstract: - The examination of brain signals, namely the Electroencephalogram (EEG) signals, is an approach 
to possibly detect seizures of the brain. Due to the nature of these signals, deep learning techniques have 
offered the opportunity to perform automatic or semi-automatic analysis which could support decision and 
therapeutical approaches. This paper focuses on the possibility of classifying EEG seizure using convolutional 
layers (namely EfficientNetV2 architectures, i.e., EfficientNetV2S and EfficientNetV2B2), Long Short-Term 

Memory (LSTM) units, and fine-tuned mechanisms of attention. We use these techniques to untangle the 
complexity of these signals and accurately predict seizures. The proposed system provided interesting results 
with an 86.45% accuracy under the Kullback-Leibler Divergence loss of 0.95. Moreover, these results showed 
that embedding LSTM layers deeply increases the quality of the results since these layers support the analysis 
of the spatial-temporal dynamics of the EEG signals. On the other hand, it is important to mention that 
hardware limitations could affect these results and therefore it is important, when setting this architectural 
system, to fine-tune the data set and balance the performance vs the computational cost of the process. 
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1  Introduction 
Electroencephalography (EEG), an approach to the 
analysis brain signals and, in particular, electrical 
brain signals, developed in the 19th century and in 
the time of the Industrial Revolution, [1]. Around 
the 1920s, Has Berger proposed the first recording 
tool for the EEG signals, [2], which then brought to 
the possibility of analyzing brain activity and 
correlating this information with the functionality of 
the brain as well as with its pathologies, [3], [4]. In 
particular, new discoveries follow regarding 
epilepsy, sleep patterns, [5], [6], and other seizures 
and neurological disorders, [7], [8], [9]. 

Due to the nature of the EEG signals, it is 
sometimes difficult to find overall consistency in its 
interpretation, [10], [11], and therefore the 
importance of standard methodologies which can 
support the decision and visualization has grown 
especially vs the detection of epilepsy, which is one 
of the main interest of this work, [12]. In this 
context, Machine Learning (ML) techniques are a 
useful tool, together with the classic approaches of 
the literature, such as the analysis in the frequency 
and time domains, the use of Convolutional Neural 

Networks (CCNs), and Support Vector Machines 
(SVMs), [13], [14].  

CNNs-based techniques showed robustness vs 
the inherently physiological variability of EEG 
signals, [15], especially when integrated with the 
mechanism of attention, [16], [17]. Another 
interesting aspect of this approach is the possibility 
to transfer these learning strategies as it has been 
reported, for example, in the analysis of datasets – 
e.g. g., UC Irvine ML Repository, imageNet or 
similar – for seizure detection of [18] and [19]. In 
addition, by carefully managing the learning rate 
adjustments throughout the training process using a 
scheduler mechanism, some models have been 
shown to optimize convergence and mitigate 
overfitting, [20], [21]. 

While numerous models have made significant 
progress, a critical limitation persists: many focus 
on binary deterministic classifications (e.g., seizure 
vs. non-seizure). This approach leaves clinicians 
without vital information on the uncertainty 
embedded in model predictions. Probability-Based 

Classification (PBC) addresses this drawback by 
quantifying the confidence associated with each 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.27 Denis Manolescu, Neil Buckley, Emanuele Lindo Secco

E-ISSN: 2224-2902 260 Volume 21, 2024



prediction, [22]. PBC offers advantages for clinical 
decision-making by potentially flagging cases with 
lower model confidence for expert review. 
Evaluation metrics that align with PBC approaches, 
such as Kullback-Leibler divergence (KLD), are 
meant to provide a more comprehensive assessment 
of model performance than traditional accuracy-
based metrics, [23]. In this study, we explore the 
integration of Kullback-Leibler Divergence (KLD) 
within our machine learning models aimed at 
improving seizure detection to enhance their 
practical utility in healthcare settings 

As the literature suggests, pre-processing and 
data augmentation strategies go beyond the 
structural optimization of the model to directly 
enhance seizure detection capabilities. These 
strategies are vital in addressing overfitting and 
improving the generalizability of models, which are 
particularly important when working with limited 
datasets, [24]. In this perspective, it is also 
important to mention the importance of proper 
analysis in the time and frequency domain with, for 
example, Short-Time Fourier Transform (STFT), 
[14], [25], [26] and Continuous Wavelet Transform 
(CWT), [27], which has shown limitation in the 
management of the resolution vs the high dynamics 
of these signals. At the same time, there has been 
interesting progress on the refinement of the 
EfficientNetV2 system with new challenges which 
we want to face in this work. 

The paper is organized as follows: in the 
following section, we introduce the dataset and the 
main pre-processing approach with a focus on the 
implementation’s details. Further, this section 
highlights the use of Kullback-Leibler divergence 
(KLD) as the primary evaluation metric, augmented 
by an adaptable learning rate scheduler to refine 
training dynamics. The exploration of model 
architectures is grounded on two pre-trained 
EfficientNetV2 variants (B2 and S), each trained 
and initialized with ImageNet weights, serving as 
the core foundational backbone. This chapter 
continues with our investigation, examining a range 
of model configurations, including 2D, 3D, and 
pointwise convolutional neural networks, alongside 
recurrent neural network (RNN-LSTM) structures, 
all configured to optimize transfer learning. Here, 
we diligently assess the impact of attention 
mechanisms, focusing on how adjustments in 
headcounts and dimensionality influence 
performance. Further refinement of our models is 
assessed using Keras AutoML to systematically 
explore a broad spectrum of hyperparameter 
settings, seeking configurations that elevate model 
performance. The subsequent Results chapter 

presents a comprehensive analysis of the findings 
from our training processes. Finally, the conclusion 
reports some observations about the limits of our 
approach and how we could extend that vs the 
detection of EEG seizures. 
 

 

2  Materials & Methods 
 
2.1 Project Environment and Setup 
This work is structured around Kaggle, [28], a 
platform that properly suits machine learning studies 
applied to EEG datasets. Data are provided by the 
Medical School of Harvard University and partners 
for the HMS Harmful Brain Activity Classification 
competition [29]. The competition made available a 
hosted notebook with a hardware configuration of 
70GB of disk storage, with 29GB of CPU and 32GB 
GPU power (T4 x2 or P100 x1). This setup was 
powerful enough to facilitate the development, 
training, and experimentation phases of the model, 
the handling of the large dataset (25 GB), and the 
efficient training of the complex neural network 
architectures. 

 
2.2 Database 
 
2.2.1 Database Description 

The dataset for this study contains real raw EEG 
recordings along with the metadata that links the 
brain signals to expert classifications. This design 
was structured to challenge and evaluate models on 
their ability to detect and classify seizures and other 
harmful brain activity. The difficulty of this task is 
increased by the variability in expert consensus, 
reflecting the complex nature of EEG data 
interpretation. The classification involves different 
patterns, such as seizure, generalized and lateralized 
periodic discharges, generalized and lateralized 
rhythmic delta activity and others. The data are 
sampled with overlapping time frames or windows 
of 10 second each and then, in order to provide a 
ground truth reference, the data are classified by 
professional experts as it is shown in Figure 1.  
 
2.2.2 Optimize, Convert, Segmentation, 

Partition, Augmenting 

Data are available in parquet format: they are then 
processed into .npy format by means of a 
process_spec() function. A joblib librabry is also 
used in order to optimize the CPU workload. 
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Fig. 1: Network Dataset Layout before K-Fold 
 
In order to optimise the analysis and the efficiency 
of the EfficientNetV2 pattern recognition, 10 
seconds overlapping and non-overlapping set of 
samples are saved. Data are partitioned into a 
training set and testing set as well. 

Additionally, during data loading for model 
training, we incorporated signal augmentation 
techniques such as MixUp and Random Cutout. 
MixUp creates synthetic examples by blending 
images and labels, forcing the model to learn feature 
interpolations. In parallel, Random Cutout 
strategically obscure portions of images, forcing the 
model to recognize patterns beyond dominant 
features. Both these techniques enrich the training 
dataset, helping our models improve robustness and 
consistent performance across diverse scenarios. 

The complete code for the conversion process, 
data segmentation, and the augmentation techniques 
used are presented in Appendix 1 and they were 
implemented according to the Kaggle guidelines and 
applications, [28], [29]. In the Appendix, we show 
the Data Cleaning & Conversion (panels B, D of 
Figure 11B, Appendix), the Segmentation process 
(panel C, Figure 11B, Appendix), and finally the 
Augmentation (panel A, Figure 11A, Appendix). 
 
2.3 Building the Models 

 
2.3.1 Baseline, Transfer Learning, and 

Base Model 
This research adopts a transfer learning strategy 
with the EfficientNetV2 architecture, pre-trained on 
the ImageNet dataset, to classify EEG spectrograms. 
The approach of recognizing brain signals as 
complex time-frequency images uses EfficientNetV2 
as the backbone for its advanced visual pattern 
recognition capabilities, proven effective and 
scalable across various image datasets, [30]. 

In practice, the study employs "no-top" versions 
of both EfficientNetV2-B2 and EfficientNetV2-S, 
which removes the pre-trained final classification 
layer of the models (Figure 1, panel 02). This 
modification allows the two variants to be more 
adaptable for EEG probability seizure classification, 
diverging from their original purpose of general 
image classification on ImageNet. Custom output 
layers were subsequently designed to fine-tune the 
architecture, optimizing the ability of the systems to 
process the convoluted and high-dimensional 

information characteristic of EEG spectrograms, 
[31]. 

By applying transfer learning, the study aims to 
leverage the broad features these models have 
learned from ImageNet. This transfer is adjusting 
them to identify distinctive patterns associated with 
seizures and other neurological phenomena of 
interest from the database. In addition, the base 
model, represented by the CFG class, supports 
simple experimental comparisons between the 
EfficientNetV2-S and EfficientNetV2-B2 (Figure 2, 
panel 01). 

Changing the preset parameter within the base 
model facilitates a controlled evaluation of each 
model, ensuring a fair baseline comparison in the 
context of neurological pattern recognition. This 
strategy exploits the EfficientNetV2 architecture 
with its learned visual pattern detection capabilities, 
maximizing the utility of its design for the 
specialized task at hand. 

 

 
Fig. 2: Baseline CFG Class (01); No-Top Base 
Model for Transfer Learning (02) 
 
2.3.2 Attention Mechanism 
 
Simple Attention Mechanism (Model 2) 

At its core, Attention Mechanisms (AM) allow 
neural networks to selectively focus on the most 
informative regions within input data. It enables the 
model to dynamically weigh the significance of 
different input features, an ability that closely 
mirrors how the human brain processes complex 
stimuli, [32]. In the context of EEG spectrogram 
classification, attention helps models identify and 
prioritize the spectral features most strongly 
associated with seizures and other neurological 
activity.  

In developing Model-2, the study began by 
integrating a simple AM (Figure 3, panel A) into a 
no-top EfficientNetV2-B2 architecture to refine the 
classification of EEG spectrograms. By generating 
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an attentional vector that assigns weights to 
different features in the EEG spectrogram, the 
model highlights areas likely to contain critical 
information for classification. In addition, with the 
EfficientNetV2-B2 backbone maintained in a non-
trainable state, the model leverages the depth of pre-
trained features while concentrating adaptive efforts 
on the subtle features of attention and refinement 
through custom top layers.  

From the backbone base, the Model-2 structure 
continues with a GlobalAveragePooling2D to 
condense the output into a 1D feature vector, applies 
a simple AM to emphasize critical features, and 
completes with custom Dense-SoftMax layers for 
precise probability classification output. 
 

 
Fig. 3: Simple (A) and Multiheaded (B), Attention 
Mechanism Implementation 
 
Multiheaded Attention Block (Models 3 & 4)  

Next, with the building of Model-3 and Model-4, 
the research explored the complexities of multi-
headed AMs (Figure 3, panel B). This refined 
version allows the models to attend to multiple parts 
of the input data simultaneously through separate 
“heads” that operate in parallel. Each head can 
capture different aspects of the input data, providing 
a composite understanding of the input features and 
further refined by subsequent normalization and 
pooling layers (LayerNormalization and 
GlobalAveragePooling1D). 

 
Fig. 4: Code Example for Attention Blocks (A) and 
Expanded Key and Value Dimensions (B) 

Multidimensional Attention (Model 5 to 8)  

In order to improve the performance of the system 
and better characterize and represent the main 
features of the data, we also embedded multiple 
blocks of attention (Figure 4, panels A and B). By 
increasing dimensionality, the systems can discover 
critical, yet subtle, features for accurate EEG 
spectrogram classification. 

 

 
Fig. 5A: Model-9 (A) with 2D CNN-Pointwise 
Layers & LSTM; Model-11 (B) with CNN-
Pointwise Layers A M and LSTM 

 
Fig. 5B: Model-12 (C) with 3D CNN Layers & 
RNN LSTM; Model-13 (D) with 3D CNN Layers, 
Layers AM and LSTM 
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Models 5 through 8 represent a deeper 
exploration of AMs. We introduced variations in 
multi-headed attention configurations and expanded 
the dimensionality of key and value pairs to 
investigate the complexity and capacity of the 
attention mechanism to differentiate and prioritize 
information within EEG signals. All these models 
utilize the EfficientNetV2B2 architecture as their 
foundation and incorporate up to eight attentional 
heads. Models 5 and 7 specifically examine the 
effects of doubling the key and value dimensions, 
while Model 8 explores tripling these dimensions to 
achieve an even higher level of detail in feature 
processing. Additionally, Model 6 integrates 
multiple attentional blocks, layering the attention 
mechanism to higher convolutions and deepening 
the analysis of EEG features. 

Each model employs a sequence of steps 
starting from the base-model output, reshaping it to 
align with the multi-head AM requirements, 
followed by a Normalization layer to stabilize 
learning. GlobalAveragePooling1D is consistently 
used to condense the data into a more manageable 
form for the final classification layers. This 
sequence ends in custom top layers, including Dense 
and Dropout layers, leading to a SoftMax 
classification output. These enhancements in AMs 
refine the focus on relevant EEG features, aiming 
for a fine and highly accurate classification of 
neurological patterns. 
 
CNN-Pointwise & RNN-LSTM Layers (Model 9 

to 13) 

Building on the attentional mechanisms explored 
earlier, Models 9–13 investigate the complex 
relationship between spatial feature extraction, 
temporal analysis, and attentional focus for EEG 
spectrogram classification (Figure 5A & Figure 5B). 
These aspects are implemented by integrating 
convolutional neural networks and long short-term 
memory features. In addition, each model was 
evaluated across both structural backbone 
architectures, EfficientNetV2S and 
EfficientNetV2B2. As a strategic shift, the models 
incorporated LSTM layers to capture inherent 
temporal dependencies and dynamics specific to the 
sequential nature of brain activity patterns, crucial 
for accurate seizure detection. 

A central line of analysis was the optimization 
placement of AMs. Model-11 uniquely applied 
attention before the RNN layer, allowing us to 
investigate whether the model benefits from 
identifying crucial spectral features prior to 
sequential analysis. In contrast, Model-13 applied 
AMs after the LSTM, testing if focusing on the most 

significant temporal patterns enhanced 
classification. Additionally, all these five models 
have been used to experiment with different 
convolutional architectures, including the 2D 1x1 
pointwise convolution layers for fine-grained 
feature mapping and larger kernel convolutional 
layers for broader spatial relationships. This 
diversified approach aims to identify the spatial 
feature resolutions most descriptive of seizure 
activities within EEG spectrograms. 

Models 12 and 13 uniquely adopt a 3D 
convolutional approach, treating the spectrogram as 
an inherently spatiotemporal representation (Figure 
5B). This aspect aimed to determine whether 
modelling frequency and temporal dynamics 
simultaneously held advantages. Finally, attention 
mechanisms were refined with varying key and 
value dimensions, potentially allowing systems to 
identify more complex relationships within the EEG 
data. 
 

 
Fig. 6: Learning Rate Scheduler 

 
2.4  LR Scheduler, Kullback-Leibler 

Divergence & Other Metrics 
To optimize model convergence, a learning rate 
(LR) scheduler was implemented with an initial 
warmup phase (lr_ramp_ep) to establish model 
stability (Figure 6). This phase transitions into a 
sustained period of maximum learning rate 
(lr_sus_ep), intensifying the model's focus on 
critical EEG patterns. Subsequently, a customizable 
decay function (cos) is applied to gradually reduce 
the learning rate, facilitating precise weight 
adjustments and reducing the risk of overfitting in 
later training epochs. The learning rate 
hyperparameters (lr_start, lr_max, lr_min) were 
chosen by both best practices in deep learning and 
the batch size used, ensuring the schedule was 
adaptable to the specific dataset and training 
dynamics. 

We also incorporated the Kullback-Leibler 

Divergence (KLD) function of loss within the 
training of the system (Figure 7 and Eq. (1)):  
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This parameter is a proper marker of the 

classification performance in terms of accuracy, in 
terms of precision, and recall, namely the correct 
detection of seizures and the minimization of false 
negatives, respectively. 

 

 
Fig. 7: Kullback-Leibler Divergence (KLD) 
implementation 
 
2.5  AutoML Hyperparameter Tuner 
Another step in order to adjust the system consists 
of introducing Keras AutoML which optimizes the 
overall configuration of the classifier such as the 
setting of the learning rate and the optimization of 
the parameters. Through an interactive process, we 
refine the setting and obtain an optimal 
configuration. 
 

 
Fig. 8: Top 4 Model Performance 
 
2.6 Training, Evaluation, Testing and 

Inference 
For training the system, the number of epochs was 
defined (CFG.epochs=13) together with the usual 
parameters such as the learning rate and verbose 
output (CFG.verbose). A validation set was also 
established (valid_ds) together with a 
model.evaluate method. Finally, another set of data 
was prepared for testing (test_ds)).  

Finally, the trained model was used to generate 
predictions (model.predict) on the test dataset and 
save the output into a CVS file. This process 
involved pairing the predictions with required EEG 
identifiers (eeg_id), for possible later analysis and 
evaluation procedures. 

 

 
3  Results & Discussion 
Analysis of the results revealed Model-9 
(configured with EfficientNetV2S backbone, 2D 
pointwise convolution, and LSTM layers) and 
Model-13 (composed of EfficientNetV2B2 
backbone, 3D convolution, and LSTM layers, with 
double dimension AM factors and 6 attention heads) 
to be the most accurate architectures, achieving an 
accuracy of 0.8645 and 0.8288, respectively (Figure 
9). These two models outperformed both the 
EfficientNetV2-B2 and EfficientNetV2-S baselines 
(Figure 8). This difference suggests their improved 
capacity to decode and learn from complex, time-
sensitive patterns in EEG spectrograms based on 
their integrated spatial-temporal processing layers. 
In addition, both configurations, 9 and 13, achieve 
the lowest KLD loss, which indicates confidence in 
their predictions and confirms their superior 
certainty in classifications. This characteristic is 
desirable in real-world EEG seizure detection 
systems, where minimizing both false alarms and 
missed seizures is crucial.  

In all cases, integrating convolution layers and 
LSTM units improved the models. The effectiveness 
of this approach was universally observed, 
suggesting that additional investigation into the 
optimal configurations with this technique could 
yield even better results. 

Further examination of the performance results 
reveals a significant decrease in accuracy for 
Model-6 and Model-8, which could be attributed to 
several factors:  

Model-6, with its multiple attention blocks, each 
featuring four heads, indicates increased complexity 
issues, leading to difficulties in training. Each 
additional attention block introduces more 
parameters to learn, which requires more data and 
computational power to optimize effectively. When 
not regulated, this complexity results in the model 
overfitting to the training data or not converging on 
an optimal solution. In this particular case, the 
training data was not diverse or large enough to 
support learning these additional parameters. 

Likewise, Model-8 encountered similar issues 
with its 4-head attention mechanism and tripled key-
value dimensions. While intended to provide a more 
detailed feature processing capability, the 
substantial increase in dimensionality has caused the 
model to become too specialized in the training data 
variations, failing to generalize well to validation 
data. This phenomenon is known as the “curse of 

dimensionality”, [33], where adding more features 
increases the volume of the feature space 
exponentially. 
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Fig. 9: Performance results of all 13 Models 

  

 
Fig. 10: Execution times/epoch during 13-train 
cycles (all models) 
 

Without enough training data to cover this 
space, the model performance can deteriorate 
considerably. Furthermore, Model-6 and 8 
demonstrate the risks of overfitting. Their poor 
accuracy is intensified by very high KLD loss, 
indicating incorrect predictions made with excessive 
certainty. This result highlights the importance of 
balancing model complexity with the need for 
reliable and well-calibrated prediction. 

Overall, multi-headed models with fine-tuning 
generally outperformed those with simple attention 
design and showed promising results against the 
baselines. Similarly, expanding the key-value 
dimensions in the attentional modules led to stable 
accuracy, highlighting the value of capturing 
detailed feature relationships.  

However, as Attention Mechanisms (AM) 
became more complex, the systems encountered 
Out-Of-Memory (OoM) errors during training. This 
event is also reflected in Model-7 training time per 
epoch, with its multi-dimensional 8-head AM 
configuration (Figure 10). Interestingly, these 
resource limitations become more pronounced when 
increasing the number of attentional heads 
compared to expanding key-value dimensions. This 
indicates that, given hardware constraints (29 GB of 
CPU and 32 GB of GPU power with a T4 GPU), 

adjusting the dimensionality presents a more 
computationally efficient method to boost the 
representational power of models within attention 
mechanisms.  

The performance results of both baseline systems 
indicate that transfer learning is a highly effective 
strategy in machine learning developments for brain 
signal classification tasks. The foundational designs, 
EfficientNetV2S and EfficientNetV2B2, provided a 
solid starting point for testing and improving 
complex pattern recognition concepts. These no-top 

pre-trained models can accelerate the learning 
process, allowing for a direct focus on the subtle 
characteristics of EEG data. Appendix 2 provides a 
detailed summary of the performance metrics in 
heatmap format (Figure 12, Appendix) and also 
offers a more comprehensive comparison of the 
models through bars and spiderweb charts (Figure 
13, Appendix). Additionally, the appendix includes 
a confusion matrix that presents the performance 
metrics of the model. 

The overall results of this work indicate that a 
stable approach to EEG multi-class classification 
can be achieved through transfer learning with 
EfficientNetV2, refined by specialized layer 
architectures. 
 
 
4   Conclusion 
This work analyses the possibility of using 
convolutional and LSTM layers, combined with 
attention mechanisms, in order to classify EEG 
seizure. The proposed system shows an accuracy of 
86.45% with a KL divergence loss of 0.95. 
Moreover we showed that EfficientNetV2S and 
EfficientNetV2B2 with the integration of LSTM and 
convolutional layers significantly improves the 
classification performance. However, while 
incorporating attention mechanisms with higher 
local dimensionalities (keys and values) further 
enhanced accuracy, producing richer and more 
informative outputs, we noticed that distributing 
these dimensionalities across multiple attention 
heads led to decreased performance and 
unsustainable computational demands. 

These findings emphasize the need for more 
research into strategies to adjust model depth 
complexity with computational efficiency to balance 
performance without overextending system 
capabilities.  

Future work will concentrate on enhancing the 
performance of the EEG seizure detection systems 
by exploring the benefits of learning from larger and 
more diverse datasets, as well as on looking at 
proper systems and software for EEG data 
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acquisition, [34], [35], [36]. A particular focus will 
be on researching techniques to reduce the KL 
divergence to increase system confidence and 
accuracy. Additionally, adopting incremental 
learning strategies could allow for further model 
improvements. All these development efforts hold 
the potential to improve the reliability of machine 
learning systems and their integration while 
supporting a more personalized and superior quality 
of healthcare. 
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Fig. 11A: Augmentation (A) 
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Fig. 11B: Data Cleaning & Conversion (B, D),  
Segmentation (C) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2 
 

 
Fig. 12: Heatmap metrics results 
 

 

 
Fig. 13: Bars-chart (top panel) and Spiderweb-chart 
metrics comparison (bottom panel) between models 
 

 

 

 

 

 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.27 Denis Manolescu, Neil Buckley, Emanuele Lindo Secco

E-ISSN: 2224-2902 270 Volume 21, 2024



Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

DM and NB have conceived the classifier. DM has 
implemented the software, prepared the dataset and 
carried out all the data processing, as well as 
prepared the report with the description and results. 
NB has supervised the work. ELS has supervised 
the paper preparation. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.27 Denis Manolescu, Neil Buckley, Emanuele Lindo Secco

E-ISSN: 2224-2902 271 Volume 21, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



