[35] Kamagata, K., Andica, C., Takabayashi, K.,
Saito, Y., Taoka, T., Nozaki, H., ., 2022.
Association of MRI Indices of Glymphatic
System With Amyloid Deposition and
Cognition in Mild Cognitive Impairment and
Alzheimer Disease. Neurology, Vol. 99 No
24, pp. e2648–e2660.
[36] Xiao, M., Hou, J., Xu, M., Li, S., & Yang, B.,
2023. Aquaporins in Nervous System.
Advances in experimental medicine and
biology, Vol. 1398, pp. 99–124.
[37] Xu, Z., Xiao, N., Chen, Y., Huang, H.,
Marshall, C., Gao, J., ., 2015. Deletion of
aquaporin-4 in APP/PS1 mice exacerbates
brain Aβ accumulation and memory deficits.
Molecular neurodegeneration, Vol. 10, pp. 1–
16.
[38] Zhang, R., Liu, Y., Chen, Y., Li, Q.,
Marshall, C., Wu, T., Hu, G., & Xiao, M.,
2020. Aquaporin 4 deletion exacerbates brain
impairments in a mouse model of chronic
sleep disruption. CNS neuroscience &
therapeutics, Vol. 26 No 2, pp. 228–239.
[39] Keil, S. A., Braun, M., O'Boyle, R., Sevao,
M., Pedersen, T., Agarwal, S., Jansson, D., &
Iliff, J. J., 2022. Dynamic infrared imaging of
cerebrospinal fluid tracer influx into the
brain. Neurophotonics, Vol. 9 No 3, p.
031915.
[40] Tithof, J., Boster, K. A. S., Bork, P. A. R.,
Nedergaard, M., Thomas, J. H., & Kelley, D.
H., 2022. A network model of glymphatic
flow under different experimentally-
motivated parametric scenarios. iScience,
Vol. 25 No 5, p. 104258.
[41] Marín-Moreno, A., Canoyra, S., Fernández-
Borges, N., Espinosa, J. C., & Torres, J. M.,
2023. Transgenic Mouse Models for the
Study of Neurodegenerative Diseases.
Frontiers in bioscience (Landmark edition),
Vol 28 No 1, p. 21.
[42] Zhou, Y., Cai, J., Zhang, W., Gong, X., Yan,
S., Zhang, K., Luo, Z., Sun, J., Jiang, Q., &
Lou, M., 2020. Impairment of the Glymphatic
Pathway and Putative Meningeal Lymphatic
Vessels in the Aging Human. Annals of
neurology, Vol. 87 No 3, pp. 357–369.
[43] Ishida, K., Yamada, K., Nishiyama, R.,
Hashimoto, T., Nishida, I., Abe, Y., Yasui,
M., & Iwatsubo, T., 2022. Glymphatic system
clears extracellular tau and protects from tau
aggregation and neurodegeneration. The
Journal of experimental medicine, Vol. 219
No 3, p. e20211275.
[44] Hladky, S. B., & Barrand, M. A., 2022. The
glymphatic hypothesis: the theory and the
evidence. Fluids and barriers of the CNS,
Vol. 19 No 1, p. 9.
[45] Soden, P. A., Henderson, A. R., & Lee, E.,
2022. A Microfluidic Model of AQP4
Polarization Dynamics and Fluid Transport in
the Healthy and Inflamed Human Brain: The
First Step Towards Glymphatics-on-a-Chip.
Advanced biology, Vol. 6 No 12, p.
e2200027.
[46] Wu, C. H., Lirng, J. F., Ling, Y. H., Wang, Y.
F., Wu, H. M., ., 2021. Noninvasive
Characterization of Human Glymphatics and
Meningeal Lymphatics in an in vivo Model of
Blood-Brain Barrier Leakage. Annals of
neurology, Vol. 89 No 1, pp. 111–124.
[47] Alghanimy, A., Martin, C., Gallagher, L., &
Holmes, W. M., 2023. The effect of a novel
AQP4 facilitator, TGN-073, on glymphatic
transport captured by diffusion MRI and
DCE-MRI. PloS one, Vol. 18 No 3, p.
e0282955.
[48] Zeppenfeld, D. M., Simon, M., Haswell, J.
D., D'Abreo, D., Murchison, C., Quinn, J. F.,
2017. Association of Perivascular
Localization of Aquaporin-4 With Cognition
and Alzheimer Disease in Aging Brains.
JAMA neurology, Vol. 74 No 1, pp. 91–99.
[49] Peng, W., Achariyar, T. M., Li, B., Liao, Y.,
Mestre, H., Hitomi, E., Regan, S., Kasper, T.,
Peng, S., Ding, F., Benveniste, H.,
Nedergaard, M., & Deane, R., 2016.
Suppression of glymphatic fluid transport in a
mouse model of Alzheimer's disease.
Neurobiology of disease, Vol. 93, pp. 215–
225.
[50] Simon, M., Wang, M. X., Ismail, O., Braun,
M., Schindler, A. G., Reemmer, J., ., 2022.
Loss of perivascular aquaporin-4 localization
impairs glymphatic exchange and promotes
amyloid β plaque formation in mice.
Alzheimer's research & therapy, 14(1), 59.53.
Harrison I., Ismail O., Machhada A., .
Impaired glymphatic function and clearance
of tau in an Alzheimer's disease model. Brain,
2020, Vol 143 No 8, pp. 2576-2593.
[51] Harrison, I. F., Ismail, O., Machhada, A.,
Colgan, N., Ohene, Y., Nahavandi, P., 2020.
Impaired glymphatic function and clearance
of tau in an Alzheimer's disease model. Brain
: A Journal of Neurology, Vol 143 No 8, pp.
2576–2593.
[52] Burfeind, K. G., Murchison, C. F., Westaway,
S. K., Simon, M. J., Erten-Lyons, D., Kaye, J.
A., Quinn, J. F., & Iliff, J. J., 2017. The
effects of noncoding aquaporin-4 single-
nucleotide polymorphisms on cognition and
functional progression of Alzheimer's disease.
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2023.20.11
Igor Shirolapov, Alexander Zakharov,
Saikat Gochhait, Vasiliy Pyatin et al.