
[4] Miceli G., Rizzo G., Basso M.G., Cocciola
E., Pennacchio AR, Pintus C, Tuttolomondo
A. Artificial Intelligence in Symptomatic
Carotid Plaque Detection: A Narrative
Review. Applied Sciences. 2023; 13(7):4321.
https://doi.org/10.3390/app13074321.
[5] Fillingham P., Levitt M., Kurt M., Lim D.,
Federico E., Keen J., Aliseda A., E-177
machine learning model for the prediction of
patient-specific waveforms of blood
flowthrough the internal carotid artery, SNIS
19th annual meeting electronic poster
abstracts [Preprint], 2022.
doi:10.1136/neurintsurg-2022-snis.288.
[6] Yeh C. Y., Lee H. H., Islam M. M., Chien C.
H., Atique S., Chan L., & Lin M. C.,
Development and validation of machine
learning models to classify artery stenosis for
automated generating ultrasound report,
Diagnostics, 12(12), 2022, 3047.
doi:10.3390/diagnostics12123047.
[7] Yuhn, C., Oshima, M., Chen, Y., Hayakawa,
M., & Yamada, S., Uncertainty
quantification in cerebral circulation
simulations focusing on the collateral flow:
Surrogate Model Approach with machine
learning, PLOS Computational Biology,
18(7), 2022.
doi:10.1371/journal.pcbi.1009996.
[8] Verde, L. and De Pietro, G., A machine
learning approach for carotid diseases using
heart rate variability features, Proceedings of
the 11th International Joint Conference on
Biomedical Engineering Systems and
Technologies [Preprint], 2018.
doi:10.5220/0006730806580664.
[9] Lindsey, T. and Garami, Z., Automated
stenosis classification of carotid artery
sonography using Deep Neural Networks,
2019 18th IEEE International Conference On
Machine Learning and Applications
(ICMLA) [Preprint], 2019a.
doi:10.1109/icmla.2019.00302.
[10] Arzani, A. and Dawson, S.T., Data-driven
cardiovascular flow modelling: Examples
and opportunities, Journal of The Royal
Society Interface, 18(175), 2021.
doi:10.1098/rsif.2020.0802.
[11] Chen Z., Yang M., Wen Y., Jiang S., Liu W.,
& Huang, H., Prediction of atherosclerosis
using machine learning based on Operations
Research, Mathematical Biosciences and
Engineering, 19(5), 2022, pp.4892-4910.
doi:10.3934/mbe.2022229.
[12] Diego Gallo, Payam B. Bijari, Umberto
Morbiducci, Ye Qiao, Yuanyuan (Joyce) Xie,
Maryam Etesami, Damiaan Habets, Edward
G. Lakatta, Bruce A. Wassermanand David
A. Steinman. Segment-specific associations
between local haemodynamic and imaging
markers of early atherosclerosis at the carotid
artery: An in vivo human study, Journal of
The Royal Society Interface, 15(147),
20180352, 2018. doi:10.1098/rsif.2018.0352.
[13] S.W.I. Onwuzu, A.C. Ugwu, G.C.E. Mbah,
I.S. Elo,, Measuring wall shear stress
distribution in the carotid artery in an African
population: Computational fluid dynamics
versus ultrasound Doppler velocimetry',
Radiography, 27(2), 2021, 581–588.
doi:10.1016/j.radi.2020.11.018.
[14] Marshall, I., Papathanasopoulou, P. and
Wartolowska, K., Carotid flow rates and flow
division at the bifurcation in Healthy
Volunteers, Physiological Measurement,
25(3), 2004, 691–697. doi:10.1088/0967-
3334/25/3/009.
[15] Fojas, J.J. and De Leon, R.L., Carotid artery
modeling using the navier-stokes equations
for an incompressible, newtonian and
Axisymmetric Flow, APCBEE Procedia, 7,
2013, 86–92.
doi:10.1016/j.apcbee.2013.08.017.
[16] Ogoh S., Washio T., Paton J. F. R., Fisher J.
P., & Petersen L. G., Gravitational effects on
intracranial pressure and blood flow
regulation in young men: A potential
shunting role for the external carotid artery,
Journal of Applied Physiology, 129(4), 2020,
901–908.
doi:10.1152/japplphysiol.00369.2020.
[17] Kamenskiy A. V., MacTaggart J. N., Pipinos
I. I., Bikhchandani J., & Dzenis Y. A., Three-
dimensional geometry of the human carotid
artery, Journal of Biomechanical
Engineering, 134(6), 2012.
doi:10.1115/1.4006810.
[18] Sui B., Gao P., Lin Y., Gao B., Liu L., & An
J., Assessment of wall shear stress in the
common carotid artery of healthy subjects
using 3.0-tesla magnetic resonance, Acta
Radiologica, 49(4), 2008, 442–449.
doi:10.1080/02841850701877349.
[19] Xi Chen, Weidong Liu, Xiaojun Mao,
Zhuoyi Yang, Distributed High-dimensional
Regression Under a Quantile Loss Function,
Journal of Machine Learning Research 21,
2020, 1-43.
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2023.20.16
T. Raja Rani, Woshan Srimal,
Abdullah Al Shibli, Nooh Zayid Suwaid Al Bakri,
Mohamed Siraj, T. S. L. Radhika