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Abstract: - Mobile health (mHealth) was developed ten years ago, which used wireless wearable devices to 
collect the many physiological messages in daily life, regardless of time and place, for some health services 
including monitoring chronic diseases and reducing the cost of empowering patients and families for handling 
their daily healthcare. However, the challenge for these measurements is the lower signal quality because users 
would measure their conditions not on a resting status. Now, the pulse transit time (PTT) is highly related to 
blood pressure has been proposed, which is acquired from the impedance plethysmography (IPG) and 
ballistocardiogram (BCG) measured by the weight-fat scale. However, the lower signal quality of IPG and 
BCG, lowers the accuracy of blood pressure. This study aims to use deep learning techniques to classify the 
signal quality of BCG and IPG signals. The reference PTTs were measured by the electrocardiogram (ECG) 
and photoplethysmogram (PPG). The signal quality of each segment was labeled with the error between 
proposed and reference PTTs. We used three signals, BCG, IPG, and differential IPG, as the input. The 
proposed one-dimensional stacking convolutional neural network and gait recursive unit (1-D CNN+GRU) 
model to approach the classification. The good performances achieved high accuracy (98.85%), recall (99.4%), 
precision (94.29%), and F1-score (96.78%). These results show the potential benefit of the signal quality 
classification for the PTT measurement. 
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convolutional neural network. 
 
Received: Septermber 13, 2023. Revised: July 11, 2024. Accepted: August 12, 2024. Published: September 11, 2024.    
 
 
1  Introduction 
Wireless and wearable devices are the major issue in 
mobile health (mHealth) because devices deal with 
some health services, including monitoring the 
conditions of chronic diseases, and reducing the cost 

of users for handling their daily healthcare without 
the limitations of time and place, [1]. Thus, many 
studies have developed innovative wearable devices 
in the past 10 years for taking care of patients, or 
health management of users. For example, the 
Apple watch has the functions of detecting the 
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arrhythmia by the electrocardiogram, and 
monitoring the blood oxygen saturation, [2]. The 
electrocardiography (ECG) patch, [3] and 
electromyography (EMG) patch, [4] have been 
proposed to monitor the condition of the heart and 
muscle in real-time. However, innovative mobile 
devices for different health care are very important 
research. 

Blood pressure (BP) is the most important 
physiological parameter for healthcare in the home 
because it has direct and indirect relations with 
many chronic diseases, like hypertension, 
hyperlipidemia, heart failure, stroke, and kidney 
disease, etc. [5]. According to the World Health 
Organization’s report, people must measure their BP 
daily and keep their systolic BP lower than 130 
mmHg, [6]. The commercial and automatic 
sphygmomanometer uses either auscultatory or 
oscillometric methods, [7]. These methods all use an 
occlusive cuff wrapping around a user’s upper arm 
to measure the BP. The disadvantage of these 
methods is uncomforting when the BP is measured. 
In the recent years, the cuffless BP measurements 
have been widely studied, [8]. According to the 
Moens-Korteweg equation, the pulse transit time 
(PTT) has a high relation with BP, [9]. Reference 
[10], showed the PTT by the ECG and 
photoplethysmogram (PPG). They found the 
relation between the PTT and BP change to be 
larger than 0.8. Reference, [11] used 
phonocardiography replacing the ECG, and PPG to 
measure the PTT and estimate the BP. Reference 
[12], used the tonometer measured at the wrist 
which was replaced with the PPG, and ECG to 
evaluate the blood pressure. Reference [13], used an 
impedance plethysmogram (IPG) measured at the 
forearm which replaced the PPG, and ECG to 
measure the PTT and estimate the BP. Reference 
[14], proposed innovative cuffless BP measuring 
methods with the ballistocardiogram (BCG) and 
IPG. The BCG and IPG signals can be measured 
from a commercial weight-fat scale. However, in 
these studies, we found a basic problem. The lower 
the quality of the signal, the lower the accuracy of 
blood pressure.   

The quality of physiological signals generally is 
labeled by the manual marks of experts, [15]. 
However, the signal quality would depend on the 
experiences of experts. The rule-based method is to 
find some waveform characteristics and classify 
whether they fit the normal ranges or not, [16]. The 
disadvantage is how to define the accurate ranges 
which would be affected by the number of samples. 
Reference [17], transferred the pulses of PPG and 
differential PPG (DPPG) to an image and used a 

convolutional neural network (CNN) for the 
classification of signal quality. Its advantage was to 
transfer a one-dimension signal to a two-dimension 
image.   Reference [18] showed some methods for 
signal quality classifications of ECG. We found that 
the deep learning methods classified the signal 
quality, which input would be a two-dimensional 
image. Thus, the complexity of bringing to practice 
will arise. 

This study aims to propose a deep learning 
model for signal quality classification which uses 
the raw BCG and IPG signals as the input. The 
signal quality was labeled-labeled by the error of 
PTT measured from BCG and IPG. The PTT 
measured by the ECG and PPG was the reference. 
The BCG and IPG were measured by the self-made 
circuits when users were standing on the 
commercial weight-fat scale. The deep learning 
model was a stacking CNN plus a gate recursive 
unit (GRU). The output was one node, one 
representing good quality, and zero representing 
poor quality. 
 
 
2  Methods 
 

2.1  Experiment Protocol 
This study employed 11 males and 6 females who 
were young and healthy subjects. Their ages were 
from 22 to 19 years (mean ± standard deviation, 
20.2 ± 1.1 years), heights were from 186 to 152 cm 
(mean ± standard deviation, 166.1 ± 8.0 cm), and 
weights were from 115 to 43 kg (mean ± standard 
deviation, 62.8 ± 16.1 kg). The digital 
sphygmomanometer (HM-7320, Omron, Osaka, 
Japan) was used to measure the BPs as the 
reference. The self-made circuit was used to 
measure Lead I ECG and finger PPG of the left 
hand. PTTECG-PPG was measured from the ECG and 
PPG which would be the standard PTT. The self-
made circuits were used to measure the BCG and 
IPG signals, and which sensors were at a 
commercial body weight-fat scale (HBF-371, 
Omron, Osaka, Japan), [18]. The experiment 
procedure is mentioned below. 
 
I. ECG, PPG, IPG, and BCG signals were measured 
for five minutes, and BP was measured once when 
subjects were standing on the weight-fat scale.  
II. Subjects were running on a treadmill to raise the 
BP until the systolic BP was higher than the 20 
mmHg of resting BP. 
III. Subjects were standing on the weight-fat scale 
again, and ECG, PPG, IPG, and BCG signals were 
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measured for six minutes. Their BPs were measured 
once a minute. 
IV. Subjects were measured four times. Each 
experiment would have a rest for at least a week. 
 
2.2 Signal Processing and Segment 
The sampling rate was 500 Hz. The 4th-order 
Butterworth bandpass filter with 0.5 Hz to 10 Hz 
bandwidth was used to remove the wandering 
baseline and high-frequency noise. The group 
delays of all signal groups were reduced by an 8th-
order all-pass filter. Figure 1 shows these signals, 
ECG (blue), PPG (red), DPPG (pink), BCG (black), 
IPG (green), and differential IPG (DIPG, purple).  
The PTT1BCG-IPG is the interval between the J wave 
of BCG and the foot point of IPG, and the PTT2BCG-

IPG is the interval between the J wave of BCG and 
the peak point of DIPG. The PTT1ECG-PPG is the 
interval between the R wave of ECG and the foot 
point of PPG, and the PTT2ECG-PPG is the interval 
between the R wave of ECG and the peak point of 
DPPG.  

We used the error ratio (E) between PTT2ECG-

PPG and PTT2BCG-IPG of each beat to define the signal 
quality.  

 
E =

𝑃𝑇𝑇2𝐸𝐶𝐺−𝑃𝑃𝐺−𝑃𝑇𝑇2𝐵𝐶𝐺−𝐼𝑃𝐺−𝐵𝑖𝑎𝑠

𝑃𝑇𝑇2𝐸𝐶𝐺−𝑃𝑃𝐺
× 100%,      (1) 

 
where Bias is the time delay between ECG and 
BCG, [14]. By the trial and error method, we 
defined 30% of E as the threshold. When E is below 
the threshold, the pulse belongs to good quality, this 
cycle labeling as 1. Otherwise, the cycle is labeled 
as 0. Figure 2 shows the labels of pulses with the red 
line. We find that the second pulse belongs to poor 
quality because the foot of its IPG is at the wrong 
place. Because the PTT1 and PTT2 were extracted 
from the BCG, IPG, and DIPG, we used the three 
signals directly to classify the signal quality.  

In the data segment, the window was 1024 
points, the overlap was 512 points. In order to 
reduce the personal affection for the classification of 
signal quality, the BCG (blue), IPG (red), and DIPG 
(orange), were normalized, as shown in Figure 3. 
Because one segment has at least two PTTs, the 
segment was labeled as good or poor quality 
depending on all pulses in it belonging to all good or 
poor. The segment would be deleted when the 
pulses in it had different qualities. The numbers of 
good and poor samples were 3938 and 18682, a total 
of 22,620 samples. 
 

 
Fig. 1: PTT1 and PTT2 are defined by ECG (blue), 
PPG (red), DPPG (pink), BCG (black), IPG (green), 
and differential IPG (DIPG, purple)    
 

 
Fig. 2: The label of signal quality is the red line, 
When the pulse belongs to the good quality, its 
cycle is labeled as 1 (higher horizontal line). 
Otherwise, the label is 0 (lower horizontal line) 

 

 
Fig. 3: The normalized BCG (blue), IPG (red), 
and DIPG (orange) 
 
2.3   Signal Quality Classifier 
A stacking CNN+GRU model was proposed to 
classify the signal quality as shown in Figure 4. The 
three channels, BCG, IPG, and DIPG signals, are 
the input. A time-distributed layer is separated into 
two parts that connect to two one-dimensional 
CNNs. The CNN has three layers, a maximal pool 
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layer, and a flattened layer. Then, a GRU is 
connected after the flattening layer. A full 
connection layer connects with the output layer of 
the GRU. In CNN layers, the number of filters is 32, 
the kernel sizes are 3, 5, and 13, respectively, and 
the stride is 2. In the maximal pooling layer, the 
kernel size is 2, and the stride is 2. The activation 
function is ReLU. The unit number of GRU is set to 
1024. The batch size is set to 512, with the control 
reset gate and update gate using a sigmoid function 
and the hidden state using a tanh function. One node 
is in the output layer, and which activation function 
is the sigmoid function. One represents the good 
quality, and zero represents the poor quality. The 
threshold of output is 0.5. The dropout in the hidden 
layer is 0.5. The loss function is the binary Cross-
Entropy function, and the Adam optimizer is used, 
with a learning rate of 0.0001.  
  

Fig. 4: The structure of the proposed stacking 
CNN+GRU model for the signal quality 
classification.  
 
 
3  Results  
An Intel Core i7-8700 CPU and a 186 GeForce 
GTX3070 GPU were used to evaluate the 
performance of the proposed method. The number 
of total samples was 22,620, and the numbers of 
training and testing samples were 15,834 and 6,786, 
respectively. The training samples were separated as 
the training and validation samples with 8 to 2.  

The statistic of data is expressed as the mean ± 
standard deviation. The sensitivity, specificity, and 
accuracy are used to evaluate the performance of the 
model. In the fusion matrix, TP is true positive, FN 
is false negative, FP is false positive, and TN is true 
negative. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100%,                (2) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =

𝐹𝑃

(𝐹𝑃+𝑇𝑁)
× 100%                 (3) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =

𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100%.          (4) 

 
The accuracy curves of the stacking CNN+GRU 

model in the training (blue line) and validation 
(orange line) phases are shown in Figure 5(a). The 
loss curves are shown in Figure 5(b). We find that 
the accuracy approaches 0.97, and the loss value 
approaches 0.12 when the epoch is 14. The fusion 
matrix in the testing phase is shown in Figure 6, the 
numbers of TP, TN, FN, and FP are 1174, 5534, 7, 
and 71. The results of accuracy, sensitivity, and 
specificity are 98.9%, 99.4%, and 98.7%, 
respectively. 

 

 
                  (a)                                 (b)    
Fig. 5: The results of the stacking CNN+GRU 
model in the training (blue) and validation (orange) 
phases, (a) the accuracy curves, (b) the loss curves 

 
Fig. 6: The fusion matrix in the testing phase. The 
numbers of TP, TN, FN, and FP are 1174, 5534, 7, 
and 71 
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4   Discussions 
The size of the segment would be an explored issue 
in this study. Because the sampling rate was 500 Hz, 
the minimum size of the segment was 512 points. 
Figure 7(a) shows the accuracy curves in the 
training (blue line) and validation (orange line) 
phases when the size of the segment is 512, and 
Figure 7(b) shows the loss curves. The accuracy 
approaches 0.92, and the loss value approaches 0.18 
when the epoch is 4. Its performance is lower than 
the 1024 points of segment size. The reason would 
be that the rate of non-complete cycle is close to the 
full cycle. Although the signal quality within the 
non-complete cycle is poor, and the signal quality 
within the full cycle is good, this segment is also 
labeled as good quality. Thus, the model would 
recognize the signals with the poor quality as the 
good quality. 

Figure 8(a) shows the accuracy curves in the 
training (blue line) and validation (orange line) 
phases when the size of the segment is 2048, and 
Figure 8(b) shows the loss curves. The accuracy 
approaches 0.98, and the loss value approaches 0.16 
when the epoch is 14. This performance is very 
close to the 1024 points of segment size. But, the 
disadvantage was that the number of samples would 
decrease a lot. Because when the segment size is 
2048 points, the number of full cycles would be 5 at 
least. According to the labeling rules, the rate of 
failed segments would increase. Therefore, we 
chose the 1024 points of segment size as the sample.  

 

 
Fig. 7: The results of the stacking CNN+GRU 
model in the training (blue) and validation (orange) 
phases with a segment size of 512 points, (a) the 
accuracy curves, (b) the loss curves 
 

 
Fig. 8: The results of the stacking CNN+GRU 
model in the training (blue) and validation (orange) 
phases with a segment size of 2048 points, (a) the 
accuracy curves, (b) the loss curves 
 
 
5   Conclusion 
In the development of mHealth, wireless and 
wearable devices for monitoring physiological 
conditions every day have gotten attention. Now, 
PTT can be used to estimate the BP, which usually 
is measured by the ECG and PPG signals when 
subjects sitting on a chair or lying on the bed. When 
users are standing on the weight-fat scale to measure 
the PTT, the signals must have larger artificial 
motions. In this study, we proposed the stacking 
CNN+GRU model to classify the signal quality of 
BCG and IPG signals with the one-dimensional 
data. The accuracy approached to 98.9%. Thus, it 
has the potential benefit for BP measurement with 
the weight-fat scale when users standing on it. 
Therefore, this method could be applied in the 
mHealth in the future.  

However, the major limitation of this study is 
that the subjects all were young and healthy people. 
They stood on the weight-fat scale more stable than 
the elderly. When users have Parkinson's disease or 
use assistive devices for standing, they cannot suit 
this method.      
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