[3] H. W. Hethcote, The mathematics of infectious
diseases, SIAM Review, 42(4), 599-653 (2000).
[4] M. El Idrissi, B. Harchaoui, A. N. Brahim, I.
Bouzalmat, A. Settati, A. Lahrouz, A sufficient
condition for extinction and stability of a stochas-
tic SIS model with random perturbation, WSEAS
Transactions on Systems, 21, 367-371 (2022).
[5] A. Settati, A. Lahrouz, M. Zahri, A. Tri-
dane, M. El Fatini, H. El Mahjour, M.
Seaid, A stochastic threshold to predict
extinction and persistence of an epidemic
SIRS system with a general incidence rate,
Chaos, Solitons & Fractals, 144, 110690,
https://doi.org/10.1016/j.chaos.2021.110690,
(2021).
[6] A. El Haitami, A. Settati, A. Lahrouz, M.
El Idrissi, M. El Merzguioui, A stochastic
switched SIRI epidemic model integrating non-
linear relapse phenomena, Int. J. Dynam. Con-
trol, https://doi.org/10.1007/s40435-023-01256-
9 (2023).
[7] N. Dalal, D. Greenhalgh, X. Mao, A stochastic
model of AIDS and condom use, J. Math. Anal.
Appl. 325 36-53, (2007).
[8] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan,
A stochastic differential equation SIS epidemic
model. SIAM Journal on Applied Mathematics,
71(3), 876-902 (2011).
[9] A. Lahrouz, A. Settati, Necessary and sufficient
condition for extinction and persistence of SIRS
system with random perturbation, Applied Math-
ematics & Computation, 233, 10-19 (2014).
[10] A. Lahrouz, L. Omari, Extinction and stationary
distribution of a stochastic SIRS epidemic model
with non-linear incidence, Statistics & Probabil-
ity Letters, 83(4), 960-968 (2013).
[11] T. Caraballo, A. Settati, M. El Fatini, A.
Lahrouz, A. Imlahi, Global stability and posi-
tive recurrence of a stochastic SIS model with
Lévy noise perturbation, Physica A: Statistical
Mechanics and Its Applications, 523, 677-690
(2019).
[12] C. Huang, H. Zhang, J. Cao, H. Hu, Stability
and Hopf bifurcation of a delayed prey–predator
model with disease in the predator, Interna-
tional Journal of Bifurcation and Chaos, 29(07),
1950091 (2019).
[13] A. Gray, D. Greenhalgh, X. Mao, J. Pan, The
SIS epidemic model with Markovian switching,
J. Math. Anal. Appl. 394 496-516 (2012).
[14] A. Settati, A. Lahrouz, M. El Jarroudi, M. El Jar-
roudi, Dynamics of hybrid switching diffusions
SIRS model, Journal of Applied Mathematics and
Computing, 52, 101-123 (2016).
[15] B. E. Berrhazi, M. El Fatini, T. Caraballo Gar-
rido, R. Pettersson, A stochastic SIRI epidemic
model with Lévy noise. Discrete and Continuous
Dynamical Systems-Series B, 23 (9), 3645-3661
(2018).
[16] T. Caraballo Garrido, M. El Fatini, R. Petters-
son, R. Taki, A stochastic SIRI epidemic model
with relapse and media coverage, Discrete and
Continuous Dynamical Systems-Series B, 23 (8),
3483-3501 (2018).
[17] T. Caraballo, M. El Fatini, M. El Khalifi, R.
Gerlach, R. Pettersson, Analysis of a stochas-
tic distributed delay epidemic model with relapse
and gamma distribution kernel, Chaos, Solitons
& Fractals, 133, 109643 (2020).
[18] Y. Zhao, D. Jiang, The threshold of a stochas-
tic SIS epidemic model with vaccination, Ap-
plied Mathematics and Computation, 243, 718-
727 (2014).
[19] Y. Zhao, Q. Zhang, D. Jiang, The asymptotic be-
havior of a stochastic SIS epidemic model with
vaccination, Advances in Difference Equations,
2015, 1-20 (2015).
[20] E. Beretta, Y. Takeuchi, Global stability of a
SIR epidemic model with time delays, Journal of
mathematical biology, 33(3), 250-260 (1995).
[21] A. Lahrouz, L. Omari, D. Kiouach, A. Bel-
maati, Complete global stability for a SIRS epi-
demic model with generalized non-linear inci-
dence and vaccination, Appl. Math. Comput. 218
6519-6525 (2012).
[22] J. Zhou, H. W. Hethcote, Population size de-
pendent incidence in models for diseases without
immunity, Journal of mathematical biology, 32,
809-834 (1994).
[23] A. Settati, A. Lahrouz, A. Assadouq, M. El
Fatini, M. El Jarroudi, K. Wang, The impact
of nonlinear relapse and reinfection to derive a
stochastic threshold for SIRI epidemic model,
Chaos, Solitons & Fractals, 137, 109897,
https://doi.org/10.1016/j.chaos.2020.109897
(2020).
[24] S. Cai, Y. Cai, X. Mao, A stochastic differential
equation SIS epidemic model with two indepen-
dent Brownian motions, Journal of Mathemati-
cal Analysis and Applications, 474(2), 1536-1550
(2019).
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2023.20.8
B. Harchaoui, M. El Idrissi,
A. El Haitami, A. Nait Brahim, A. Settati,
A. Lahrouz, M. El Jarroudi, M. Er-Riani, T. Amtout