
A dynamic reaction-restore-type transmission-rate model for COVID-19
FERNANDO CÓRDOVA-LEPE1, JUAN PABLO GUTIÉRREZ-JARA2

1Departamento de Matemática, Física y Estadística,
Universidad Católica del Maule,
Avenida San Miguel 3605, Talca,

CHILE
2Centro de Investigación de Estudios Avanzados del Maule,

Universidad Católica del Maule,
Avenida San Miguel 3605, Talca,

CHILE

Abstract: COVID-19 became a paradigmatic global pandemic for science, in a real laboratory inserted in reality
to understand how some dangerous virus spread can occur in human populations. In this article, a new strate-
gic epidemiological model is proposed, denoted β-SIR. It is because the transmission rate β follows a proper
dynamic law, more precisely a reaction-restore type transmission rate model. Some analytical results associated
with dynamic consequences are presented for variables of epidemiological interest. It is concluded, observing the
geometry of variables plots, such as transmission rate, effective reproductive number, daily new cases, and actives,
that pandemic propagation is very sensible to the population behavior, e.g., by adherence to non-pharmaceutical
mitigations and loss of compliance levels.
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1 Introduction
The use of ordinary differential equations (ODE) in
the epidemiological analysis of infectious diseases
presents a history of explosive growth, [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], far above
othermathematical possibilities, [13], [14], [15], [16],
[17], [18], [19], [20], [21]. As a tool, the ODEs stand
out for their ability, via interpretation, to describe, ex-
plain, and project (i.e., to model), dynamics of conta-
gion and population spread of diseases, which turns
them into virtual instruments for testing control ac-
tions. Thus, there is the possibility of establishing ex-
ante evaluation scenarios simulating population in-
terventions (e.g., in crisis contexts), such as mitiga-
tion measures or pharmaceutical-type solutions, [22],
[23], [24], [25]. There is also the possibility of ex-
post type analysis, that is, those that seek to deter-
mine the necessary conditions of the past to explain
the information and data of the present, [26], [27],
[28], [29]. Another important aspect is the possibility
of determining threshold parameter values with epi-
demiological significance, such as in herd immunity,
knowing the immune fraction to stop an epidemic.
They are also an important instrument for optimiza-
tion (according to certain objectives and restrictions)
between alternative health control strategies that have
been used in the past or are even in the design stage,

[30], [31], [32], [33].

Every expansion has a beginning; let us briefly re-
fer to the initial uses of ODEs as an instrument for
epidemiological analysis. Leaving aside the work of
the considered founder of demography [34], by intro-
ducing the first life table presenting mortality as sur-
vival rates [35], a properly mathematical perspective,
for the study of the spread and control of infectious
(integrating an ODE) appears with the work of [36],
in 1786 [37], [38], on smallpox and the effect of vario-
lation. However, it is a chronologically isolated mile-
stone concerning subsequent methodological devel-
opments. To our knowledge, it was not until a period
at the beginning of the twentieth century that the idea
of using mathematical analysis as a methodological
possibility for epidemiology began more clearly. A
sketch, mainly focused on the contributions of [39],
in 1906 [40], the introducer of the law of mass action
in a childhood infections paper, including measles, as
well as the essential reference to the contribution of
[41], with a focus on a mosquito population as vec-
tors, who in the second edition of The Prevention
of Malaria, published in 1911, builds mathematical
models of malaria transmission, [42]. Nevertheless,
if we are to seek the characterization of foundational
work, that first scientific article that succeeds, by ex-
panding its potential effectively, inaugurating a disci-
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pline, Mathematical Epidemiology, is the SIR model
(Susceptible - Infected - Recovered) as we know it
today, a purification by simplification of the triad of
works by [43], [44], [45], in the years 1927, 1932, and
1933, respectively.

To a large extent, the importance and widespread
use of the SIR model, as a model of the population
dynamics of infectious disease spread, lies in the effi-
cient and effective concurrence of a mechanistic and
generic explanatory perspective, on the one hand, and
the fair mathematical technicality on the other, [46].
The plausibility of this model has at least two sources:
a theoretical argumentation of hypotheses about the
process in the abstract and a certain geometric corre-
spondence of the numerical projections with the data.
It is this minimalist character, or low cost in complex-
ity, to represent the essentials of the epidemiological
process, which allows it to be classified as a strate-
gic model, [47], in contrast to a tactical model that
aspires to high fidelity with a specific reference of
reality (a certain disease and population, considering
many variables and precise relationships, always as-
piring to a high predictive capacity).

In the standard SIR model, that is, with constant
coefficients, if R0 > 1, we see that the asset curve
has a bell-shaped or unimodal shape. That is, it
has a single maximum that occurs when the suscep-
tible fraction (a decreasing function) is equal to the
value 1/R0, with R0 the basic reproductive number
or the average number (at the beginning of the dis-
ease) of the new infective directly infected by an in-
fective while in said condition. The first estimates
(February 2020) for CO-VID-19 of R0 were in the
range 1.40 − 6.49, see, [48], already around May
of the same year, a systematic review reduced it to
2.81 − 3.82, [49]. Another study for Western Eu-
ropean countries, with data until mid-March 2020,
places it at 1.90 − 2.60, [50]. So, for example, with
a R0 equal to 1.5 or 3 for COVID-19, we have that
said maximum would imply a susceptible percentage
between 33.3% and 66.6%; which respectively im-
plies between 2/3 and 1/3 of the population already
infected, which is absolutely far above what was ob-
served for the first wave, in many countries. Thus,
the conclusion is that the countries or communities
observed in general managed to lower the contagion
rate by changing behavior regarding contact with oth-
ers, obviously in voluntary terms or by mandate of
the health authority, through, for example, mitigating
measures, non-pharmaceutical type.

A strategic model, that is, a simple and generic
one, must have the potential to capture with a good
degree of precision the dynamics of the disease. For
example, the fact that the intensity of transmission can
change over time in response to behavioral changes in
the population due to official control interventions. It

is the case, for example, in models based on the SIR
model, that intervenes in the transmission rate (nor-
mally denoted β), which is constant in the standard
model, to represent some types of changes, e.g. in
the number of close contacts, environmental condi-
tions, or blockades in the passage of pathogens. In
this regard, two possibilities are visualized: using an
explicit function to represent the dependence of β on
time or another variable or indicator, [51], [52], or an
implicit one, [53]. In the latter, we represent changes
in beta, for example, through a dynamic law for the
derivative of beta. The novelty of our paper, inspired
by [54], is to introduce a new type of beta-SIR model
and to continue to study its dynamical consequences.

There are other possibilities to introduce natural
variability. For instance, probability distributions for
the intensity of transmission in a given period, have
been useful for modeling outbreaks in small-sized
populations or for accounting for the volubility of hu-
man behavior. In the case of non-uniform transmis-
sion, there are also networkmodels, to represent inter-
actions in local groups, e.g., family, friends, or work,
which differ in the magnitude of the distance and the
interaction times. Another way to incorporate vari-
ability is to collect the experience of a type of trans-
mission behavior (adjusting to the data), so that it is
an input to project outbreaks in another period in pop-
ulations with some degree of similarity to that which
the experience had. In conclusion, if it is necessary
to represent more complex behaviors, one way is to
consider the variable beta by abstracting and inter-
preting the forces and conditioning that intervene in
determining the epidemic dynamics.

2 The model
2.1 Some preliminaries
Let us consider an SIR model, i.e., the population is
theoretically divided into susceptible, infectious and
removed groups, of respective sizes, at a time t, defin-
ing functions S(t), I(t) and R(t), such that

S′ = −β(t)SI/N

I ′ = β(t)SI/N − γI

R′ = γI,

(1)

in which a temporally variable transmission rate β(·)
stands out, but with parameters γ (recovery rate) and
N (total population S + I +R) constant.

The first order condition necessary for a minimum
or maximum of the active group, that is, I ′ = 0 at
some instant τ , since I ′ = γ{Re(t)−1}I , withRe =
(β/γ)S/N , impliesRe(τ) = 1, or equivalently

s(τ) = γ/β(τ), (2)

where s(·) = S(·)/N , by (1), is a decreasing func-
tion.
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Then, this equality can occur at several moments,
depending on the variability of β(·). Thus, the model
can break the unimodal character of the typical active
SIR curve with β as a constant parameter. Thus, if
τ1 and τ2, with τ1 < τ2, are two consecutive critical
points of I(·), as s(τ1) > s(τ2), the relation (2) im-
plies β(τ1) < β(τ2). Moreover, if there is a peak at
τ1, then there is the possibility of a second peak at a
certain τ3, τ3 > τ2, to the extent that β increases from
a minimum at τ2.

In the literature associated with the mathemati-
cal modeling of infectious diseases, several ways are
found to incorporate changes in the transmission rate
due to environmental variations and human behav-
ior throughout a process of serious epidemic devel-
opment in a certain population. One way is to as-
sume β(·) as a specific and predetermined function
of time, as is the case in [55], [56], [57]. However,
we also find models that innovate by introducing a
dependence on other compromised variables, but still
explicitly, as in [58], [59]. However, some works do
not predetermine it: In [60], it is assumed that the in-
trinsic transmission rate changes as a stochastic pro-
cess with values limited to a limited range of possibil-
ities. In [61], the transmission rates involved are solu-
tions of a differential equation with stochastic noise.
In [62], a time-varying transmission rate is consid-
ered, assuming loss of adhesion to control actions, as
lockdownmeasures. Here, we will consider an evolv-
ing rate β(·) according to the theoretical dynamics of
the process itself; this is the novelty context of the
present work.

In [54], a dynamic law is introduced to express the
variability of the transmission rate of the type

β′(t) /β(t) = restitution︸ ︷︷ ︸
f(·)

−
g(·)︷ ︸︸ ︷

reaction (3)

that is, expressing the variability of β(·) as a constant
tension between the factors that tend to decrease (re-
action) and increase (restitution). Observe that, hav-
ing β(·) [time−1], it corresponds to β′(·) [time−2],
that is, (3) expresses acceleration changes. In this
sense, f(·)[time−1] and g(·)[time−1] correspond to
proportions of decrease and increase in transmission
rate per time unit.

Both the reaction factor and the restoration factor
operate through the way that individuals in the popu-
lation in question change their behavior regarding as-
pects that mean a change in the rate of contact with
infectious diseases or in the intensity of pathogenic
blockade. From the experience with COVID-19, we
know that population sectors stopped adhering to mit-
igation measures for various reasons, many of them
sensitive to economic and cultural situations. Al-

though the most widespread would be psychological
(pandemic fatigue, [63],[64]), economic (economic
insecurity, [65], [66]) and informational (low-risk
perception, [67], [68], [69], [70]) types. The exis-
tence or expectation of a vaccine and its implemen-
tation also alters risk perception.

Regarding the reaction factor, we observe that the
recommendations suggest that the health authority,
normally advised by a technical team of several ex-
perts, use various sources of information and indica-
tors to define the health status of the population and
implement mitigation measures, as occurred due to
the COVID-19 pandemic. Key information sources
include numerical epidemiological data (prevalence,
daily cases, reproductive numbers, etc.) that track the
strength of the infection and its components, such as
causal variables that explain the intensity of the virus
spread. It is about diagnosing and projecting to plan
an intervention, a deployment of mandates that aim to
guarantee the system’s medical care capacity for the
most serious cases.

A key element in understanding the restitution fac-
tor is that, although there may be a significant social
effort to reduce the natural (or intrinsic) rate of trans-
mission, the sustainability of this becomes difficult
over time. In fact, the greater and longer the exigen-
cies for behavior changes in the population, the more
likely it is to be lost in compliance.

2.2 The β(·)-SIR model
The main novelty of this work is to consider what we
denote by β-SIR model, that is, we have the suscep-
tible - infective - removed compartmental model de-
fined by (1), but now, this is coupled with a variable
transmission rate β(·) following the structure (3), via
the differential law:

β′(t) /β(t) = ν(β∗ − β(t))︸ ︷︷ ︸
f(β(t))

−

g(I′(t))︷ ︸︸ ︷
µI ′(t), (4)

with the initial condition β0 := β(0), S0 := S(0) =
N − I0, I0 := I(0) > 0 and R0 := R(0) = 0. An
important assumption is that R0 = β0/γ is greater
than one, so I ′(0) > 0. The parameters ν and µ are
called the coefficient of restitution and the reaction
coefficient, respectively.

Observe that in the formulation of (4) we consider
that the relative change in the rate is given by the ten-
sion between a reaction factor g(·) which is propor-
tional to a difference in each unit of time, the num-
ber of people who become infectiousminus thosewho
leave the condition. While, the restitution factor f(·)
fulfills the function of putting pressure on the trans-
mission rate to return to a value, called potential or
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cultural (the one that would exist if there was no re-
action), of the rate equal to β∗. Therefore, if β < β∗

(resp. >) the restitution factor is positive (resp. neg-
ative) exerting upward pressure (resp. downward).

An important aspect is that the β∗ rate is consid-
ered the intrinsic rate, which would occur in a virgin
population of both infectives and information or ac-
tions that have changed the natural (habitual) behav-
ior of people. In this sense, we see that β∗ does not
necessarily coincide with β0 := β(0) and, in general,
it can be considered that β0 ≤ β∗.

3 Analytical results
3.1 Case ν = 0
Let us note that equation (4) takes the form β′ =
−µI ′β, which deduces the existence of automatism in
the control, that is, β decreases if and only if I grows.
As the system starts with I(·) increasing, we see that
the peak of the assets occurs simultaneously with the
minimum value that the transmission rate can reach.
Observing that at critical times τ (I ′(τ) and β′(τ)
null), we have the equality β′′(τ) = −µ I ′′(τ)β(τ),
we deduce that temporally maxima (resp. minima) of
I(·) correspond to minimums (resp. maximums) of
β(·).

The literature offers several examples that assume
an exponential-type functional expression to estab-
lish a decrease in the contagion rate (see, [51], [52]).
However, several of them do not offer a return to the
original rate, but rather an asymptotic approximation
to a new level, although lower than the initial one. In
this case, we are assuming, by direct integration of
(4), that

β(t) = β0 e
−µ(I(t)−I0), t ≥ t0. (5)

Thus, it is also exponential, but it correlates inversely
with the number of assets. In this formulation, which
only considers a reaction factor, it also differs in that
if the active group is expressed with values below I0
(e.g., a certain reaction threshold), the value of β in-
creases to β0. By the way, this is quite an optimistic
possibility, in that an arithmetic increase in the active
group translates into a geometric reduction in the con-
tagion rate.

In the idea of interpreting the reaction coefficient,
let us note that the reaction factor g(·) is equal to µ
when I ′(τ) = 1 for some instant τ . Linearizing I(t)
at this moment, we have I(t) ∼ I ′(τ)(t−τ)+I(τ) =
(t− τ) + I(τ), so if t = τ + 1, we have I(τ + 1) ∼
I(τ)+1. Then µ is the fraction by which β decreases
so that the system does not incorporate one more in-
fectious agent per unit of time. Thus, µ can be con-
sidered a uniparametric measure of the intensity of
the effort required to lower the transmission rate. In
that sense, at the beginning of the propagation (while

the susceptible group is approximateable by the entire
population), assumingR0 > 1, if we require the asset
differential not exceed a quantity ∆I before Re = 1,
according to (5), such as Re > R0e

−µ∆I , you must
have µ ≥ ln (R0)/∆I .

Given a real number x we define its sign, σ(x),
as −1, 0 or +1 depending on whether x is negative,
zero, or positive. Now, since I ′/I = γ{Re(t) − 1},
we have σ(Re − 1) = σ(I ′) = −σ(β′). So, at the
beginning of infectious development, at a certain in-
stant t0, ifR0 = Re(t0) > 1, then β(·)will drop until
I(·) reaches its maximum. Furthermore, β(·) will re-
cover its initial value β0, only when I(·) decreases to
I0, that is, at time t when

I(t)/I0 = exp
(∫ t

t0

{Re(a)− 1}da}
)

= 1,

this is,
∫
[t0,t]

{Re(a)− 1}da = 0.

That is, in practical terms, on a graph of the effec-
tive reproductive number versus time, β returns to its
intrinsic value β0, when the amount of area that ac-
cumulates above and below the level Re = 1 is the
same.

The following result points towards control, as it
provides a range for the value of the effective repro-
ductive number, which depends on those eliminated
(recovered plus deaths) and on the susceptible frac-
tion of the population also beingwithin a certain range
of values.

Theorem 1 The effective reproductive number, de-
fined by Re(t) = β(t)s(t)/γ, with s(t) = S(t)/N ,
for t ≥ t0, while 0 ≤ p < s(t) < q ≤ 1, satisfies

Λq,p(t) ≤ Re(t)/R0 ≤ Λp,q(t), (6)

where Λx,y(t) =
y

xR0+[1−xR0]e−µR(t) .

Proof: See Appendix A.
Let us observe that Λx,y(·) is a function such that

Λx,y(t) ≤ 1, Λx,y(t0) = y and, furthermore Λ′
x,y(t) =

−{x/y}Λx,y(t)µR0 e
−µR(t)R′(t) , that is, it is de-

creasing since always R′(t) ≥ 0. See Figure 1.

3.2 Case ν > 0
Assuming that in (4) the function I(·) is known, its
integration as a linear equation leads us to:
Theorem 2 If we consider in (4) an initial time t0 and
respective conditions β0 = β(t0) and I0 = I(t0),
then:

β(t) = β0
E(t0, t)

1 + νβ0

∫ t

t0

E(t0, τ) dτ

, (7)
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Fig. 1: It can be seen that when s(t) is between p and
q, quotient Re/R0 is necessarily between Λq,p and
Λp,q. It is considered β0 = 0.3, γ = 1/14 ν = 0,
µ = 0.5, p = 0.3 and q = 0.7. The initial condition
is s(0) = 0.9, i(0) = 0.1 and r(0) = 0.

where t ≥ t0 and E(t0, t) is equal to exp{νβ∗(t −
t0)− µ(I(t)− I0)}.
Proof: See Appendix B.

The importance of Theo. 2 is in the possibility
of knowing the transmission rate from the actives’s
data. Let us note that the function E(t0, ·) in (7), the
variable I(·) is equal to R′(·)/γ, that is, it could be
estimated from the daily removed individuals. This
rate defines the calculation of the effective reproduc-
tive numberRe(t) = β(t)s(t)/γ, in which s(t) is the
susceptible fraction. That is, we have an evaluation
of the transmission speed.

Taking into account thatR0 > 1 and that the con-
tagion process starts with a value of β in its intrin-
sic value β∗, that is, β(t0) = β∗. Since β′(t0) =
−µγ[R0 − 1]I(t0) is negative, we have that β(·)
will decrease until it reaches a minimum at a time τ ,
τ > t0, in which

β(τ) = β∗ −
µ

ν
I ′(τ) and moreover

β′′(τ) = −µI ′′(τ)β(τ).
(8)

For example, these equalities tell us how much β(·)
reduces its value in the period [t0, τ ], (µ/ν)I ′(τ)
units. Furthermore, this minimum β(τ) implies an
active curve, with, necessarily, a decelerated growth
(concave) in a neighborhood of τ , that is, I ′′(τ) < 0.
Since I ′ < 0 implies β′ > 0, this first minimum for
β(·) is never reached after I(·) presents a first peak
or, equivalently, the effective reproductive number
reaches or decreases from the desired level.

What can we say about the transmission rate at the
time when the effective reproductive number reaches

the value one? We know thatRe(t) = 1+γ−1I ′/I , so
Re = 1 if and only if I ′ = 0, i.e., when β′ = ν(β∗ −
β)β. This proves that the peak Im of I(·) is reached
in an instant τm after a first minimum of β(·), that is,
when β(·) is retrieving the value. Furthermore, that
at that moment β′(τm) ≤ νβ2

∗/4. On the other hand,
note that R′

e(t) = γ−1[I ′′I − (I ′)2]/I2 and R′
e(t) =

(γN)−1(β(t)S(t))′ equals to (γN)−1(β′(t)S(t) +
β(t)S′(t)). Using S′ = −βSI/N , by equating and
evaluating at τm, we obtain I ′′/I = [ν(β∗ − β) −
βI/N ]βS/N . Since I ′′ < 0, it follows that

β(τm) > β∗
νN

νN + Im
.

4 Numerical results
The graphical possibilities of transmission rate, effec-
tive reproductive number, daily new cases, and infec-
tious are presented matrixly by the rows in Figure 2
and Figure 3, depending on the value of the restora-
tion coefficient: low, medium, and high. This, con-
sidering two orders of magnitude for the pair (ν, µ)
according to Table 1. Moreover, all these cases re-
garding the initial condition at instant t0 = 0, with a
population of size N that is considered to be decom-
posed into (S0, I0, R0) = (N − 1, 1, 0).

Table 1: Parameter values for two orders of magni-
tude (A and B) of the restoration and reaction coef-
ficients, total population, and intrinsic transmission
rate.

Case ν µ N β∗
A 2/101, 5/101, 8/101 3/101, 4/101, 5/101, 6/101 102 0.65
B 2/102, 5/102, 8/102 3/104, 4/104, 5/104, 6/104 105 0.45

Now, regarding regularities or patterns in the
graphs, let us observe that:

• Without going into detail, the corresponding
forms for cases A and B are similar, except that
caseA represents a comparatively rapid epidemic
spread.

• Over time, the transmission rate β(·) always de-
creases towards a flat valley and then begins to
recover value as soon as daily cases drop, even
exceeding the intrinsic value. Finally, it reaches
a peak and ends up asymptotically decaying to
β∗. In case A (Figure 2(a-c)) the initial decline
is convex, but in case B (Figure 3(a-c)) the de-
crease begins concavely. We also note that in
both cases, A or B, the minimum value to which
β(·) can drop is seemingly more sensitive to the
parameter ν than to µ.
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Fig. 2: Simulations of equation (1)+(4) for different values of ν and µ. Conditions initials: S(0) = 99, I(0) = 1,
R(0) = 0 and β(0) = 0.65. γ = 1/14 and N = 100 was considered.
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Fig. 3: Simulations of equation (1)+(4) for different values of ν and µ. Conditions initials: S(0) = 99999,
I(0) = 1, R(0) = 0 and β(0) = 0.45. γ = 1/14 and N = 100000 was considered.

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.12 Fernando Córdova-Lepe, Juan Pablo Gutiérrez-Jara

E-ISSN: 2224-2902 124 Volume 21, 2024



• The initial decrease in the rate β is in correspon-
dence with the fall of Re, but unlike β(·) which
recovers value, we have that Re continues to
decrease and tends towards zero, which is only
explainable by a significant relative decrease in
the susceptible fraction, since R′

e < 0 implies
β′/β + S′/S < 0. Another clear pattern of the
effective reproductive number is to present a very
planar zone when it is close to the value one, a
zone that is wider when the coefficient of restitu-
tion ν is smaller, compare Figure 2(d-f) or Figure
3(d-f). Furthermore, by fixing ν in each case, the
flat zone is wider if the reaction coefficient µ is
higher.

• In case B, the daily case curves, Figure 3(g-i), are
bimodal with the possibility that the highest peak
is the first or the last depending on whether the
restoration coefficient ν is respectively higher or
lower. Thus, the unimodality inherent to the clas-
sic SIR (constant parameters) may not be met. In
case A, Figure 2(h,i) the bimodality is not ex-
pressed. It is conjectured that there must exist
a bound for ν/µ before which these curves are
necessarily unimodal.

• For infectious count curves, the effect of a
restoration coefficient ν, when fixing the reaction
coefficientµ, e.g., the black line for Figure 3(j-i),
is a flattened curve for a longer time at lower val-
ues of ν. Now, if we set ν, a higher and more ad-
vanced asset curve is observed at lower values of
µ, that is, at smaller reactions. Observations that
are also valid for the curve of new daily cases.

On the other hand, let us note that the total de-
crease (by reaction) achieved for the beta rate during
a certain initial time interval seems to be at the cost
of recovering this rate the rest of the time and above
the intrinsic value, although approaching it asymptot-
ically, see Figure 4. Indeed, if there exists a unique
t∗ > t0 in which β(t∗) = β∗, by denoting by A−
(resp. A+) the area between β∗ and β(·) over [t0, t∗]
(resp. [t∗,∞)) we have:

A− =

∫
[t0,t∗]

{β∗ − β}

= ν−1

∫
[t0,t∗]

{
β′/β + µI ′

}
= µν−1{I(t∗)− I(t0)}

and similarly A+ = µν−1I(t∗), so that A+ −
A− = µν−1I(t0).

5 Discussion
The classical SIR model considers a constant trans-
mission rate. However, in the context of a high- and
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Fig. 4: Initials Conditions: S(0) = 99999, I(0) = 1,
R(0) = 0 and β(0) = 0.45. γ = 1/14 and N =
100000 was considered. In this case A+ − A− =
ν/µ = 0.015.

immediate-risk pandemic (without pharmaceutical al-
ternatives), one of the main sources, if not the main,
of the changes in the transmission rate that the pop-
ulation may present during an epidemic is relates to
human behavior in terms of adherence and compli-
ance with mitigating measures. In the search for a
model that brings together the mechanistic aspects
of the SIR but with a phenomenological perspective
in terms of simplicity, the assumption of a reaction-
restoration tension for the variation of the transmis-
sion rate seems reasonable.

How can the transmission rate, as a potential cul-
tural and physical-environmental determinant of a
specific population, vary, as it did with COVID-19
before the advent of vaccines? In the first pandemic
stage, the general observation (based on pandemic
data) is that there was a reaction from authorities and
individuals that allowed, based on perception or indi-
cators of the danger of the disease, to reduce its worth.
The information that the public received or that was
analyzed to decree specific measures is directly or
indirectly a reading of the status of individuals con-
cerning the disease, particularly those of population
scope, such as the variation of the infectious group
size, which is our option in the present work.

In this sense, the main contribution of the work
is to model the epidemiological consequences of
achieving the health authority and the media to main-
tain pressure on the system, which manifests itself in
a percentage change of decrease in the transmission
rate that, as has been said, is proportional to the vari-
ation of the infectious group. In other words, having
a first dimension or evaluation of the behavior of the
system’s state variables, both in the case of no resis-
tance to control and in the opposite case.

In particular, in the case of zero resistance to con-
trol (ν = 0), for an estimation interval of the remain-
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ing susceptible fraction, Theo. 1 provides a bound-
ing band for the effective reproductive number as a
fraction of the basic reproductive number and of the
removals count (which could be the variable with
good measurement possibilities) in principle some-
what crude, as shown in Figure 1, but which could
(and it is a mathematical challenge) be improved.
Now, by adding a social resistance to mitigation (ν ̸=
0), Theo. 2 gives us the rate determination relation-
ship according to active cases through expression (7)
which is, accordingly, the generalization of (5). These
results, although elementary, have potential useful-
ness in the development of more tactical models, par-
ticularly those that are fed back through data for a
specific population. We consider it important to note
that when the active group varies downwards, the con-
trol acts not only canceling itself but also providing
a stimulus for its increase, above the intrinsic value,
which makes some sense within the social behavior of
reunion again between people. What the comparison
between Figure 2 and Figure 3 show is that lower or-
der restoration levels can mean a much slower return
to the original or intrinsic transmission rate.

6 Conclusion
The main hypothesis considered is to assume that the
reaction factor is proportional to the variation of the
active group. Note that this is the group, in terms of
size, that directly determines hospital occupancy and
the number of deaths. The assumption is that only as
this group grows does a downward reaction emerge.
So, if it remains constant for some period, such a reac-
tion disappears; finally, if it goes down, the tendency
for the rate to rise grows. Another possibility, some-
what close to our case, but which we leave open for
analysis in future work, is to assume that the reaction
factor g(·) takes the form g(I, I ′) = µI ′/I , that is,
the reaction is sensitive to the percentage variation of
the active group.

A general observation is that the β-SIR type mod-
els, such as the one analyzed or the β-SEIR versions,
maintain a degree of simplicity that helps to under-
stand the mechanics (in terms of the response of the
system), not only the contagion of the disease, but
also the corresponding “social mechanics”, both of
the population in general (mainly in the restoration
factor), and the work of the health authority (in the re-
action factor), the above as long as there are no phar-
maceutical possibilities that alter the variables. Let
us observe that the type of information or indicators
that the authority collects or uses to implement miti-
gation, directly from the triad (S, I,R) or its deriva-
tives, such as reproductive numbers, is an aspect that
could become key, mainly concerning the times and
levels that ensure effective management, for example
hospital management, in severe cases.

Another key aspect, which could explain a good
part of the variability that experience tells us in the
data, mainly at the beginning of the epidemic, could
be the time delay between the value of the considered
indicator(s), the implementation, and the citizen re-
sponse. In other words, more research is required, as-
sociated with the management of health emergencies
and human behavior in specific populations, to pro-
pose, with greater predictive zeal, functional forms to
express variations in the rate of reactive or restoration
order.
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Appendix A
Note that replacing the second equation of (1) in (4)
with ν = 0, we obtain β′ = −µ[βs − γ]I β, with
s(·) = S(·)/N , the susceptible fraction. By amplify-
ing, by −1/β2 and changing the variables Z = 1/β,
we have the equation Z ′ +µγ I Z = µ s I , where to-
gether with the expression for R′(t) = γI in (1), we
observe that µR′Z = µγIZ , achieving

{
Z eµR

}′
=

[Z ′ + ZµR′]eµR = µsIeµR. Integrating over [t0, t]
and considering R(t0) = 0, we have that,

Z(t) =

{
1

β0
+ µ

∫ t

t0

s(a)I(a)eµR(a) da

}
e−µR(t).

Thus, if we consider that s(a) = λ, we can define

Zλ(t) :=

{
1

β0
+ µλ

∫ t

t0

I(a)eµR(a) da

}
e−µR(t).

From where, if we consider p ≤ s(t) ≤ q, we have:
Zp(t) ≤ Z(t) ≤ Zq(t). Then, continuing with the
integration for the expression of Zλ, we see that,∫ t

t0

I(a)eµR(a) da =

1

µγ

∫ t

t0

[eµR(a)]′ da =
1

µγ
[eµR(t) − 1],

finally

Zλ(t) =
γ + λβ0[e

µR(t) − 1]

γβ0eµR(t)
=

λR0 + e−µR(t)[1− λR0]

β0
.

Since, Z−1
q ≤ β(t) ≤ Z−1

p , we have

pR0

qR0 + [1− qR0]e−µR(t)
≤ Re(t) ≤

qR0

pR0 + [1− pR0]e−µR(t)
;

which ends the proof. ⋄

Appendix B
From (7), we defineU(t0, t) = νβ∗(t−t0)−µ(I(t)−
I0), so that (4) is equal to β′ = {U ′(t0, t) − νβ}β.
So the change of variables z(t) = 1/β(t), implies
z′ = ν − U ′(t0, t)z. Thus, one has

z(t) = z(t0) exp
(
−
∫ t

t0

U ′(t0, τ) dτ

)
+

ν

∫ t

t0

exp
(
−
∫ t

τ
U ′(t0, a) da

)
dτ.

Now, since U(t0, t0) = 0 and U(t0, t) − U(t0, τ) =
U(τ, t), by integratingU ′ into the expression z(t), we
obtain

1

β(t)
=

1

β0
exp (−U(t))+

ν

∫ t

t0

exp (−U(τ, t)) dτ.

Considering E(t0, t) = exp{U(t0, t)}, isolating β(·)
completes the proof of Theorem 2. ⋄
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