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Abstract: - Affecting millions in the world, cardiovascular diseases are a public health problem. Some patients 
are not eligible for heart transplantation. Thus, a possibility is to receive a circulatory device known as a 
ventricular assist device (VAD). This kind of device shows some problems, like thrombogenesis. The thrombus 
formation in a VAD can cause patient death, and a previous, non-invasive diagnostic is quite complex. The 
objective of this work is to develop an algorithm to reproduce time signals that indicate the presence and 
absence of a thrombus, use these signals to train an artificial neural network to classify them, and use these 
algorithms in a predictive algorithm for early thrombus detection. The results show that it was possible to detect 
the thrombus formation in its early stages, but the noise level interferes with the accuracy of the ANN, 
especially when signals in the time domain are used. 
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1   Introduction 
Affecting millions of people around the world, 
cardiovascular diseases (CD) are responsible for the 
first cause of death and hospitalization, making 
them a serious public health problem, [1]. Many 
patients suffering from Congestive Heart Failure 
(CHF) need heart transplantation, although many of 
them will die until they receive the donated heart, 
[2]. To minimize this death rate, some of them 
receive a circulatory device known as a ventricular 
assist device (VAD), [3]. 

The VADs are established as a good therapy for 
patients with end-stage heart failure, [2]. The 
function of VAD is to replace the mechanical work 
of the left or right ventricles, [4]. The VAD is a 
pump with a motor, controller, outflow graft, drive 
line cable, and batteries, as shown in Figure 1, [5]. 
 

 
 
 
 

 

 
Fig. 1: VAD with batteries, controller, and 
peripheral systems. Adapted from, [5] 
 
 
2   Thrombosis on VADs 
The VADs still show some problems in 
hemocompatibility, among them thrombogenesis, 
which is a kind of natural coagulation when blood is 
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exposed to any surface not fully covered by 
endothelium, blood flow inside the pump, and 
others, [6]. One of the most common therapies to 
avoid thrombus formation in VAD is the 
prescription of anticoagulants that will dissolve the 
thrombus, [7]. However, this therapy will be 
effective only if the patient starts it in the first stages 
of thrombosis, [8]. Figure 2 shows a VAD with a 
thrombus formation that has been removed from a 
56-year-old patient. According to the authors, the 
thrombus was blocking around 95% of the inlet 
cannula, [9]. 
 

 
Fig. 2: Thrombus formation in a removed VAD. 
Adapted from, [9] 
 

The thrombus formation can result in VAD 
disability or even cause the patient's death, [3], 
[10]. Immediate action is necessary, but in the 
current scenario is indecisive about which treatment 
needs to be carried out, [11]. The thrombus 
formation and its consequent release into the 
patient's body is one of the main causes of death in 
patients implanted with VAD, [12]. A VAD 
controller that diagnoses the appearance of a 
thrombus before its release can be vital to a patient’s 
life, and several studies are being conducted with 
this objective, [8], [13]. 
 

 

3  Signal Analysis 
Based on data from an experimental study that 
performed tests with artificial thrombus in a pump 
prototype, the objective of this work is to develop a 
Python language algorithm to reproduce simulated 
signals obtained by that study that indicate the 
disturbances caused by the presence of artificial 
thrombus adhered in three different regions of the 
pump, then use these signals to train an artificial 
neural network (ANN) to taxonomy them, check its 
robustness for noise interference, and later use this 
ANN in a predictive algorithm to check the 
probability of absence and presence of thrombus. 
 

3.1  Vibration Analysis 
The theoretical basis for the reconstruction and 
analysis algorithms used in this work is classical 
vibration theory, which we will briefly present here. 
The classic model of translational forced vibration 
with viscous damping is described by Equation 1, 
[14]. 
 
𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹0sin(𝜔𝑡)   (1) 
 
where x is the linear displacement, k is the spring 
constant or stiffness, c is the damping coefficient 
and 𝐹0sin(𝜔𝑡) is the excitation force. 
 
Defining, the natural frequency as  

𝜔𝑛 = √
𝑘

𝑚
     (2) 

and the fraction of critical damping as  
 
𝜁 =

𝑐

2𝑚𝜔𝑛
     (3) 

 
The acceleration is calculated by  
 

�̈� = −
𝑚

𝐹0
(
𝜔

𝜔𝑛
)
2
𝑅𝑑sin(𝜔𝑡 − 𝜃)   (4) 

 
θ is the acceleration phase and Rd is a dimensionless 
response factor: 
 
𝑅𝑑 =

1

√(1−𝜔2/𝜔𝑛
2)

2
+(2𝜁𝜔/𝜔𝑛)

2

   (5) 

 
For a non-harmonic excitation force, like that 

observed for the thrombus presence in VADs, [15], 
Fourier analysis is used to break it down into its 
harmonic components as a function of frequency. 
Each of these components can have its acceleration 
solution calculated by Equation 4. Assuming the 
system is linear, the superposition principle allows 
the summation of the solutions from multiple 
components to obtain the total expected 
acceleration. 
 

3.1  Work reference 
The [15], presents an in vitro study where the 
vibrational signal analysis, obtained with 
Microelectromechanical Systems (MEMS) 
accelerometers, was used to identify disturbances or 
stimulations that indicate dynamic changes on the 
pump's rotor when the thrombi adhere or if there is 
wear on the rotating elements. The Fast Fourier 
Transform (FFT) is used to characterize signal 
components in the frequency domain. Figure 3 
shows the experimental set-up used by the authors 
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for their study, and Figure 4 shows the areas where 
the thrombosis was simulated. The material used to 
simulate the thrombus had a density of 0.97 g/cm2, 
and the liquid used to simulate the circulatory 
system was water, [15]. 
 

 
Fig. 3: Experimental set-up. Adapted from, [15] 
 

 
Fig. 4: Areas where the thrombus was simulated 
 

According to the results shown by the authors, 
the MEMS could detect disturbances caused by 
thrombus formation. In that work, it is informed that 
the presence or absence of a thrombus is 
characterized by the occurrence of peaks at 
determinate frequencies. The red arrow in the graph 
of the Figure 5 spectrum indicates an imbalance 
caused by thrombus presence. For example, the 
peak next to the 145 Hz frequency indicates an 
unbalance on the rotor caused by the thrombus 
presence at the rotor's base. 
 

 
Fig. 5: Frequency spectrum patterns for thrombus 
absence and presence at rotor’s base. Adapted from, 
[15] 
 
 
4   Methodology 
This work was divided into four main 
methodologies: 1 - creation of a synthetic dataset 
that reproduces the time signals obtained by, [15]; 2 

- creation of an algorithm to simulate the evolution 
of thrombus formation and evaluate it by the 
wavelet analysis; 3 - creation of ANN algorithm to 
classify the signals in the synthetic dataset; 4 - 
creation of a predictive algorithm, using the ANN to 
check the probability of thrombus absence and 
presence. 
 
4.1  Time Signals Reconstruction 

The results from [15], were used to create the 
Signals Reconstruction Algorithm (SRA), which 
was used to create a synthetic dataset in Python 
language of voltage in the time and frequency 
domain. The graphs shown in that work provide 
data such as the maximum voltage amplitude for 
each frequency peak, noise, and sampling rate. With 
these data, cosine signals were used to create a clean 
signal with the same amplitudes. After modeling the 
“clean signal," background noise was added with a 
Gaussian distribution, represented by Equation 6, to 
get a more realistic synthetic dataset simulated 
signal like the real one, 
 
𝑠(𝑡) = 𝐴 ∙ cos(2𝜋𝑓𝑡 + ∅) + 𝑛(𝑡)  (6) 
 
where s(t) is the signal as a function of time, A is 
the amplitude of the signal, 𝑓 is the frequency of the 
signal, t is time, ∅ is the phase of the signal and n(t) 
is the Gaussian noise component. 

The Fourier transform, computed using the fast 
Fourier transform (FFT) in combination with a 
window function, was applied to each one of those 
created signals, then the results were squared to get 
the power spectrum value, and these results were 
plotted.  

This methodology was applied to all the results 
of the work referenced in this section. The algorithm 
sequence is presented below. 

1. Parameters Definition: The process starts 
by defining crucial parameters such as the 
sampling rate, data acquisition time, and 
background noise amplitude, along with 
creating a time vector. 

2. Noise Generation: A vector of Gaussian 
noise is generated, representing the noise 
component to be added later to the signals. 

3. Signal Generation Without Thrombus: A 
correction factor is defined, and a signal 
vector without thrombus is created by 
adding sine waves of different frequencies 
based on defined amplitudes. 

4. Calculation of Power Spectrum Without 

Thrombus: The “signal.welch” function is 
used to calculate the power spectrum of the 
signal without thrombus. 
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5. Signal Generation with Thrombus at the 

base, vanes, and spiral: The process from 
step 3 is repeated to generate signals with 
thrombus at different parts of the VAD, 
adjusting amplitudes and specific correction 
factors. 

6. Graph Creation: Graphs are plotted to 
visualize the signals and power spectra, 
organized into multiple subplots for each 
signal type. 
 

4.2  Wavelet Analysis 
This work step involves developing the Changing 
State Algorithm (CSA) to simulate the signal's state 
transition, reflecting thrombus formation evolution. 
Leveraging data from the SRA and wavelet analysis, 
[16], the algorithm sequence is outlined. Figure 6 
visually represents the transition between two 
different signals. 

1. Importation of Signals: Signals generated 
by the SRA are initially imported. 

2. Simulation of State Transition: The code 
enters a loop simulating a state transition 
over a period ti. The loop increments or 
decrements the amplitudes of specific 
frequencies, simulating a transition from the 
initial state to the final state. 

3. Creation of the Complete Signal: The 
signal is constructed by summing the 
sinusoidal components of specified 
frequencies over time and adding previously 
generated noise. 

4. Analysis and Visualization of Power 

Spectrum: The code creates a spectrogram 
using the pcolormesh function to plot the 
magnitude of the Continuous Wavelet 
Transform against time and frequency. 
Default settings were used for both 
commands [16]. 

5. Display of Results: The graphical results 
are plotted. 

In the sequence above, the period ti can be 
interpreted as a time value, representing days, 
weeks, months, etc. The higher the value of ti, the 
smoother the curve representing the state change. 
The value used for ti was 1000. In plotting the 
results, the argument cmap=jet was used, 
representing a color palette with smooth transitions 
from blue to red. Thus, the higher the amplitude, the 
redder the coloration presented. 
 

 
Fig. 6: Transition from a thrombus-free state to the 
presence of a thrombus at the base of the rotor. 
 
4.3  Artificial Neural Network 
The ANN is a computational model of Machine 
Learning inspired by the complex functionality of 
the human brain, where billions of neurons process 
information in parallel, [17]. An ANN is made up of 
three main layers: the input layer, the hidden layer, 
and the output layer. These layers are interconnected 
by non-linear nodes, forming a neural network of 
interconnections. In an ANN, each input is 
multiplied by a synaptic weight (a weighting factor), 
and each neuron has its synaptic weight to be added, 
[18]. The activation potential is calculated by 
adding the bias to the product of the inputs and their 
corresponding synaptic weights. This activation 
potential is then applied to an activation function, 
resulting in the neuron's output, [17]. In summary, 
the output of a neuron can be represented by 
Equation 7, where y represents the neuron output, σ 
is the activation function, n is the number of inputs, 
wi are the synaptic weights associated with the 
inputs, xi are the input values, and θ is the neuron 
bias 
 
𝑦 = 𝜎(∑ 𝑤𝑖𝑥𝑖 + 𝜃𝑛

𝑖=1 )     (7) 
 
4.3.1  Implemented Artificial Neural Network 

This algorithm takes the data and classifies it based 
on its characteristics. Figure 7 shows an example of 
how the ANN algorithm works.  
 

 
Fig. 7: ANN classifying the synthetic signals 
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The dataset obtained by the SRA was processed 
by a fully connected Feed Forward ANN 
architecture. Four classes and four labels for data 
classification (Table 1) were chosen. To train and 
test the ANN, the dataset was divided as follows: 
70% for training and 30% for validation. This 
procedure was applied to both types of obtained 
signals – time and frequency domains. The created 
has 3 layers, and its characteristics are as follows: 

 Layer 1 – Type dense, number of neurons = 
26, activation function = “relu”. 

 Layer 2 – Type dense, number of neurons = 
128, activation function – “relu”. 

 Layer 3 – Type dense, number of neurons = 
4, activation function – “SoftMax”. 

The number of epochs was 4000 and the optimizer 
used to reduce overall loss was, [19]. The metric 
used to check performance was accuracy. To assess 
the noise sensitivity of the ANN, it was tested and 
trained with signals from both the time and 
frequency domains, with the background noise 
being gradually increased. The best-performing 
ANNs in terms of accuracy sensitivity will be used 
in the predictive algorithm. 
 

Table 1. Dataset created to classify different VAD 
working scenarios 

Label Class 

0 Thrombus absence 
1 Thrombus at rotor’s base 
2 Thrombus at rotor’s vanes 
3 Thrombus at rotor’s spiral 

 
4.4  Predictive Algorithm 
This model utilizes the best ANNs with the dataset 
generated by the SRA to predict the probability of 
thrombus absence or presence in a specific 
timeframe. The objective is to merge signals 
representing the absence of a thrombus with signals 
indicating the presence of a thrombus, simulating 
the transition of signals from "without thrombus" to 
"with thrombus" over time. This model provides a 
comprehensive analysis of the temporal variations in 
the probabilities of thrombus presence or absence 
and was designed to better simulate real-life 
applications. 

The code initiates a loop that varies the starting 
point of the region, indicating the absence of a 
thrombus, adjacent to the region indicating 
thrombus presence. In each iteration, the thrombus 
probability is calculated for this evolving data range, 
and the calculated probabilities are stored. At the 
end of the iterations, they are visually represented in 
a line graph, illustrating how the probabilities 

evolve. This allows for a detailed analysis of 
changes as the data range varies. The algorithm 
sequence is presented below. 

1. Loading the pre-trained ANN: The 
algorithm loads the ANN from the file 
where it was saved using the “TensorFlow” 
library. 

2. Calculation Loop: The code enters a loop 
that calculates tracks of the dataset with 
different starting points for region 1 
(without thrombus) and varies the start of 
region 2 (with thrombus). At the loop's 
initiation, the track contains only data from 
region 1. As the iterations progress, region 1 
decreases at the same rate as region 2 
increases. The total number of iterations is 
defined by the size of the matrix previously 
pre-processed by the ANN algorithm. 

3. Average Calculation: The code calculates 
the average of all rows in the data range. 

4. Reshape the Data for the ANN: The 
average data is reshaped to have the 
appropriate format to be used as input for 
the ANN. 

5. ANN predictions: Predictions are obtained 
by applying the implemented ANN to the 
simple average data. This algorithm 
calculates the probability of thrombus 
presence or absence based on the 
information in the data track. 

6. Probability Calculation: The probabilities 
computed by the ANN are converted into 
percentage values representing the 
likelihood of thrombus presence or absence. 

7. Probability Storage: The calculated 
probabilities are stored in two separate lists: 
one for thrombus absence probability and 
the other for thrombus presence probability, 
for recording and analysis purposes. 

8. Chart Plotting: Finally, the code generates 
a line chart using the matplotlib library to 
display the evolution of probabilities over 
iterations. The chart shows the probabilities 
of "Prob. Without Thrombus" and "Prob. 
With Thrombus" on the vertical axis in 
percentage and the iterations on the 
horizontal axis. 

 
 
5   Results 
In this section, we will present the results obtained 
by the SRA, the CSA, the results obtained by the 
ANNs in classifying the reproduced signals, and 
their performance with increased background noise. 
Finally, we will present the results of the predictive 
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algorithms. To facilitate comprehension, these 
results have been divided into the following four 
subsections. 
 
5.1  Signal Reconstruction Algorithm 
The spectrum pattern representing the absence of 
thrombi is characterized by peaks at the 
fundamental frequency of 30 Hz and its respective 
harmonics (60, 90, and 120 Hz). The presence of a 
thrombus at the base is identified by a peak near the 
frequency of 140 Hz. In the case of thrombus 
presence at the vanes, an increase in amplitudes at 
frequencies of 90 and 120 Hz and the appearance of 
peaks at frequencies of 150 and 180 Hz indicate this 
anomaly. The elevation in amplitudes at frequencies 
of 90 and 120 Hz indicates the presence of a 
thrombus in the rotor spiral. 
 
5.2  Changing State Algorithm 
Figure 8 shows the spectrograms from CSA for the 
three thrombus positions studied. Figure 8 (a) 
displays the time series changing from the absence 
to the presence of a thrombus at the rotor's base. 
From a certain point onward, it was possible to 
observe that the region associated with the 
frequency of 140 Hz became visible on the scale. 
This gradual change in coloration indicates a 
progressive increase in the amplitude of this 
frequency, directly related to the appearance of the 
thrombus at the rotor's base. At a certain moment, 
the areas corresponding to the frequencies of 90 and 
120 Hz began to become less visible. The 
spectrograms of the other two thrombus positions, 
the rotor’s vanes and the rotor’s spiral are presented 
in Figure 8 (b) and (c), respectively. In both cases, 
we observe an intense peak at 90Hz growing with 
time. For the thrombus in the rotor’s vane, Figure 8 
(b), we observe a growing doublet at 125 and 150 
Hz and for the thrombus in the rotor’s spiral, Figure 
8 (c), just a peak in 125 Hz is observed. The 
behavior of these two signals follows what is 
expected, showing a smooth transition between the 
peak of thrombus absence and presence. 
 

 
Fig. 8: Plotted results from the CSA for all working 
states 
 
5.3  Implemented Artificial Neural Network 
With very low noise (A = 1e-6), the ANN obtained 
an average accuracy of around 100% for classifying 
each of the signals. It was observed that, in all 
scenarios, as the background noise level increases, 
the mean accuracy decreases. A trendline was 
adjusted to quantify the decrease in accuracy with 
noise amplitude. It was noticed that the angular 
coefficient (α) of the trendline in frequency domain 
signals (αf = -0.019) is smaller than in time domain 
signals (αf = -0.061). Figure 9 shows the influence 
of noise on ANN accuracy analysis for both time 
and frequency domains. 
 

 
Fig. 9: ANNs performance for each kind of signal 
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5.4  Predictive Algorithm 
To demonstrate the capability of the ANN to predict 
thrombus formation with a small frequency 
signature, the output probabilities are presented in 
Figure 10 for three thrombus positions. In all 
scenarios, illustrated throughout the iterations, 
where the iterations represent the degree of mixing 
of signals with the absence and presence of 
thrombus, the probabilities of thrombus absence and 
presence vary. As expected, the probabilities always 
start with 100% for thrombus absence. With the 
increase in mixing, they converge to around 50% 
when approximately half of each signal type is 
being analyzed. After reaching this equilibrium 
point, the curves begin to diverge, reaching values 
of 0% for thrombus absence and 100% for thrombus 
presence when about 30% of the signals correspond 
to thrombus absence, and the remaining 70% are 
signals of thrombus presence. 
 

 

 

 
Fig. 10: Predictive analysis over the time 
 
 
6   Conclusion 
This study investigated the application of signal 
processing and machine learning algorithms for the 
detection of thrombi in VADs under different 
operating conditions. The analysis covered signal 
reconstruction techniques, signal analysis, 
classification by ANNs, and their application in a 
predictive algorithm. Frequency analysis 
highlighted specific characteristics for each 
scenario, with some frequencies indicating 
normality and the absence of a thrombus, while 
others indicated the presence of a thrombus, 
signaling anomalies and imbalances in the rotor. 
A signal made by mixing signals with and without a 
thrombus was verified using wavelet analysis to 
represent how thrombus formation might develop 
over time, indicating that at a certain point, the signs 
indicating the presence of a thrombus become 
measurable. Classification analyses were carried out 
using ANNs, considering data in the time domain 
and the frequency domain. 

Overall, frequency domain signals demonstrated 
superiority to time domain signals in terms of 
sensitivity to disturbances caused by noise, although 
the frequency domain requires greater 
computational effort to pre-process the measured 
signals. The frequency domain signals were used to 
carry out predictive analyses to calculate the 
probabilities of the presence or absence of thrombi 
in various VAD operating scenarios, including 
situations of total absence or presence of thrombi, as 
well as the variable combination of these signals 
over time. It was found that the probabilities varied 
significantly as the proportions of thrombus 
presence and absence data changed. 

Therefore, the results of this study, especially 
those obtained by the predictive algorithm, 
contribute to the further development of a smart 
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pump, where more effective monitoring and control 
systems can be incorporated into VADs, making 
them more efficient, as well as suggesting the 
feasibility of implementing prescriptive 
maintenance strategies. By analyzing the data, the 
device itself can indicate to the patient or physician 
when and what should be done. It is important to 
note that the results of this study were obtained 
using only one VAD model and cannot yet be 
generalized. 
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