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Abstract: - In this study, bio-hydrogen gas [bio-H2(g)] production and modeling with a three-phase 
computational fluid dynamics (CFD) model, heat and mass transfer of bio-hydrogen production, reaction 
kinetics, and fluid dynamics; It was investigated by dark fermentation process in an anaerobic continuous plug 
flow reactor (ACPFR). The three-phase CFD model was used to determine the bio-H2(g) production in an 
ACPFR. The effect of different operating parameters, increasing hydrolic retention times (HRTs) (1, 2, 4, 8, 
and 12 days), different pH values (4.0, 5.0, 6.0, 7.0, and 8.0), and increasing feed rate as organic loading rates 
(OLRs) (0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 g COD/l.d) on the bio-H2(g) production rates were operated in 
municipal sludge wastes (MSW) with Thermoanaerobacterium thermosaccharolyticum SP-H2 methane 
bacteria during dark fermentation for bio-H2(g) production. The effect of HRT, pH, and feed rate on the bio-
H2(g) efficiencies and H2(g) production rates were examined in the simulation stage. Production of volatile 
fatty acids (VFAs) namely, acetic acids, butyric acids, and propionic acids were important points influencing 
the bio-H2(g) production yields. The artificial neural network (ANN) model substrate inhibition on bio-H2(g) 
production to the methane (CH4) bacteria was also investigated. The reaction kinetics model used Thermotoga 

neapolitana microorganisms with the Andrews model of substrate inhibition. Furthermore, the ANN model was 
well-fitted to the experimental data to simulate the bio-H2(g) production from chemical oxygen demand (COD).  
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(ANN) model; Biological hydrogen gas [Bio-H(g)] production; Butyric acids; Computational 
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1   Introduction 
The technologies of energy production based on 
burning fossil fuels constitute the world's main 
energy production source and cause pollution and 
degradation of the natural environment, [1], [2]. 
Fossil fuels and non-renewable energy; It causes 
environmental damage and climate change by 
causing destruction in soil, water, and air. The 
partial and complete combustion of fossil fuels 
emits greenhouse pollutants like COx, NOx, SOx, 
CxHy, ash, and other organic compounds in the 
environment, [3]. For energy production based on 
renewable resources; New clean technologies need 
to be developed, [4], [5]. The development of these 
technologies is supported by social pressure, carbon 
neutrality requirements, the political environment, 
and appropriate legal regulations. Because it reduces 
carbon dioxide [CO2(g)] and methane [CH4(g)] 

emissions into the air and has the potential to 
improve the quality of life of future generations; It 
fits the main theme of the decarboxylation approach. 
An increase in new renewable energy expenditures, 
technologies that include the energy use of biomass 
to bio-H2(g) may provide a solution to these 
challenges, [6].  

H2(g) is nontoxic, colorless, odorless, [7], 
tasteless, and the third most abundant element on 
Earth, [8]. H2(g) as an environmentally friendly gas 
is an energy carrier that could play a significant role 
in the reduction of greenhouse gases, [9], [10]. Due 
to water (H2O) production during the combustion 
process, H2(g) is considered a clean fuel. H2(g) is 
regarded as an ideal energy with a high energy yield 
of 122 kJ/g, which is 2.75 folds greater than that of 
hydrocarbon fuels, [11]. For this reason, H2(g) is 
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one of the cleanest and most promising energy 
sources. 

In comparison with conventional anaerobic 
process [fermentative CH4(g) production], due to 
some inconsistency and drawbacks, the H2(g) 
production processes by dark fermentation are less 
well developed than the CH4(g) production. During 
anaerobic digestion of organic wastes, such as solid 
waste and wastewater, CH4(g) is produced and its 
production processes have been well established 
commercially. H2(g) is a more valuable energy 
carrier and chemical feedstock compared with 
CH4(g), [12], [13]. Therefore, dark fermentation can 
treat agro-industrial effluents and also valorized 
them through energy production, [12]. However, a 
bottleneck for the widespread utilization of these 
processes is the relatively low hydrogen production 
rates (HPR), and thus several strategies to enhance it 
have been proposed, [14]. One of them is the use of 
feedback control, which is the case explored in this 
communication. Different ways of H2(g) production 
methods are summarized at Figure 1 (Appendix).  

Bio-H2(g) is a feasible, promising, and clean 
alternative fuel with no CO2(g) emissions and high 
energy content per unit weight (141.9 J/kg); 
Additionally, only H2O is produced as a result of 
H2(g) combustion, [15]. Using the dark fermentation 
process, organic wastes can be decomposed into 
bio-H2(g), CO2(g), and VFAs, and converted into 
metabolites, which can be utilized in other 
fermentation processes based on the carboxylate 
platform, [16]. Considering the conventional 
treatment costs and the energy and chemical needs 
in the processes used, by reducing the carbon 
footprint; Dark fermentation, which produces clean 
and renewable H2(g) from wastewater, is an 
alternative to reduce fossil fuel consumption, [17]. It 
compared different methods applied for H2(g) 
production, such as photo-fermentation, dark 
fermentation, electrolysis, electrodialysis and 
photocatalysis, which include environmental, 
economic, energy and energetic impacts, [18]. 
According to Bio-H2(g) production methods, the 
most economical and efficient process occurs in 
dark fermentation (Figure 2, Appendix). 

Biological H2(g) production offers many 
advantages, such as clean gas, simple technology, 
and cheap high-intensity energy (122 kJ/g). 
Additionally, its use does not produce any 
greenhouse gases and has some significant 
economic and environmental advantages. Biofuels 
are considered solid, liquid, and gaseous fuels 
produced predominantly using biomass. Various 
fuels such as ethanol, methanol, H2(g), and CH4(g) 
can be obtained from biomass, [19]. Plant biomass, 

from which biofuels are produced, accumulates 
solar energy. First-generation biofuels are produced 
using traditional methods such as fermentation or 
esterification, which do not require large amounts of 
energy. In the case of traditionally so-called first-
generation biofuels, production is based on edible 
plants such as sugar beet root, corn, sugarcane, 
cereals, potatoes (starch), or vegetable oils (such as 
rapeseed, palm, or jatropha). In contrast, bioethanol 
is produced through alcoholic fermentation, while 
biodiesel is produced through the esterification of 
vegetable oils. Bio-H2(g) production can be carried 
out in batch, fed-batch, and continuous modes. 
Reactor types for bio-H2(g) production can be 
grouped as open and closed systems. Closed 
fermentation systems can be tubular reactors, bubble 
columns, or airlift systems. A bioreactor used in 
H2(g) production significantly affects the efficiency 
and effectiveness of H2(g) production. 

Biological methods allow us to cost-effectively 
produce bio-H2(g) via dark fermentation; 
Additionally, the photo-fermentation process can 
also be applied to produce bio-H2(g) from various 
sources, [20], [21]. However, production efficiency 
largely depends on temperature, pH, and light 
intensity. Another method worth mentioning is the 
combined photo and dark fermentation method for 
bio-H2(g) production, which can increase the 
production efficiency by 20% to 189%, [22]. Two-
stage hybrid processes were applied to produce bio-
H2(g) from diluted solid waste, [23]. Typically, bio-
H2(g) production relies on a continuously stirred 
tank reactor; Tube anaerobic packed bed reactor can 
be considered a promising technology for bio-H2(g) 
production because a high organic loading rate can 
be achieved by using recirculation and a large 
surface area to ensure better microorganism contact, 
[23]. 

The last few years have seen an increase in the 
use of more advanced techniques such as 
computational fluid dynamics (CFD) for the design 
and optimization of wastewater treatment systems. 
[24], [25], [26]. Bio-H2(g) production CFD 
simulation tool is used to simulate all kinds of 
complex problems arising from the variability of 
parameters of biological models. CFD methods 
enable the determination of variables such as 
volume fraction, shear strain rate, or turbulent 
kinetic energy. They also facilitate the reliable 
prediction of the relevant hydrodynamic variables, 
the computational times, and fluid dynamics 
coupling, as well as mass transfer and kinetic 
variables. Additionally, the influence of inner 
geometry and mass phase transfer can be used in 
numerical simulations, [27]. Fluid particles pass 
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through the reactor with little or no longitudinal 
mixing and exit from the reactor in the same 
sequence in which they entered. Their identity 
remains in the reactor for a time equal to the 
theoretical detention time. This type of flow is 
approximated in long open tanks with a high 
length/width ratio where longitudinal dispersion is 
minimal or absent, [28]. Operational factors to be 
considered in selecting the type of reactor to be used 
in the treatment process include the nature of the 
wastewater to be treated, the nature of the reaction 
(homogeneous/heterogeneous), the reaction kinetics 
that governs the treatment process, process 
performance requirements, and local environmental 
conditions. 

The integration of physical and biological 
processes still poses great challenges. Although it is 
necessary to develop and apply new methods to 
improve reactor hydrodynamics, heat, and mass 
transfer, [29], there are very few publications on 
modeling in packed bed bio-H2(g) production, [30], 
[31]. CFD methods can be used to optimize the 
reactor configuration and therefore improve the 
performance of a bio-H2(g) production reactor. CFD 
software is able to predict the hydrodynamics of 
fluid flow, heat and mass transfer, chemical 
reactions in a reactor, and other related events by 
solving a series of partial differential equations. 
Processes that describe mass, momentum, energy, 
and species balances are advanced methods that are 
widely and successfully used, [32], [33]. CFD is an 
effective tool for hydrodynamic-biokinetic analysis 
of anaerobic digestion of partial differential 
equations, [34]. It is complex because it requires a 
complex biological kinetic process using the user-
defined function (UDF) written in C. It also allows 
optimizing performance costs without increasing the 
cost of prototyping, [35]. To see the flow pattern of 
the liquid, CFD can be used, which focuses on 
predicting hydrodynamic patterns through porous 
media. Flow dispersity patterns through a packed 
bed reactor resulted in arranged spherical particles 
using the discrete element method (DEM) coupling 
with a biokinetics model, which is an efficient 
method to predict bio-H2(g) concentration in a 
continuous tube reactor, [36]. Parameters such as 
HRT, H2(g) production rate, substrate conversion, 
pressure drop, and flow dispersity can be calculated 
by CFD to see the flow pattern of liquid through 
porous media, [37]. 

The artificial neural network (ANN) model is 
used to examine relationships in complex nonlinear 
data due to the data classification and learning 
ability of the ANN model; It is a good tool that is 
widely used and works according to human nervous 

systems and brain, [38], [39], [40], [41]. In the last 
decade, ANN models have been used in 
environmental engineering fields such as biological 
treatment of wastewater, membrane filtration, 
pollution adsorption, and electrodialysis of salt 
water, [38], [39], [40], [41]. 

Until now, there are few parameters for online 
monitoring in bioreactors, the most frequent are 
temperature, pH, oxidation-reduction potential 
(ORP), dissolved oxygen (DO), and dissolved CO2. 
A useful approach is the use of mathematical 
models with these online determinations for the 
estimation of the fermentative products. For this 
purpose, the ANN has been successfully used, since 
they are based on the connectivity of biological 
neurons that have an incredible capability for 
emulation, analysis, prediction, association, and 
adaptation, [12], [42]. For instance, pH, 
temperature, and NaCl concentration were used to 
estimate maximum specific growth rate and 
bacteriocin production in Streptococcus 

macedonicus ACA-DC 198 cultures using 
feedforward ANNs, [43]. By applying a recurrent 
neural network, DO, feeding rate, and liquid volume 
were used to determine biomass concentration in 
Saccharomyces cerevisiae cultures, [42]. ORP, and 
backpropagation neural network were used to 
predict ethanol and biomass production in non-
axenic cultures, [44]. 

Biomass gasification, as an attractive technology 
for the conversion of various types of biowastes to 
energy, is known to be a sustainable procedure to 
produce H2(g), [45], [46]. The gasification of 
biowastes has been investigated in several research 
works from the view point of performance analysis, 
[47], [48], [49], [50], [51], [52], [53], [54], [55], 
[56], [57]. Nevertheless, just a few works on 
performance analysis of linked gasification–H2(g) 
production have been reported, [58], [59], [60]. In 
order to have a comprehensive analysis of a H2(g) 
production system via water–gas shift reactors, 
different modeling approaches based on 
thermodynamic equilibrium, kinetics, CFD, and 
ANNs can be developed. The models derived by 
equilibrium approaches are independent of the 
gasifier structure, so can be applied for ideal 
systems and typical thermodynamic characteristics. 
However, for a widely complex process, accurate 
kinetic parameters are needed that are used in 
kinetic modeling. In calculations relying on CFD, a 
series of equations of energy, momentum, mass, and 
species through a specific area of the gasifier are 
solved simultaneously and can then predict the 
distribution of temperature and concentration. The 
methods based on ANN require a huge amount of 
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data and then use a set of mathematical regressions 
for correlations among input and output data, [55], 
[61], [62], [63], [64], [65], [66]. This method has 
gained importance recently because it can estimate 
nonlinear functions without the need for a 
mathematical explanation of events in the system. 
However, when critical interactions of complex 
nonlinearities such as biomass conversion are 
included in a data set, ANN models are attractive for 
outcome prediction, [67], [68], [69], [70]. Therefore, 
very little work has been reported on modeling 
biomass gasification using the ANN model, and 
nothing in the field of downdraft gasifiers coupled 
with water-gas shift reactors for bio-H2(g) 
production. 

In this study, a new design project ACPFR 
model to analyze the heat and mass transfer, 
reaction kinetics, and fluid dynamics of bio-H2(g) 
production through fermentation and full transient 
three-phase CFD modeling of bio-H2(g) production 
was investigated. Different operating parameters, 
increasing HRTs (1, 2, 4, 8 and 12 days), different 
pH values (4.0, 5.0, 6.0, 7.0 and 8.0) and feed rate 
(0 .5, 1.0, 2.0, 4.0, 8.0) and 10.0 g COD/l.d) on bio-
H2(g) production rates, bio-H2(g) yields and H2(g) 
for its production, it was run in MSW with 
Thermoanaerobacterium thermosaccharolyticum 
SP-H2 methane bacteria during anaerobic dark 
fermentation in an ACPFR. Rates in the simulation 
phase; The production of VFAs, namely acetic, 
butyric, and propionic acids, are important points 
affecting bio-H2(g) production efficiency. 
Furthermore, the aim of this study is to develop an 
ANN to predict H2(g) production in genetically 
modified Thermoanaerobacterium 
thermosaccharolyticum SP-H2 fermentations based 
on online measurements of ORP, pH, and dissolved 
CO2, respectively. 
 
 
2  Materials and Methods  
 
2.1  Microorganisms  
The hydrogen-producing bacterium SP-H2 was 
isolated from a thermophilic acidogenic reactor 
inoculated with municipal sewage sludge and 
processed a carbohydrate-rich simulated food waste. 
Based on the 16S rRNA gene sequence, the 
bacterium was identified as 
Thermoanaerobacterium thermosaccharolyticum 
SP-H2. The maximum growth rate was observed at 
55–60°C and at optimum pH=7.5.  
 
 
 

2.1.1  Inoculum, Substrates, Mineral Medium 

The effluent from the thermophilic acidogenic 
reactor, inoculated with municipal sewage sludge 
and treating high-strength simulated wastewater, 
[71], was used to isolate a new bacterial strain 
known as Thermoanaerobacterium 
thermosaccharolyticum SP-H2. 

Pfennig`s medium, [72], containing the 
following: 330 mg/l NH4Cl, 500 mg/l MgCl2.6H2O, 
168 mg/l CaCl2, 330 mg/l KCl, 330 mg/l KH2PO4 
was used to isolate for Thermoanaerobacterium 
thermosaccharolyticum SP-H2 bacteria. The 
medium was supplemented with 500 mg/l yeast 
extract, 2500 mg/l NaHCO3 as well as with a trace 
element solution, [73], and a vitamin solution, [74]. 
0.5 g/l sodium sulfide and 0.5 g/l cysteine were used 
as reducing agents. The final pH was 6.8–7.0.  

2 ml of effluent was inoculated into an 18 ml 
medium containing 5 g/l potato starch as the carbon 
source in a 60 ml serum bottle and cultured in 
anaerobic condition at 55°C. The enrichment culture 
was sequentially sub-cultured into a series of 5–10 
serum bottles (dilution 10–6- 10–11), introducing 10% 
inoculum into each of them. From the last serum 
bottle, in which the growth and formation of bio-
H2(g) were recorded, re-inoculation was repeated on 
a series of serum bottles. 

Incubation of Thermoanaerobacterium 
thermosaccharolyticum SP-H2 was carried out at 
55°C in the dark on a thermostat shaker with 100 
rpm. 
 
2.1.2  Conducting Batch Test for Microorganisms 
Batch experiments were carried out in 60 ml serum 
bottles with a working volume of ≈20 ml containing 
2 ml (10% v/v) of the strain SP-H2 suspension at 
exponential phase (OD600=0.8-1.0), 18 ml of 
Pfennig`s medium, [72]. Cheese whey was added as 
the carbon source. The volume of cheese whey 
added was 5.0 ml, respectively. The chemical 
oxygen demand (COD) of the added substrate in all 
bottles was 3840 mg O2/l. The initial pH of the 
medium was adjusted to 7.0 with a 10% solution of 
HCl or NaOH. The serum bottles were closed with 
rubber stoppers and aluminum caps and purged with 
nitrogen gas to create anaerobic conditions. During 
the dark fermentation, biogas components and 
soluble metabolite products (SMPs) were 
monitored. Control serum bottles did not contain 
any carbon source, except endogenous carbon from 
cell suspension and some components (yeast extract, 
cysteine) of the medium. The hydrogen production 
in the control bottles were subtracted from the 
hydrogen production in treatment bottles to obtain 
the actual hydrogen production from wastewater by 
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SP-H2. Incubation was carried out at 55°C in the 
dark on a thermostat shaker with 100 rpm. All 
treatments were conducted in triplicates. 
 
2.2   Experimental Set-up 
The experiments were conducted by an up-flow 
anaerobic continuous plug flow reactor (ACPFR) 
packed with immobilization materials. ACPFR is a 
tube reactor. The tube reactor diameter was 10 cm, 
whereas the length of the reactor was 45 cm to 
achieve a total working volume of 3.53 liter. The 
outer shell, which is a cylinder with a central 
rotation axis, was also considered. A packed bed 
reactor should have 4 times more length than 
diameter to achieve the best-packed biofilm 
composition. The volume of the reactor was 3532.5 
cm3 (3.53 l). The packed bed reactor density was 
0.94 g/cm3, and its porosity was 85%. The geometry 
was divided into a number of discrete cells, and the 
governing equations were solved numerically until 
the time-step horizon was converged for a transient 
study.  

The DEM coupled with CFD was used to create 
a packed bed with a spherical particle tube reactor. 
Bio-H2(g) production on the immobilized culture 
was via a continuously operated biofilm as a 2.1 mm 
thickness layer on the packed bed. The inlet was a 
liquid, while gaseous effluent was collected at the 
top side of the reactor. A mesh refinement study was 
made during grid spacing by reducing the factor 
from 0.5 to 0.0025 mm until the results were 
unremarkably changed with the grid size reduction. 
It was found that 0.015 mm is fine enough to obtain 
grid-independent results. The total number of mesh 
elements was 0.15984 ml. Overall, the mesh 
provided the best accuracy and was adopted for the 
CFD simulation. To estimate the grid convergence 
uncertainty of the CFD solution, this study used the 
grid convergence index (GCI) method based on the 
Richardson extrapolation. The initial wall boundary 
y + spacing remained the same for each grid 
refinement level. 
 
2.3   Analytical Methods 
The biogas composition was analyzed by a gas 
chromatography–mass spectrometry (GC-MS); a 
gas chromatograph (GC) (Agilent Technology 
model 6890N) equipped with a mass selective 
detector (Agilent 5973 inert MSD) by injecting a 
sample volume of 2 ml. Mass spectra were recorded 
using a VGTS 250 spectrometer equipped with a 
capillary SE 52 column (HP5-MS 30 m, 0.25 mm 
ID, 0.25 μm) at 220°C with an isothermal program 
for 10 min. The initial oven temperature was kept at 
50oC for 1 min, then raised to 220oC at 25oC/min 

and from 200 to 300oC at 8oC/min, and was then 
maintained for 5.5 min. High purity Helium [He(g)] 
was used as the carrier gas at constant flow mode 
(1.5 ml/min, 45 cm/s linear velocity). The 
calibration was carried out with a standard gas 
composed of 25% CO2(g), 2% O2(g), 10% N2(g) and 
63% CH4(g), respectively.  

Bio-H2(g) was measured with GC-MS (Agilent 
6890N GC - Agilent 5973 inert MSD) according to 
the above operating parameters. In addition to VFAs 
(acetic, butyric, and propionic acids) were analyzed 
at the end of the experimental set-up. After 
centrifugation (13000 rpm, 30 min), VFA 
concentrations were measured by same GC-MS 
(Agilent Technology model 6890N GC - Agilent 
5973 inert MSD). The gas carrier of the flow was 
nitrogen [N2(g)]. 

All experimental parameters were measured 
according to the Standard Methods (2022), [28]. 
 
2.4   Kinetics Model for Bio-H2(g) Production 
The reaction kinetic model was created using the 
Andrews substrate inhibition model with 
Thermotoga neapolitana microorganisms, [75]. 
Thermotoga neapolitana is a rod-shaped, gram-
negative bacterium, [76], distinguishable by a thick 
periplasmic cell wall, [77]. They are generally 0.2-5 
μm in size, but can also reach sizes up to 100 μm. It 
is sporeless, with its rod shape and gram-negative 
features, and is characteristic of the order 
Thermotogales, [77]. Thermotoga neapolitana is 
considered thermophilic, with a habitable 
temperature range of 50–95oC. The optimum 
temperature is 77oC, making it almost 
hyperthermophilic, [77]. There is also evidence that 
it can be found in saline environments due to its 
ability to grow in moderately halophilic 
environments, [78]. 

The kinetic model of bio-H2(g) production was 
used Thermotoga neapolitana bacteria with the 
Andrews model of substrate inhibition in Eq. (1), 
[75]: 
 

𝑞𝐿
𝐻2 =  𝑞𝐿,𝑚𝑎𝑥

𝐻2  𝑥 
𝑆

𝐾𝑠+𝑆+ 
𝑆2

𝐾𝐿

                     (1) 

 
where;𝑞𝐿,𝑚𝑎𝑥

𝐻2 : is the maximum H2(g) specific 
production rate (mmol H2/g.h), S: is the substrate 
concentration (g/l) and Ks: is the inhibition constant 
(g/l), respectively. 
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2.4.1 Computational Fluid Dynamic (CFD) 

Model 

The kinetics conservation equation was 
implemented in the CFD software by UDF function 
written in C code. The model contains protein, 
which makes up ≈ 27-30% of the dry weight of 
Thermotoga neapolitana bacteria. A numerical CFD 
study of hydrodynamics-biokinetics aspects for 
interactions between multiphase is an important part 
of how hydrodynamics influence biokinetics for bio-
H2(g) production. This numerical model contains 
kinetics information, which is applicable to a set of 
process parameters, thereby complicating process 
analysis and the design of the fermentation system. 
Adoption of kinetics models is also complicated 
across different studies making application of 
process analysis and design of fermentation system. 

CFD modeling involves the use of numerical 
methods and algorithms to solve the fundamental 
governing equations of fluid dynamics (i.e. 
continuity, momentum, and energy equations). In 
traditional CFD software, the solutions to these 
equations are found by solving a set of partial 
differential equations called the Navier-Stokes 
equations. The Navier-Stokes equations describe the 
motion of a fluid and how the pressure, velocity, 
temperature, and density of a moving fluid are 
related. For a three-dimensional (3D) system, they 
consist of one continuity equation for the 
conservation of mass, three equations for the 
conservation of momentum, and one equation for 
the conservation of energy, [79].  

The continuity equation is presented in Eq. (2), 
and it states that the mass in the control volume 
cannot be created, destroyed, or transformed: 
 

𝐷𝜌

𝐷𝑡
+  𝜌𝛻. 𝑉 = 0                         (2) 

 
where, ρ: is the density, t: is the time, and (∇.V): is 
the divergence of the velocity vector field, 
respectively. 

Traditional CFD packages are used to solve 
partial differential equations related to fluid flow; It 
uses finite volume, finite difference, or finite 
element methods. The use of advanced methods for 
simulating fluid flows, such as the mesh Boltzmann 
method, [80], and the computational fluid 
dynamics/discrete element method, [81], or 
meshless methods, such as smoothed particle 
hydrodynamics, [82], has increased over the last few 
years. 

The use of CFD to study and optimize slurry 
anaerobic digesters has already been undertaken by 
several authors, [83], [84], [85]. In general, the 

hydrodynamics of common sludge anaerobic 
digesters can be adequately simulated assuming 
single-phase (liquid) or two-phase (gas/liquid) flow, 
as shown in most studies reviewed, [86]. A common 
approach to model the rheological behaviour of 
slurry digesters is to use a non-Newtonian model for 
the liquid phase. This allows the model to account 
for the effects of the total solids content in the 
viscosity of the wastewater without having to 
include a solid phase in the model, hence reducing 
the number of phases to be simulated, [84], [87], 
[88]. In general, this is a reasonably good 
assumption as the size of the solids dispersed on the 
flow is very small compared to the size of the 
reactors.  

For high-rate anaerobic granular sludge reactors 
(AGSRs), such as up-flow anaerobic sludge blanket 
(UASB) reactors, expanded granular sludge bed 
(EGSB) reactors, and internal circulation (IC) 
reactors; The role of biogas bubbles, the influence 
of the granules and the influence of the mixture 
should not be underestimated. UASB reactors are 
thought to be self-mixing by the upstream 
movement of biogas bubbles and liquid flow 
through the reactor, [89]. Additionally, high-rate 
systems can retain biomass granules (high solids 
residence time). This is ensured by a combination of 
reactor design, settling characteristics of the 
granules, and liquid up-flow velocity. An accurate 
CFD model would include the effects of biogas 
bubbles on the overall flow characteristics. It would 
also capture the effects of increased flow rates of 
wastewater and biogas on the loss of biomass 
(sludge wash-out). In this context, CFD simulations 
stand out as a tool capable of aiding in the design 
and study of AGSRs by allowing for design 
iterations for optimizations without the need to 
construct and build reactors.  

The use of CFD for the simulation of AGSRs has 
begun in the last two decades; however, multiphase 
simulations are generally computationally 
demanding, especially when a granular (solid) phase 
is included. Furthermore, a CFD model should only 
be used to guide real-life design decisions if it has 
been carefully verified and validated, [90]. 
Therefore, knowing the state of the art in terms of 
previous studies and validated models will enable 
the development of further research. 

Previously, published studies in the field focused 
on CFD applied to anaerobic digesters in a more 
general approach, without focusing on granular 
reactors, [26], [27], [86], [91]. Other reviews 
focused on aspects such as protocols for the 
simulations and validation of the models, [24], [92]. 
The use of CFD applied to specific tasks such as 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2023.20.33 Ruki̇ye Özteki̇n, Deli̇a Teresa Sponza

E-ISSN: 2224-2902 326 Volume 20, 2023



modeling of mixing in anaerobic digestion reactors 
has been the core of some reviews, [93], [94], [95].  

Modeling of anaerobic granular reactors has been 
studied from the perspective of hydrodynamics and 
general modeling, [96], [97]. Modeling of granular 
sludge reactors (aerobic, anaerobic, and nitriding-
anammox) is reviewed from a mechanistic modeling 
perspective (i.e., mass balance-based models with 
transport and reaction terms), [25]. Some studies 
have reported using CFD to study the transport of 
solid, liquid and gas phases, [25]. While we discuss 
the forces involved in momentum transfer between 
phases, no details are given about CFD modeling. 
 
2.4.2  Artificial Neural Network (ANN) Model 
An ANN model coming from the simulation results 
for the considered gasification system, relying on 
features and output matrixes, is established. The 
research aim is to develop an ANN model linked 
with an equilibrium for the estimation of the specific 
mass flow rate of H2(g) production (smH2) from 
different operating conditions (HRTs, pH, and feed 
rate). Then, an attempt is made to investigate the 
relative impact of biomass properties and operating 
parameters on smH2. At the end, to have a 
comprehensive analysis, variations of the inputs on 
smH2 regarding H2(g) content are compared and 
analyzed together. 

The ANNs always consist of three layers 
including (i) input, (ii) hidden, and (iii) output 
layers. The outputs of a neuron are calculated using 
Eq. (3): 
 

𝑜 = 𝑓(∑ 𝜔𝑗 𝑥 𝑋𝑗
𝑛
𝑗=0 )                    (3) 

 
where, n: is the input number, xj: is the jth input to 
the neutron, ωj: is the jth synaptic weight, and f: is a 
non-linear function, respectively. 

For converting output data between – 1 and + 1, 
the hyperbolic tangent formula was applied as Eq. 
(4): 
 

tanh(𝑥) =  
2

1+ 𝑒−2𝑥 − 1                   (4) 
 

During the training process of input and output 
data set, the network weights are adjusted to achieve 
the similar outputs as seen in the training data set. 
For this purpose, the data were divided into two 
subsets for training model and validation purposes.  

The Pearson correlation coefficient (r2) and mean 
standard error (MSE) were computed to evaluate the 
performance of the developed models according to 
the following formulas, [98], as Eq. (5) and Eq. (6): 
 

𝑟2 = 1 −  
∑ (𝑦𝑝𝑟𝑒,𝑖− 𝑦𝑒𝑥𝑝,𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑝𝑟𝑒,𝑖− 𝑦𝑎𝑣𝑒)
2𝑁

𝑖=1

                 (5) 

 
𝑀𝑆𝐸 =  

1

𝑁
 ∑ (|𝑦𝑝𝑟𝑒,𝑖 − 𝑦𝑒𝑥𝑝,𝑖|)

2𝑁
𝑖=1             (6) 

 
In order to avoid numerical overflows related to 

very large or small weights, all of data were 
converted to normalized values using as Eq. (7): 
 

𝑥𝑛𝑜𝑟𝑚 = 0.8 𝑥 (
𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
) + 0.1            (7) 

 
Due to lack of related studies, the performance 

and efficiency of ACPFR for biological H2(g) 
production and wastewater treatment in different 
experimental conditions for bio-H2(g) production 
were evaluated in the present study. In addition, the 
ANN model was developed to predict the 
performance of the ACPFR for wastewater 
treatment and bio-H2(g) production. 

ANN predicts the output of a process given the 
values of process input and process control 
variables, [99]. It is often used to model 
relationships between large sets of varying data. 
ANN can either feed the results to an operator to 
make process control adjustments or implement 
appropriate control adjustments automatically, [99]. 
Many researchers have used this type of approach 
with great success and recommended the use of 
neural network models especially when the exact 
relationship between inputs and outputs is not 
known and where strong non-linear relationships 
exist. It was reported that the real-life anaerobic 
process for biogas yield is very complex, [100], and 
non-linear, [101], as well as highly dependent on 
different substrate characteristics, [102], and various 
operating conditions such as organic loading rate, 
pH, retention time, carbon/nitrogen ratio, 
temperature, pressure, agitation rate, etc., [103]. 
However, one way to understand the relationships 
between the substrates’ characteristics and the 
optimum biogas yield is through machine learning 
facilitated by models and equations, [104]. 
However, determining an exact mathematical model 
is rigorous because the relationships are very 
complex and highly non-linear, [99]. 
 
2.5   Other Artificial Intelligence Techniques 
Artificial intelligence has found a wide range of 
applications in many fields such as environmental 
sciences, agricultural sciences, basic and applied 
sciences, anthropological studies, medical fields, 
and general engineering family. To achieve 
reasonable and logical results; They are used to 
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model, predict, and simulate processes. Modeling a 
multivariate system; It is quite difficult due to the 
complexity of processes that exhibit non-linear 
behavior, which are difficult to describe with linear 
mathematical models, [104]. Therefore, artificial 
intelligence technology can predict nonlinear 
relationships extremely quickly and reliably. 
Advances in computing power are minimizing the 
time required to develop models as well as the time 
required to retrain models to incorporate new data 
and reflect process changes. The four main types of 
artificial intelligence approaches based on major 
branches are summarized and shown in Figure 3 
(Appendix), [105]: 

Artificial intelligence can be developed without 
quantifying the micro-scale interactions that occur. 
In the anaerobic process, such interactions are often 
poorly understood, thus making it impossible to 
develop useful mechanistic process models. Instead 
of this, several researchers have applied artificial 
intelligence techniques to optimize the dark 
fermentation process. While it is understood that the 
application of artificial intelligence in biogas 
production is still a growing phenomenon, its 
application in bio-H2(g) production is still a very 
new application. 

Nature-inspired computing (NIC) is a recently 
developed branch of artificial intelligence 
techniques. Natural systems (living and non-living) 
have an innate ability to evolve, often in parallel and 
against each other, in a dialectic way. The harmony, 
beauty, and vigor of life underlie this complexity of 
evolution. Even without a central control, the 
processing of information happens in a distributed, 
self-organized, and optimal way. Equilibrium is 
maintained in nature through optimal searching, and 
this forms the basis of algorithm development for 
optimization problems in process engineering. 

Algorithms are iterative procedures for providing 
calculations or guidelines in a step-wise manner 
tailored for specific goals. Computational 
optimization aims to create algorithms to design, 
implement, and test for solving optimization 
problems, [106].  

Optimization works on various levels, including 
maximization of performance, efficiency, and profit, 
or minimization of energy and economics. If infinite 
time were available, any problem could be solved, 
but that is not the case with real situations. When 
time and resources are constrained, intelligent 
techniques are required. To address non-linear 
systems like the dark fermentation process in an 
ACPFR, computer simulation becomes an 
indispensable tool. 

 

3   Results and Discussions 
 

3.1 CFD Model for Bio-H2(g) Production 

from ACPFR 
Three-dimensional, unstable, incompressible, 
multiphase CFD tube reactor model to simulate bio-
H2(g) production from ACPFR; The Lagrangian-
Eulerian approximation was implemented with a 
two-stage model using the appropriate Reynolds 
stress closure solved by boundary conditions. The 
fluid flow was laminar according to the general 
criteria of Reynolds number (Re) at the inlet. The 
fluid properties were constant except for the 
formulation of the buoyancy term. The governing 
equations of continuity are Eq. (8) and momentum 
Eq. (9) can be written as follows: 
 

𝜕𝜌

𝜕𝑡
+  𝛻 . (𝜌�⃗�) = 0                        (8) 

 
𝜕

𝜕𝑡
(𝜌�⃗�) +  𝛻 . (𝜌�⃗��⃗�) =  − 𝛻𝑝 +  𝛻�⃗� +  𝜌�⃗� +  �⃗�   (9) 

 
where, ρ: is the volume average density, �⃗�: is the 
flow velocity, p: is the static pressure, �⃗� : is the 
stress tensor, ρ�⃗� represents the gravitational body 
force and �⃗� represents the external force.  

The continuity equation for the gas phase is 
shown as Eq. (10): 
 

𝜕𝜀𝑔𝜌𝑔

𝜕𝑡
+  𝛻 . (𝜀𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗⃗) −  𝑅𝑔                   (10) 

 
where, 𝜌𝑔: is the gas density, 𝑣𝑔⃗⃗⃗⃗⃗: is the gas velocity, 
𝑅𝑔: is the interphase mass transfer terms for the gas-
solid interface reactions, and 𝜀𝑔: is the volume 
fraction of the gas phase. 

The energy equation for a fluid region is given 
by Eq. (11): 
 
𝜕

𝜕𝑡
(𝑝ℎ) +  𝛻 . (𝜌ℎ�⃗�) =  𝛻 . [(𝑘 + 𝑘𝑙)𝛻𝑇] + 𝑆ℎ   (11) 

 
where, ρ, k, T and Sh: are the density, molecular 
conductivity, temperature and the volumetric heat 
source, respectively; 𝑣: is the flow velocity, while 
𝑘𝑙: is the heat conductivity due to turbulent 
transport. 

The momentum equation for the gas phase is Eq. 
(12): 
 
𝜕𝜀𝑔𝜌𝑔𝑣𝑔⃗⃗ ⃗⃗ ⃗

𝜕𝑡
+ 𝛻. (𝜀𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗⃗ 𝑣𝑔⃗⃗⃗⃗⃗) − 𝛻. 𝑆𝑔

⃗⃗⃗⃗⃗ + ∑ 𝑙 �⃗� 𝑠𝑚 +𝑀
𝑚=1

𝜀𝑔𝜌𝑔�⃗�                                                                 (12) 
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where, 𝑆𝑔
⃗⃗⃗⃗⃗: is the second order stress tensor of the 

gas, 𝑙: is the interaction force representing 
momentum transfer between the gas and solid 
phase, �⃗�: is the gravitational force, and sm: is the 
mass source. 

The gas species is Eq. (13): 
 
𝜕𝜌𝑔𝑌𝑖

𝜕𝑡
+ 𝛻. (𝜌𝑔𝑌𝑖𝑣𝑔⃗⃗⃗⃗⃗) − 𝛻. (𝜌𝑔𝐷𝑒𝑓𝑓𝛻𝑌𝑖) + 𝑆𝑝𝑖𝑌𝑖

+ 𝑆𝑌𝑖
   

                                                                           (13) 
 
where, Deff: is the effective mass diffusion 
coefficient, Yi: is the mass fraction of gas species, I, 
𝑆𝑝𝑖𝑌𝑖

: is the species source term from the particle, 
and 𝑆𝑌𝑖

: is the species source term from reactions, 
respectively. 

The liquid phase of continuity and momentum 
equations are Eq. (14) and Eq. (15): 
 

𝜕

𝜕𝑡
(𝛼𝑙𝜌𝑙) + 𝛻. (𝛼𝑙𝜌𝑙𝑣𝑙) = 0                      (14) 

 
𝜕

𝜕𝑡
(𝛼𝑙𝜌𝑙𝑣𝑙) + 𝛻. (𝛼𝑙𝜌𝑙𝑣𝑙𝑣𝑙) = −𝛼𝑙𝛻𝜌𝑙 −

𝛻. (𝛼𝑙𝑇𝑣 + 𝛼𝑙𝑇𝑅) + 𝛼𝑙𝜌𝑙𝑔 + 𝑆𝑀                (15) 
 
where, 𝛼𝑙: is the void fraction of the fluid phase, 𝜌𝑙: 
is the density of the fluid phase, 𝑣𝑙: is the velocity of 
the fluid phase, Tv: is the momentum viscous tensor, 
TR: is the Reynolds tensor and SM: is the momentum 
of the source term. 
 
3.2   Simulations of Numerical 
The Lagrangian–Eulerian approach is adopted to 
describe the biomass slurry flow behavior of the 
liquid–gas phase in laminar flow. Both phases were 
treated as a continuous process that intertwined and 
interacted with each other in the computational 
domain. The recirculation flow rate coefficient was 
0.32. Initial and boundary conditions are shown in 
Table 1. The operating temperature was between 30 
and 45oC. This long-term simulation lasted 40 days. 
The concentration of gaseous products (H2, CH4, 
etc.) and soluble metabolites such as VFAs (acetic 
acids, butyric acids, and propionic acids) were 
evaluated at specified time intervals throughout all 
operational phases. 

All terms of the governing equations are discrete 
using the second-order upwind scheme. The 
PRESTO (pressure staggering option) algorithm 
was used for the pressure-velocity coupling. The 
Green-Gauss cell-based method was used for the 
discretization of the gradient. Each case was 
simulated in ANSYS Fluent 2016 software 
(Cannonsburg, PA, USA) with the initialization 

procedure for simulations with second-order 
schemes. Convergence was evaluated based on the 
low mass flow rate imbalance below 1.0x105 kg/s. 
The second step was to generate an ANSYS Fluent 
(Cannonsburg, PA, USA) journal file to 
automatically run the flow case with the prescribed 
boundary conditions from the algorithm for the 
pressure, flow rate, and temperature. The numerical 
simulations were performed on an i7-3770 CPU 
3.70 GHz processer Intel computer with 16 GB 
RAM and a 64-bit operating system. 
 
3.3 The Effect of Increasing HRTs for Bio-

H2(g) Production at ACPFR   
Increasing HRTs values (1, 2, 4, 8, and 12 days) 
were examined in MSW with 
Thermoanaerobacterium thermosaccharolyticum 
SP-H2 methane bacteria during dark fermentation 
for bio-H2(g) production in ACPFR, at 37oC (Fig. 
4). 0.070, 0.109, 0.121 and 0.078 mg/l.h bio-H2(g) 
production rates were measured for 1, 2, 4, and 12 
days HRTs, respectively, in ACPFR after dark 
fermentation process, at 37oC (Figure 4, Appendix). 
The maximum 0.134 mg/l.h bio-H2(g) production 
rate was observed for 8 days HRTs in ACPFR after 
dark fermentation process at 37oC (Figure 4, 
Appendix). 

The bio-H2(g) yield in different fractions of 
ACPFR was 0.201-0.567 mg/h/l. ACPFR reactor 
temperature was 25oC and HRT was 2 hours. Bio-
H2(g) concentrations filled the packed bed 
differently. The fluid velocity profile is laminar, 
with maximum velocity occurring at the center of 
the ACPFR. It was observed that the temperature 
gradient occurred only at the ACPFR inlet due to 
heat transfer from the ACPFR wall. 

0.952, 1.067, 1.183 and 1.075 mol H2/mol 
substrate bio-H2(g) yields were obtained for 1, 2, 4 
and 12 days HRTs, respectively, in ACPFR after 
dark fermentation process, at 37oC (Fig. 5). The 
maximum 0.202 mol H2/mol substrate Bio-H2(g) 
yield was found for 8 days HRTs in ACPFR after 
dark fermentation process, at 37oC (Figure 5, 
Appendix). 

 
3.4 The Effect of Different pH Values for 

Bio-H2(g) Production at ACPFR   
Different pH values (4.0, 5.0, 6.0, 7.0 and 8.0) were 
examined in MSW with Thermoanaerobacterium 
thermosaccharolyticum SP-H2 methane bacteria 
during dark fermentation for bio-H2(g) production in 
ACPFR, at 37oC (Fig. 6). 0.94, 1.03, 0.85 and 0.69 
kmol/m3 bio-H2(g) production values were 
measured for pH=4.0, pH=5.0, pH=7.0, pH=8.0 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2023.20.33 Ruki̇ye Özteki̇n, Deli̇a Teresa Sponza

E-ISSN: 2224-2902 329 Volume 20, 2023



respectively, in ACPFR after dark fermentation 
process, at 37oC (Figure 6, Appendix). The 
maximum 1.22 kmol/m3 bio-H2(g) production value 
was found for pH=6.0 in ACPFR after dark 
fermentation process at 37oC (Figure 6, Appendix).  

The model of dark fermentation shows that the 
most optimal pH for the bio-H2(g) production 
process is ≈ pH=5.0-6.0. Lowering pH effectively 
reduces the process of methanogenesis, 
simultaneously increasing bio-H2(g) production. 
 
3.5 The Effect of Increasing Feed Rate as 

OLR for Bio-H2(g) Production at 

ACPFR   
Increasing feed rates as OLR values (0.5, 1, 2, 4, 8, 
and 10 g COD/l.d) were operated in MSW with 
Thermoanaerobacterium thermosaccharolyticum 
SP-H2 methane bacteria during dark fermentation 
for bio-H2(g) production in ACPFR, at 37oC (Figure 
7, Appendix). 1.36, 1.22, 1.14, 0.81 mol H2/mol 
substrate bio-H2(g) yields were observed for 1, 2, 4, 
8 and 10 g COD/l.d OLR, respectively, in ACPFR 
after dark fermentation process, at 37oC (Figure 7, 
Appendix). The maximum 1.61 mol H2/mol 
substrate bio-H2(g) yield was obtained for 0.5 g 
COD/l.d OLR in ACPFR after dark fermentation 
process at 37oC (Figure 7, Appendix). 

The increase of OLR up to 8 g COD/l.d has a 
negative effect on the biological H2(g) yield. This 
situation may be due to VFAs accumulation at 
higher OLR, in addition, the supersaturation of 
H2(g) in liquid phase may be related to the lower 
biogas production and relieving inhibition due to 
bio-H2(g) production, [107]. 
 
3.6 The Measurements of VFAs after Bio-

H2(g) Production at ACPFR   
Different VFAs (acetic acid, butyric acid, and 
propionic acid) were observed in MSW with 
Thermoanaerobacterium thermosaccharolyticum 
SP-H2 methane bacteria during dark fermentation in 
ACPFR, at 37oC (Figure 8, Appendix). 52%, 55%, 
58%, and 61% acetic acid proportions were 
measured for 1, 2, 4, and 8 days HRTs, respectively, 
in ACPFR after dark fermentation, at 37oC (Figure 
8, Appendix). 73% maximum acetic acid value was 
found for 12 days HRTs in ACPFR after dark 
fermentation process, at 37oC (Figure 8, Appendix). 

18%, 22%, 19%, and 4% butyric acid 
proportions were observed for 2, 4, 8, and 12 days 
HRTs, respectively, in ACPFR after dark 
fermentation process, at 37oC (Fig. 8). 25% 
maximum butyric acid value was obtained for 1 day 

HRTs in ACPFR after dark fermentation process, at 
37oC (Figure 8, Appendix). 

23%, 20%, 20%, and 22% propionic acid 
proportions were measured for 1, 4, 8, and 12 days 
HRTs in ACPFR after dark fermentation process, at 
37oC (Figure 8, Appendix). The maximum 27% 
propionic acid value was observed for 2 days HRTs 
in ACPFR after dark fermentation process, at 37oC 
(Figure 8, Appendix).  
 
3.7 The Comparison between Experimental 

Bio-H2(g) Production Yield and ANN 

Values in ACPFR 
A comparison between experimental values of bio-
H2(g) production yields and the predicted ANN 
values (Figure 9, Appendix). The value of R2 for the 
ANN model was found to be up to 0.98 (data not 
shown). 0.952, 1.067, 1.183, 1.202, and 1.075 mol 
H2/mol substrate bio-H2(g) production yields were 
measured for 1, 2, 4, 8, and 12 days HRTs, 
respectively, in ACPFR after dark fermentation 
process, at 37oC (Figure 9, Appendix). 

0.947, 1.056, 1.175, 1.199 and 1.071 mol H2/mol 
substrate ANN values were observed for 1, 2, 4, 8, 
and 12 days HRTs, respectively, from ANN 
simulation (Figure 9, Appendix). The ANN was an 
excellent model because of the lowest error and the 
highest coefficient values. The obtained results 
indicated that the simulation model based on the 
ANN is practical. 
 
 
4   Conclusions 
The maximum is 0.134 mg/l.h bio-H2(g) production 
rate was observed for 8 days HRTs in ACPFR after 
dark fermentation process at 37oC.  

The maximum 0.202 mol H2/mol substrate Bio-
H2(g) yield was found for 8 days HRTs in ACPFR 
after dark fermentation process, at 37oC 

The maximum 1.22 kmol/m3 bio-H2(g) 
production value was found for pH=6.0 in ACPFR 
after dark fermentation process at 37oC. The model 
of dark fermentation shows that the most optimal 
pH for the bio-H2(g) production process is ≈ 
pH=5.0-6.0. Lowering pH effectively reduces the 
process of methanogenesis, simultaneously 
increasing bio-H2(g) production. 

The maximum 1.61 mol H2/mol substrate bio-
H2(g) yield was obtained for 0.5 g COD/l.d OLR in 
ACPFR after the dark fermentation process at 37oC. 

73% maximum acetic acid value was found for 
12 days HRTs in ACPFR after dark fermentation 
process, at 37oC.  
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25% maximum butyric acid value was obtained 
for 1 day HRTs in ACPFR after dark fermentation 
process, at 37oC. 

The maximum 27% propionic acid value was 
observed for 2 days HRTs in ACPFR after dark 
fermentation process, at 37oC. 

Reduced H2(g) content is caused by the 
production of CO2(g) by bacteria species that do not 
produce bio-H2(g). Moreover, short HRT increases 
the rate of substrate conversion and generates higher 
substrate flow. For HRT equal to 1 h, acetic acid 
dominates because the productivity of metabolites 
decreases with decreasing HRT with decreasing 
substrate conversion. The acetic pathway is the most 
effective pathway in the dark fermentation process. 
The acetic fermentative pathway was the main route 
for bio-H2(g) production. The fermentative pathway 
implied hydrogen in reduced metabolites. The low 
biomass retention may contribute to the changing 
metabolic pathways of acetogenic bacteria. 

The use of validated CFD models to predict the 
multiphase flow, accounting for the interfacial 
momentum transfer between the three phases 
present in ACPFR is still a challenge. It is generally 
accepted that the ultimate goal of having validated 
multiphase CFD models is the coupling with 
biokinetics models for accurate modeling of the 
biogas generation within the reactors, once 
hydrodynamics and biochemical effects are 
interdependent in ACPFR. A functional coupled 
CFD-biokinetics model would allow for the scale-up 
of processes while correctly predicting the 
generation of biogas, and also taking into 
consideration realistic mixing conditions within the 
ACPFR. Some of the main challenges and hence 
opportunities for future work towards this end goal 
are listed hereafter. 

The first and more complex challenge is the 
inclusion to predict biomass degradation as well as 
biogas generation. For that to be possible, a three-
phase CFD model must be used to account for the 
biomass as well as the biogas inside the ACPFR. 

The granules’ apparent density is not fixed, as it 
is linked to the biogas generated. Including the 
effects of the granular apparent density changes due 
to bubble entrapment/attachment would lead to a 
better prediction of the movement of the granules in 
the sludge bed as well as the effects of granular 
wash-out. Therefore, leading to a more accurate 
prediction of loss of biomass. 

The established ANN-based model in this work 
indicates satisfactory and sound results with an R2 
value of more than 0.980 and an RMSE value lower 
than 0.25 for smhydrogen as a product from a 
gasification system connected with a H2(g) plant. 

Almost all of the inputs show a significant impact 
on the smhydrogen output. Significantly, gasifier 
temperature, SBR, moisture content, and H2(g) have 
the highest impacts on the smhydrogen with 
contributions of 19.85%, 17.29%, 15.41%, and 
11.53%, respectively. In addition, other variables of 
feed properties like carbon (C), oxygen (O), sulphur 
(S) and nitrogen (N) contribute in the range of 
1.31%–9.4% and proximate components like VM, 
FC and A contribute in the range of 3.21%–7.71% 
to the impact on smhydrogen. 

It also examined the adaptability, governing 
equations, processing time, flexibility, and 
applicability of artificial intelligence in dark 
fermentation process in an ACPFR for bio-H2(g) 
production. In addition to, this study established that 
artificial intelligence modeling has the potential to 
drastically reduce the process development time for 
dark fermentation process in an ACPFR at 
anaerobic conditions of substrates, although at 
varying degrees. 

The accurate results obtained for bio-H2(g) 
production through the gasification system 
connected to ACPFR reactors confirm the strong 
predictive ability of the developed ANN-based 
model by applying a backpropagation algorithm 
with a hidden layer of 13 neurons. The developed 
model has the ability to be used with a wide range 
of biomass. The results show the relative influence 
of various biomass properties and operating 
parameters on the bio-H2(g) output from the system. 
Finally, the developed ANN model can be 
practically used to screen suitable biomasses for 
H2(g) extraction based on a gasification system 
connected to W-G shifting and H2(g) recovery unit. 

Developing standardized and practical 
procedures for selecting algorithm and determining 
dataset size. Developing such procedures will 
require a comprehensive understandings of the 
impacts/effectiveness of different algorithms and 
training data samples to solve various bioenergy 
problems. More case studies for bioenergy systems 
with different biomass feedstock, conversion 
technologies, and products will be needed. 

CFD has proven useful in evaluating reactor 
performance; It allows local and instantaneous 
analysis of reaction rate; interphase hydrogen flows 
and other processes taking place within the tank. 
Numerical simulations were used to study bio-H2(g) 
production and removal at different times to 
evaluate the local behavior of the equipment and 
suggest geometric changes. Experimental results 
show that bio-H2(g) production significantly reduces 
production costs; It clearly shows the opportunity to 
be used as an environmentally friendly biofuel. 
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Process design, modeling, and simulation of bio-
H2(g) production in an ACPFR; It represents an 
essential tool for process optimization and scale-up. 
Bio-H2(g) process efficiency production depends 
significantly on the type of substrate from various 
sources. Furthermore, in the process of scaling up 
experimental parts to real application and 
commercialization; Different bioreactor 
configurations combined with kinetic models will be 
realized. 
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APPENDIX 

 
Fig. 1: Different ways of H2(g) production methods 

 

 
Fig. 2: The methods of bio-H2(g) production. 
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Fig. 3: Artificial intelligence categories and major techniques adopted from, [105]. 

 
 

Table 1. The parameters of initial and boundary conditions 
Parameters Values 

Inlet flow rate (l/h) 0.2 - 1.0 
HRTs (h) 1 - 12 
Biomass / substrate ratio 0.154 – 0.352 
Temperature (oC) 75 - 250 
The size of the solid biomass particles (m) 0.00224 – 0.01167 

 
 

 
Fig. 4: The effect of increasing HRTs for bio-H2(g) production rate at ACPFR, at 37oC. 
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Fig. 5: The effect of increasing HRTs for Bio-H2(g) production yields at ACPFR, at 37oC. 

 
 

 
Fig. 6: The Effect of different pH values for bio-H2(g) production at ACPFR, at 37oC. 
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Fig. 7: The effect of increasing feed rate as OLR for bio-H2(g) production at ACPFR, at 37oC. 

 
 

 
Fig. 8: The measurements of VFAs after bio-H2(g) production at ACPFR, at 37oC. 
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Fig. 9: The comparison between experimental bio-H2(g) production yields and ANN values in ACPFR, at 37oC. 
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