[12] Chiel H.J., McManus J.M., Shaw K.M.,
From Biology to Mathematical Models and
Back: Teaching Modeling to Biology
Students, and Biology to Math and
Engineering Students, CBE-Life Sciences
Education, Vol.9, No.3, 2017, pp. 248-265.
[13] Anguelov R., Dufourd C., Dumont Y.,
Mathematical model for pest-insect control
using mating disruption and trapping,
Applied Mathematical Modelling, Vol. 52,
No. 1, 2016, pp. 1-34.
[14] Donatelli M., Magarey R.D., Bregaglio S.,
Willocquet L., Whish J.P.M., Savary S.,
Modelling the impact of pests and diseases
on agricultural systems, Agricultural
Systems, Vol. 155, 213-224, 2017, pp. 213-
224.
[15] Siettos C.I., Russo L., Mathematical
modeling of infectious disease dynamics,
Virulence, Vol. 4, No. 4, 2013, pp. 295-
306.
[16] Mailleret L., Lemesle V., A note on semi-
discrete modelling in the life sciences,
Philosophical Transactions of The Royal
Society A, Vol. 367, 2009, pp. 4779-4799.
[17] Fortunato A.K., Glasser C.P., Watson J.A.,
Lu Y., Rychtar J., Taylor D., Mathematical
modelling of the use of insecticide-treated
nets for elimination of visceral
leishmaniasis in Bihar, India, Royal Society
Open Science, Vol. 8, No. 6, 2021.
[18] Ndii M.Z., Wiraningsih E.D., Anggriani N.,
Asep K. Supriatna A.K., Mathematical
Model as a Tool for the Control of Vector-
Borne Diseases: Wolbachia Example,
IntechOpen, 2018.
[19] Seadawy A.A., Jun W., New mathematical
model of vertical transmission and cure of
vector-borne diseases and its numerical
simulation, Advances in Difference
Equations, No. 66, 2018, pp. 1-15.
[20] Mandal S., Sarkar R.R., Sinha S.,
Mathematical models of malaria - a review,
Malaria Journal, Vol. 10, No. 202, 2011,
pp 1-19.
[21] Dufourd C. Ch., Spatio-temporal
mathematical models of insect trapping:
analysis, parameter estimation and
applications to control, Thesis, University
of Pretoria, 2016.
[22] Dhahbi A.B., Chargui Y., Boulaaras S.M.,
Ben Khalifa S., Koko W., Alresheedi F.,
Mathematical Modelling of the Sterile
Insect Technique Using Different Release
Strategies, Mathematical Problems in
Engineering, 2020, pp. 1-9.
[23] Dhahbi A.B., Chargui Y., Boulaaras S.M.,
Ben Khalifa S., A One-Sided Competition
Mathematical Model for the Sterile Insect
Technique, Complexity, 2020, pp. 1-12.
[24] Rutledge L.C., Wirtz R.A. , Buescher
M.D., Mehr Z.A., Mathematical models of
the efectivness and persistence of mosquito
repellents, Journal of American Mosquito
Control Association, Vol.1, No. 1, 1985,
pp. 56-62.
[25] Barclay H.J., Enkerlin W.H., Manoukis
N.C., Flores J.R., Guidlines for the Use of
Mathematics in Operational Area-Wide
Integrated Pest Management Programmes
Using the Sterile Insect Technique with a
Special Focus on Tephritid Fruit Flies,
FAO, IAEA Joint FAO/IAEA Programme,
2014.
[26] Williams C.B. Jr., Shea P.J., Computer
Simulation for Integrated Pest
Management of Spruce Budworms, Pacific
Southwest Forest and Range Experiment
Station P.P. Box 245 Berkley, California
94701, 1982.
[27] Banks H.T., Everett R.A., Murad N., White
R.D., Banks J.E., Cass B.N., Rosenheim
J.A., Optimal design for dynamical
modeling of pest populations, Mathematical
Biosciences and Engineering, Vol. 15,
No.4, 2018, 993-1010.
[28] Ortega J.E.C., Ruvalcaba L.P., Lopez R.M.,
Valdez T.D., Alcaraz T. de J. V., Tafoya
F.A., Biorational Insecticides and
Diatomaceous Earth for Control
Sustainability of Pest in Chickpea and
Mexican Bean Weevil, IntechOpen, 2018.
[29] Prasantha B.D.R., Reichmuth C., Kinetics
of diatomaceous earth (Fossil-shield®)
uptake by Callosobruchus maculatus (F.)
(Coleoptera: Bruchidae),Mededelingen van
de FaculteitLandbouwwetenschappen -
Rijksuniversiteit Gent, Vol. 67, No. 3,1,
2002, pp. 519-529.
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2023.20.2
Petru Cardei, Constantina Chireceanu