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1 Introduction
Image restoration is an inverse problem where the
objective is to recover a sharp image from a blurry
and noisy observation. Mathematically, a linear shift-
invariant imaging of the system is modeled as

𝑏 = 𝐴𝑢 + 𝑐, (1)

where 𝑏 is the observed image, 𝑢 is the unknown im-
age, matrix 𝐴 is a linear transformation representing
convolution operation and 𝑐 is the noise. The goal of
image restoration is to 𝑢 recover from 𝑏.

The structured matrix 𝐴 has many singular values
of different orders of magnitude close to the origin.
In particular, 𝐴 is severely ill-conditioned and may
be singular. This makes the solution of (1) be very
sensitive to the noise 𝑐 in the right-hand side 𝑏. In gen-
eral, a regularizationmethod can be employed to com-
pute the approximate solutions that are less sensitive
to noise than the naive solution. Probably one of the
most popular regularization methods is Tikhonov reg-
ularization, [1], which replaces (1) by the minimiza-
tion problem

min
𝑢

{‖𝐴𝑢 − 𝑏‖2
2 + 𝛼‖𝑢‖2

2}, (2)

where ‖ ⋅ ‖2 denotes the Euclidean norm and 𝛼 is the
regularization parameter that controls the balance be-
tween the two terms for minimization.

In fact, Tikhonov regularization estimate is similar
to low pass filtering, therefore, it produces a smooth-
ing effect on the restored image, i.e., it penalizes
edges, which is not a good approximation of the origi-
nal image if it contains edges. To overcome this short-
coming, [2], proposed a total variation (TV) based
regularization technique, which preserved the edge
information in the restored image. In the case of TV

regularization, the estimated solution is obtained by
minimizing the objective function (the ROF model)

min
𝑢

{‖𝐴𝑢 − 𝑏‖2
2 + 𝛼‖𝑢‖𝑇 𝑉 }, (3)

and, [3], studied 𝑙1-TV denoising model:

min
𝑢

{𝛼‖𝐴𝑢 − 𝑏‖1 + ‖𝑢‖𝑇 𝑉 }, (4)

where ‖ ⋅ ‖1 = ∑𝑖 |𝑥𝑖| and ‖𝑢‖𝑇 𝑉 is the discrete TV
regularization term. Several efforts have been made
to improve the TV output, [4], [5], [6], [7], [8], [9].

2 Second order TGV (TGV2) and
algorithm

Since optimization solution with total variational fil-
ter is very effective for preserving sharp edges, cor-
ners and other fine details of an image. However,
it also has some disadvantages, most notably the so-
called staircase effect, which is the unwanted occur-
rence of edges.

Recently, [10], developed the total generalized
variation (TGV) regularizer, which is assumed to be
the generalization of the total variational filter. To-
tal generalized variation consists and balances higher-
order derivatives of 𝑢.We are introducing some prop-
erties of the second order TGV which is given by

TGV2
𝛼(𝑢) = sup { ∫

Ω
𝑢div2𝑣𝑑𝑥|𝑣 ∈ 𝒞2

𝑐(Ω, 𝒮2×2),

‖𝑣‖∞ ≤ 𝛼0, ‖div𝑣‖∞ ≤ 𝛼1},
(5)

where 𝑆2×2 is the set of all symmetric matrices and
𝒞2

𝑐(Ω, 𝑆2×2) denotes the space of compactly sup-
ported. The divergences div𝑣 ∈ 𝒞2

𝑐(Ω, ℝ2) and
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div2𝑣 ∈ 𝒞2
𝑐(Ω, ℝ) are defined by

(div𝑣)𝑖 =
2

∑
𝑗=1

𝜕𝑣𝑖𝑗
𝜕𝑥𝑗

and div2𝑣 =
2

∑
𝑖,𝑗=1

𝜕2𝑣𝑖𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

.

In order to simplify the computation, we give the
discretization of 𝑇 𝐺𝑉 2

𝛼 . Firstly, we denote 𝒰 =
𝒞2

𝑐(Ω, ℝ), 𝒱 = 𝒞2
𝑐(Ω, ℝ2) and 𝒲 = 𝒞2

𝑐(Ω, 𝑆2×2).
According to [27], [29], the discretized 𝑇 𝐺𝑉 2

𝛼 is ap-
proximatively rewritten as the following minimiza-
tion:

𝑇 𝐺𝑉 2
𝛼 (𝑢) = min

𝑤∈𝒱
𝛼1‖𝐷𝑢 − 𝑤‖1 + 𝛼0‖𝜉(𝑤)‖1, (6)

where 𝜉(𝑤) = 1
2(𝐷𝑤+(𝐷𝑤)𝑇 ), 𝐷 = (𝐷1, 𝐷2), 𝐷1

and 𝐷2 represent two first-order forward finite differ-
ence operators along the horizontal and vertical direc-
tions, respectively. Here, the operations 𝐷 ∶ 𝒰 → 𝒱
and 𝜉 ∶ 𝒱 → 𝒲 are written as

𝐷𝑢 = (𝐷1
𝐷2

) and

𝜉(𝑤) = ⎛⎜⎜
⎝

𝐷1𝑤1
1
2(𝐷2𝑤1 + 𝐷1𝑤2)

1
2(𝐷2𝑤1 + 𝐷1𝑤2) 𝐷2𝑤2

⎞⎟⎟
⎠

.

3 Shearlet Transform
The shearlet transformis a very effective tool for tack-
ling the piecewise smooth images containing corners,
edges and spikes etc. The shearlets transform can
completely approximate the piecewise smooth im-
ages’ singular structures. Such property of shear-
lets is suitable particularly in image processing task
since irregular structures and singularities carry im-
portant details in an observed image. We can propose
our high order deblurring model for impulsive noise
which is denoted by

min
𝑢

𝜇‖𝐴𝑢 − 𝑏‖1 + 𝜆
𝑁

∑
𝑗=1

‖𝒮ℋ𝑗(𝑢)‖1 + 𝑇 𝐺𝑉 2
𝛼 (𝑢),

(7)
where 𝒮ℋ𝑗(𝑢) is the 𝑗 th subband of the shear-
let transform of 𝑢. For numerical computation, we
adopt the fast finite shearlet transform (FFST), [11], in
which the construction is based on the Meyer scaling
and wavelet functions. Moreover, all the band wise
discrete shearlet transforms can be computed fastly
using the fast Fourier transform(FFT) and the dis-
crete inverse Fourier transform(IFT). For notational
simplicity, we use 𝒮ℋ𝑗(𝑀𝐴𝑇 (𝑢)) to interchange-
ably represent the continuous and the discrete shearlet
transform of continuous and discrete 𝑢, respectively.
Let𝐻1 be the FFT of the discrete 2D scaling function,

and ℋ𝑗(𝑗 ≥ 2) be those of the discrete shearlets. Let
𝑉 𝐸𝐶 ∶ 𝒞𝑘×𝑘 → 𝒞𝑘2 and 𝑀𝐴𝑇 ∶ 𝒞𝑘×𝑘 → 𝒞𝑘2 be
the vectorizing and the matricizing operators. Then
we have

𝒮ℋ𝑗(𝑀𝐴𝑇 (𝑢)) = 𝐹 −1(ℋ𝑗. ∗𝐹(𝑀𝐴𝑇 (𝑢)))
= 𝐹 −1(ℋ𝑗) ∗ 𝑀𝐴𝑇 (𝑢),

where ∗ and . ∗ denote convolution and componen-
twise multiplication. The above equation in vector
form is given by

𝒮ℋ𝑗(𝑢) = 𝑉 𝐸𝐶(𝒮ℋ𝑗(𝑢))
= 𝐹 ∗diag(𝑉 𝐸𝐶(ℋ𝑗))𝐹𝑢 = 𝑀ℋ𝑗

𝑢,

where𝑀ℋ𝑗
= 𝐹 ∗diag(𝑉 𝐸𝐶(ℋ𝑗))𝐹 , and diag is de-

fined as

diag ∶ 𝒞𝑁 → 𝒞𝑁×𝑁 and diag(𝑢)𝑖𝑗 = 𝑢𝑖𝛿𝑖𝑗,

where 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝛿𝑖𝑖 = 1.
We begin with a short review of ADMM, which

solves the model in the form of

min
𝑠,𝑡

{𝑓(𝑠) + 𝑔(𝑡)} subject to 𝐴𝑠 + 𝐵𝑡 = 𝑑. (8)

The Lagrangian is ℒ(𝑠, 𝑡, 𝑟) = 𝑓(𝑠)+𝑔(𝑡)+ 𝛽
2 ‖𝐴𝑠+

𝐵𝑡−𝑑−𝑟‖2
2, where 𝑟 is the scaled Lagrangemultiplier

and 𝛽 is a positive parameter. The ADMM algorithm,
[12], [13], starts from 𝑡0 = 0 and 𝑟0 = 0 and iterates

⎧{{
⎨{{⎩

𝑠𝑘+1 = arg min
𝑠

ℒ(𝑠, 𝑡𝑘, 𝑟𝑘)

𝑡𝑘+1 = arg min
𝑡

ℒ(𝑠𝑘+1, 𝑡, 𝑟𝑘)

𝑟𝑘+1 = 𝑟𝑘 + 𝛽(𝑑 − (𝐴𝑠𝑘+1 + 𝐵𝑡𝑘+1)).

(9)

We introduce one auxiliary variable and one quadratic
penalty term for each 𝑙1 term. More specifically, we
introduce auxiliary variables 𝑥𝑗(𝑗 = 1, … , 𝑁),

𝑦 = [𝑦1
𝑦2

] ∈ 𝒱 and 𝑧 = [𝑧1 𝑧3
𝑧3 𝑧2

] ∈ 𝒲,

such that (7) is equivalent to

min
𝑢,𝑤,𝑥𝑖,𝑦,𝑧

𝜇‖𝑝‖1 + 𝜆
𝑁

∑
𝑗=1

‖𝑥𝑖‖1 + 𝛼1‖𝑦‖1 + 𝛼0‖𝑧‖1

subject to 𝑝 = 𝐴𝑢 − 𝑏, 𝑥𝑗 = 𝒮ℋ𝑗(𝑢),
𝑦 = 𝐷𝑢 − 𝑤, 𝑧 = 𝜉(𝑤).

(10)
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After applying the ADMM, we arrive at the following
algorithm:

⎧{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{⎩

𝑝𝑘+1 = arg min
𝑝

‖𝑝‖1 + 𝛽0
2 ‖𝑝 − (𝐴𝑢𝑘 − 𝑏) − ̃𝑝𝑘‖2

2,

𝑥𝑘+1
𝑗 = arg min

𝑥𝑗
‖𝑥𝑗‖1 + 𝛽1

2 ‖𝑥𝑗 − 𝒮ℋ𝑗(𝑢𝑘) − ̃𝑥𝑘
𝑗 ‖2

2,

𝑦𝑘+1 = arg min
𝑦

‖𝑦‖1 + 𝛽2
2 ‖𝑦 − (𝐷𝑢𝑘 − 𝑤𝑘) − ̃𝑦𝑘‖2

2,

𝑧𝑘+1 = arg min
𝑧

‖𝑧‖1 + 𝛽3
2 ‖𝑧 − 𝜉(𝑤𝑘) − ̃𝑧𝑘‖2

2,

(𝑢𝑘+1, 𝑤𝑘+1)
= arg min

𝑢

𝜇𝛽0
2 ‖𝑝𝑘+1 − (𝐴𝑢 − 𝑏) − ̃𝑝𝑘‖2

2

+ 𝜆𝛽1
2 ‖𝑥𝑘+1

𝑗 − 𝒮ℋ𝑗(𝑢) − ̃𝑥𝑘
𝑗 ‖2

2

+ 𝛼1𝛽2
2 ‖𝑦𝑘+1 − (𝐷𝑢 − 𝑤) − ̃𝑦𝑘‖2

2

+ 𝛼0𝛽3
2 ‖𝑧𝑘+1 − 𝜉(𝑤) − ̃𝑧𝑘‖2

2,
̃𝑝𝑘+1 = ̃𝑝𝑘 + 𝛽((𝐴𝑢𝑘 − 𝑏) − 𝑝𝑘+1),
̃𝑥𝑘+1
𝑗 = ̃𝑥𝑘

𝑗 + 𝛽(𝒮ℋ𝑗(𝑢𝑘) − 𝑥𝑘+1
𝑗 ),

̃𝑦𝑘+1 = ̃𝑦𝑘 + 𝛽(𝐷𝑢𝑘 − 𝑤𝑘 − 𝑦𝑘+1),
̃𝑧𝑘+1 = ̃𝑧𝑘 + 𝛽(𝜉(𝑤𝑘) − 𝑧𝑘+1).

(11)
The first four sub-problems are solved by shrink-

age explicitly. The 𝑝-subproblem and 𝑥-subproblem
can be solved by

𝑝𝑘+1 = shrink1(𝐴𝑢𝑘 − 𝑏 + ̃𝑝𝑘, 1
𝛽0

),

𝑥𝑘+1
𝑗 = shrink1(𝒮ℋ𝑗(𝑢𝑘) + ̃𝑥𝑘, 1

𝛽1
), 𝑗 = 1, … , 𝑁,

(12)
where shrink1(𝑣, 𝜆) = sgn(𝑣). ∗ max(|𝑣| − 𝜆, 0).

Since the 𝑦-subproblem is componentwise separa-
ble, the solution to the 𝑦-subproblem reads as

𝑦𝑘+1(𝑙) = shrink2(𝐷𝑢𝑘(𝑙) − 𝑤𝑘(𝑙) + ̃𝑦𝑘, 1
𝛽2

), 𝑙 ∈ Ω,
(13)

where the component of 𝑦(𝑘+1)(𝑙) located at 𝑙 ∈ Ω is
denoted by 𝑦(𝑘+1)(𝑙) ∈ ℝ2, and the shrinkage operator
shrink2 can be formulated as follows

shrink2(𝑎, 𝜌) =
⎧{
⎨{⎩

0, if 𝑎 = 0,
(‖𝑎‖2 − 𝜌) 𝑎

‖𝑎‖2
, if 𝑎 ≠ 0.

(14)
Similarly, solution for the 𝑧-subproblem is formulated

as

𝑧𝑘+1(𝑙) = shrink𝐹 (𝜉(𝑤𝑘)(𝑙) + ̃𝑧𝑘, 1
𝛽3

), 𝑙 ∈ Ω,
(15)

where 𝑧𝑘+1(𝑙) ∈ 𝒮2×2 is the component of 𝑧𝑘+1 cor-
responding to the pixel 𝑙 ∈ Ω and

shrink𝐹 (𝑓, 𝜌) =
⎧{
⎨{⎩

0, if 𝑓 = 0,
(‖𝑓‖𝐹 − 𝜌) 𝑎

‖𝑓‖𝐹
, if 𝑓 ≠ 0.

(16)
where 0 is a square null matrix and the Frobenius
norm of a matrix is denoted by ‖ ⋅ ‖𝐹 .

To solve the (𝑢, 𝑤)-subproblem, we obtain the
first-order necessary conditions for optimality as fol-
lows:

⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

𝜇𝛽0𝐴∗(𝐴𝑢 − 𝑏 − 𝑝𝑘+1 + ̃𝑝𝑘)

+ 𝜆𝛽1
𝑁

∑
𝑗=1

𝑀∗
ℋ𝑗

(𝑀ℋ𝑗
𝑢 − 𝑥𝑘+1

𝑗 + ̃𝑥𝑘
𝑗 )

+ 𝛼1𝛽2
2

∑
𝑗=1

𝐷𝑇
𝑗 (𝐷𝑗𝑢 − 𝑤𝑗 − 𝑦𝑘+1

𝑗 + ̃𝑦𝑘
𝑗 ) = 0,

𝛼1𝛽2(𝑤1 − 𝐷1𝑢 + 𝑦𝑘+1
1 − ̃𝑦𝑘

1)
+ 𝛼0𝛽3(𝐷𝑇

1 (𝐷1𝑤1 − 𝑧𝑘+1
1 + ̃𝑧𝑘

1)

+ 1
2𝐷𝑇

2 (𝐷2𝑤2 + 𝐷1𝑤2 − 2𝑧𝑘+1
3 + 2 ̃𝑧𝑘

3) = 0,
𝛼1𝛽2(𝑤2 − 𝐷2𝑢 + 𝑦𝑘+1

2 − ̃𝑦𝑘
2)

+ 𝛼0𝛽3(𝐷𝑇
2 (𝐷2𝑤2 − 𝑧𝑘+1

2 + ̃𝑧𝑘
2)

+ 1
2𝐷𝑇

1 (𝐷1𝑤2 + 𝐷2𝑤1 − 2𝑧𝑘+1
3 + 2 ̃𝑧𝑘

3) = 0.
(17)

After grouping the like terms in (17), we obtain the
following linear system

⎡⎢
⎣

𝑏1 𝑏𝑇
4 𝑏𝑇

5
𝑏4 𝑏2 𝑏𝑇

6
𝑏5 𝑏6 𝑏3

⎤⎥
⎦

[
𝑢

𝑤1
𝑤2

] = [
𝐾1
𝐾2
𝐾3

] ,
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where the block matrices are defined as

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

𝑏1 = 𝜇𝛽0𝐴∗𝐴 + 𝜇𝛽1
𝑁

∑
𝑗=1

𝑀∗
ℋ𝑗

𝑀ℋ𝑗

+ 𝛼1𝛽2
2

∑
𝑗=1

𝐷𝑇
𝑗 𝐷𝑗,

𝑏2 = 𝛼1𝛽2𝐼 + 𝛼0𝛽3𝐷𝑇
1 𝐷1 + 1

2𝐷𝑇
2 𝐷2,

𝑏3 = 𝛼1𝛽2𝐼 + 𝛼0𝛽3𝐷𝑇
2 𝐷2 + 1

2𝐷𝑇
1 𝐷1,

𝑏4 = −𝛼1𝛽2𝐷1,
𝑏5 = −𝛼1𝛽2𝐷2,
𝑏6 = 1

2𝐷𝑇
1 𝐷2,

(18)

and

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

𝐾1 = 𝜇𝛽0𝐴∗(𝑏 + 𝑝𝑘+1 − ̃𝑝𝑘)

+ 𝜇𝛽1
𝑁

∑
𝑗=1

𝑀∗
ℋ𝑗

(𝑥𝑘+1
𝑗 − ̃𝑥𝑘

𝑗 )

+ 𝛼1𝛽2
2

∑
𝑗=1

𝐷𝑇
𝑗 (𝑦𝑘+1

𝑗 − ̃𝑦𝑘
𝑗 ),

𝐾2 = 𝛼1𝛽2( ̃𝑦𝑘
1 − 𝑦𝑘+1

1 ) + 𝛼0𝛽3𝐷𝑇
1 (𝑧𝑘+1

1 − ̃𝑧𝑘
1)

+ 1
2𝛼0𝛽3𝐷𝑇

2 (2𝑧𝑘+1
3 − 2 ̃𝑧𝑘

3),
𝐾3 = 𝛼1𝛽2( ̃𝑦𝑘

2 − 𝑦𝑘+1
2 ) + 𝛼0𝛽3𝐷𝑇

2 (𝑧𝑘+1
2 − ̃𝑧𝑘

2)
+ 1

2𝛼0𝛽3𝐷𝑇
1 (2𝑧𝑘+1

3 − 2 ̃𝑧𝑘
3).

(19)
Next we multiply a preconditioner matrix from the
left to the linear system such that the coefficient ma-
trix is blockwise diagonal

[
𝐹 0 0
0 𝐹 0
0 0 𝐹

] ⎡⎢
⎣

𝑏1 𝑏𝑇
4 𝑏𝑇

5
𝑏4 𝑏2 𝑏𝑇

6
𝑏5 𝑏6 𝑏3

⎤⎥
⎦

[
𝐹 0 0
0 𝐹 0
0 0 𝐹

]
∗

[
𝐹𝑢

𝐹𝑤1
𝐹𝑤2

]

= [
𝐹 0 0
0 𝐹 0
0 0 𝐹

] [
𝐾1
𝐾2
𝐾3

] .

This operation can also be equivalently performed
by multiplying each equation in (18) from the left
with 𝐹. By denoting ) 𝑏̃𝑗 = diag(𝐹𝑏𝑗𝐹 ∗) and 𝑏𝑇

𝑗 =
diag(𝐹𝑏𝑇

𝑗 𝐹 ∗) = conj(diag(𝐹𝑏𝑗𝐹 ∗)), we have

⎧{{
⎨{{⎩

𝑏1. ∗(𝐹𝑢) + 𝑏𝑇
4 . ∗(𝐹𝑤1) + 𝑏𝑇

5 . ∗(𝐹𝑤2) = 𝐹𝐾1,
𝑏4. ∗(𝐹𝑢) + 𝑏𝑇

2 . ∗(𝐹𝑤1) + 𝑏𝑇
6 . ∗(𝐹𝑤2) = 𝐹𝐾2,

𝑏5. ∗(𝐹𝑢) + 𝑏𝑇
6 . ∗(𝐹𝑤1) + 𝑏𝑇

3 . ∗(𝐹𝑤2) = 𝐹𝐾3.
(20)

Similarly to the scalar case, 𝐹𝑢, 𝐹𝑤1, and 𝐹𝑤2 can
be obtained by applying Cramer’s rule. Hence 𝑢, 𝑤1,
and 𝑤2 have the following closed forms

⎧{{{{{{{{
⎨{{{{{{{{⎩

𝑢 = 𝐹 ∗ ⎛⎜⎜⎜
⎝

∣
∣
∣
∣

𝐹𝐾1 𝑏𝑇
4 𝑏𝑇

4
𝐹𝐾2 𝑏𝑇

2 𝑏𝑇
6

𝐹𝐾3 𝑏𝑇
6 𝑏𝑇

3

∣
∣
∣
∣∗

./
∣
∣∣
∣

𝑏1 𝑏𝑇
4 𝑏𝑇

5
𝑏4 𝑏2 𝑏𝑇

6
𝑏5 𝑏6 𝑏3

∣
∣∣
∣∗

⎞⎟⎟⎟
⎠

,

𝑤1 = 𝐹 ∗ ⎛⎜⎜⎜
⎝

∣
∣
∣
∣

𝑏1 𝐹𝐾1 𝑏𝑇
4

𝑏4 𝐹𝐾2 𝑏𝑇
6

𝑏5 𝐹𝐾3 𝑏𝑇
3

∣
∣
∣
∣∗

./
∣
∣∣
∣

𝑏1 𝑏𝑇
4 𝑏𝑇

5
𝑏4 𝑏2 𝑏𝑇

6
𝑏5 𝑏6 𝑏3

∣
∣∣
∣∗

⎞⎟⎟⎟
⎠

,

𝑤2 = 𝐹 ∗ ⎛⎜⎜⎜
⎝

∣
∣∣
∣

𝑏1 𝑏𝑇
4 𝐹𝐾1

𝑏4 𝑏2 𝐹𝐾2
𝑏5 𝑏6 𝐹𝐾3

∣
∣∣
∣∗

./
∣
∣∣
∣

𝑏1 𝑏𝑇
4 𝑏𝑇

5
𝑏4 𝑏2 𝑏𝑇

6
𝑏5 𝑏6 𝑏3

∣
∣∣
∣∗

⎞⎟⎟⎟
⎠

,

(21)
where the division is componentwise. Here | ⋅ |∗ is
defined to be

∣
𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

∣
∗

= 𝑏11. ∗𝑏22. ∗𝑏33 + 𝑏12. ∗𝑏23. ∗𝑏31

+ 𝑏13. ∗𝑏21. ∗𝑏32 − 𝑏13. ∗𝑏22. ∗𝑏31
− 𝑏12. ∗𝑏21. ∗𝑏33 − 𝑏11. ∗𝑏32. ∗𝑏23,

where . ∗ is componentwise multiplication and
𝑏𝑖𝑗 ∈ ℝ𝑛.

In conclusion, summing up the statements above,
this yields the resulting alternating minimization
method generalized in Algorithm 1.

Algorithm 1 TGV2-ADMM.
Input: 𝐴 - linear transformation representing convo-
lution operation.

𝑏 - observed image.
Choose: 𝛼0, 𝛼1, 𝜆, 𝜇, 𝛽𝑗 (𝑗 = 0, 1, 2, 3).
Initialize: 𝑢0, 𝑝0, ̃𝑝0, 𝑤0

𝑗 , 𝑦0
𝑗 , ̃𝑦0

𝑗 (𝑗 = 1, 2), 𝑧𝑗 (𝑗 =
1, 2, 3),

𝑥0
𝑗 , ̃𝑥0

𝑗 (𝑗 = 1, … , 𝑁).
For 𝑘 = 0, 1, 2, … , do the following computations

𝑝𝑘+1 is determined by (12)
𝑥𝑘+1 is determined by (12)
𝑦𝑘+1 is determined by (13)
𝑦𝑘+1 is determined by (15)
𝑢𝑘+1, 𝑤𝑘+1

1 , 𝑤𝑘+1
2 are determined by (21)

̃𝑝𝑘+1
𝑗 = ̃𝑝𝑘

𝑗 + 𝛽((𝐴𝑢𝑘 − 𝑏) − 𝑝𝑘+1
𝑗 ),

̃𝑥𝑘+1
𝑗 = ̃𝑥𝑘

𝑗 + 𝛽(𝒮ℋ𝑗(𝑢𝑘) − 𝑥𝑘+1
𝑗 ),

̃𝑦𝑘+1
𝑗 = ̃𝑦𝑘

𝑗 +𝛽(𝐷𝑗𝑢𝑘 −𝑤𝑘
𝑗 −𝑦𝑘+1

𝑗 ), 𝑗 = 1, 2.
̃𝑧𝑘+1
𝑗 = ̃𝑧𝑘

𝑗 + 𝛽(𝜉(𝑤𝑘)𝑗 − 𝑧𝑘+1
𝑗 ), 𝑗 = 1, 2, 3.

If the halting criteria are satisfied, it returns 𝑢𝑘+1 and
stops.
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4 Convergence analysis
The convergence follows directly from that of the
classic ADMM because the problem is convex and
the variables 𝑝, 𝑥, 𝑦, 𝑧, 𝑢, 𝑤 can be grouped into two
blocks {𝑝, 𝑥, 𝑦, 𝑧} and {𝑢, 𝑤}. For fixed values of
{𝑢, 𝑤}, the updates of 𝑝, 𝑥, 𝑦, 𝑧 are independent of
one another. Because of this, the above iteration is
a direct application of ADMM.

Theorem 4.1. For 𝛽0, 𝛽1, 𝛽2, 𝛽3 > 0 and 𝛽 ∈
(0, 1+

√
5

2 ), then ADMM (11) converges.

Proof. By letting 𝑠 = (𝑝, 𝑥, 𝑦, 𝑧), 𝑡 = (𝑢, 𝑤), 𝑟 =
(√𝜇𝛽0

𝛽 ̃𝑝, √𝜆𝛽1
𝛽 ̃𝑥𝑗, √𝛼1𝛽2

𝛽 ̃𝑦, √𝛼0𝛽3
𝛽 ̃𝑧) in (8), and the

Lagrangian function be of the form

ℒ(𝑝, 𝑥, 𝑦, 𝑧, 𝑢, 𝑤, ̃𝑝, ̃𝑥, ̃𝑦, ̃𝑧)

= 𝜇‖𝑝‖1 + 𝜆
𝑁

∑
𝑗=1

‖𝑥𝑗‖1 + 𝛼1‖𝑦‖1 + 𝛼0‖𝑧‖1

+ 𝛽
2 [∥√𝜆𝛽0

𝛽 (𝑝 − (𝐴𝑢 − 𝑏)) − √𝜆𝛽0
𝛽 ̃𝑝∥

2

2

+ ∥√𝜆𝛽1
𝛽 (𝑥𝑗 − 𝒮ℋ𝑗(𝑢)) − √𝜆𝛽1

𝛽 ̃𝑥𝑗∥
2

2

+ ∥√𝛼1𝛽2
𝛽 (𝑦 − (𝐷𝑢 − 𝑤)) − √𝛼1𝛽2

𝛽 ̃𝑦∥
2

2

+ ∥√𝛼0𝛽3
𝛽 (𝑧 − 𝜉(𝑤)) − √𝛼0𝛽3

𝛽 ̃𝑧∥
2

2
]

the convergence analysis of the classical results from
current ADMM, [10], [12], [13], [14], yields the fol-
lowing result.

5 Numerical experiments
In this section, we show some numerical examples us-
ing the Algorithm 1 in image restoration compared
with TV-ADMM and ADMM.

Our hybrid model is implemented via the alternat-
ing minimization method with the equivalent param-
eters 𝛼0 = 0.01, 𝛼1 = 0.07, 𝜆 = 0.07 and 𝜇 = 103.
Moreover, the regularization coefficients are firmly
chosen as 𝛽0 = 1, 𝛽1 = 0.5, 𝛽2 = 0.1 and 𝛽3 = 10.
The Peak signal to noise ratio (PSNR) in decibel (dB)
as follows:

PSNR = 20 log ‖𝑢‖2
‖𝑢 − 𝑢𝑘‖2

,

where 𝑢 is an original image and 𝑢𝑘 is an estimated
image at iteration 𝑘, respectively.

The stopping criteria of the algorithm is
‖𝑢𝑘+1 − 𝑢𝑘‖2

‖𝑢𝑘‖2
< 10−5. All codes were written

in Matlab 2017b and run on Dell i-5 Core laptop.
Experimental results are shown in Figure 1, Figure 2,
Figure 3 and Figure 4 in the Appendix.

6   Conclusions
We propose an algorithm to perform second order to-
tal generalized variation using shearlet regularization.
We compared its results with those of TV-ADMMand
ADMM on four images. On the contrary, the TGV2-
ADMM had a better than two methods .
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APPENDIX

(a) Original image

(b) ADMM (PSNR=25.6174)

(c) TV-ADMM (PSNR=25.8667)

(d) Algorithm 1 (PSNR=26.3065)

Figure 1: Figure (a) shows the Original image, figure
(b) shows the restored image by ADMM, figure (c)
shows the restored image by TV-ADMM, figure (d)
shows the restored image by Algorithm 1.

(a) Original image

(b) ADMM (PSNR=26.4018)

(c) TV-ADMM (PSNR=26.6161)

(d) Algorithm 1 (PSNR=29.4125)

Figure 2: Figure (a) shows the Original image, figure
(b) shows the restored image by ADMM, figure (c)
shows the restored image by TV-ADMM, figure (d)
shows the restored image by Algorithm 1.
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(a) Original image

(b) ADMM (PSNR=21.2982)

(c) TV-ADMM (PSNR=22.1277)

(d) Algorithm 1 (PSNR=23.4826)

Figure 3: Figure (a) shows the original image, figure
(b) shows the restored image by ADMM, figure (c)
shows the restored image by TV-ADMM, figure (d)
shows the restored image by Algorithm 1.

(a) Original image

(b) ADMM (PSNR=23.0395)

(c) TV-ADMM (PSNR=23.7816)

(d) Algorithm 1 (PSNR=25.6356)

Figure 4: Figure (a) shows the original image, figure
(c) shows the restored image by TV-ADMM, figure
(d) shows the restored image by Algorithm 1.
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