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Abstract: The work is aimed at creating a mathematical model of cryochemical synthesis of nanoforms of phar-
maceutical substances. The therapeutic efficacy of pharmaceutical substances largely depends on the size and
morphology of the particles. Reducing the particle size of pharmaceutical substances to nanoscale makes it pos-
sible to obtain highly effective drugs, which makes it possible to use smaller doses of drugs and, thus, reduce
side effects and toxicity. Cryochemical synthesis is one of the most powerful methods for obtaining nanoforms
of medicament. The method, which is completely new, is based on sublimation or evaporation of the initial phar-
maceutical substance under high vacuum conditions and the introduction of the resulting vapors into an inert gas
stream, followed by low-temperature condensation of the flow of molecules of the substance from the gas phase
on the cooled surface. The first step in the mathematical modeling of cryochemical synthesis processes is the
calculation of the temperature field in the carrier gas flow interacting with the cooled surface. For this purpose,
a stationary equation of thermal conductivity with mass transfer is used for the one-dimensional case. We prove
existence and uniqueness theorems of the solution. Analytical solutions of the equation for Dirichlet, Neumann
and Robin boundary conditions are found.
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1 Introduction
The dimension and morphology of medicinal sub-
stances particles effect the therapeutic efficiency of
different antibacterial, antiviral, anti-inflammatory,
anesthetic, analgesic, cardiological sedative and soo-
thing etc. medicaments, [1], [2].

These parameters can determine the qualities of
medications such as bioefficiency and bioavailability.
Lowering drug powders particles size down to nano
sizes allows us to obtain the medications with high
medical efficiency due to a huge total surface area
and permits to use lower medication doses and thus
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to decrease the side effects and toxicity, [3]. Such ap-
proach is based on the development of new methods
for obtaining of nanoforms of medical substances.

One of the powerful methods for production of
medications nanoforms is cryochemical modification
of drug substances. The method is based on the
sublimation or evaporation of drug substance under
high vacuum conditions and incorporation of the va-
pors obtained into the stream of inert gas followed by
the low temperature condensation of drug substance
molecular beam from gas phase on the cooled sup-
port surface. The cryochemical production of drug
nanoparticles with the definite size and morphology
and narrow size distribution led to the obtaining of
medications with desired properties and led to the cre-
ation of innovative cryochemical technology for drug
nanoforms production. The technological stages of
cryochemical modification process are following.

The initial drug substance was heated up to def-
inite temperature in the previously heated warm in-
ert gas flow. The molecular beam of drug sub-
stance vapor incorporated into the inert gas flow
and transferred to the vacuumed cryochemical rector
volume, supplied by cooled support. Reaching the
cooled surface of support drug substance molecular
beam rapidly cooled and high supersaturation of drug
molecular vapor in the gas phase was achieved. This
led to the conditions allowed rapid gas-phase nucle-
ation and formation of many nanocrystal germs - the
embryo of new nanophase of drug substance. Fur-
ther growth of nanocrystals obtained was limited by
rapid decreasing of drug substance molecules con-
centration in the gas phase near the cooled support
surface. These facts make it possible to obtain drug
particles of the size close to the dimension of crit-
ical crystal germ –about several dozen of nanome-
ters. The exact size of drug nanoparticles depends
on the ratio of the rates of nanocrystals nucleation
and nanocrystals growth. The behavior of these pro-
cesses is determined by several experimental parame-
ters: temperature of the initial drug substance evapo-
ration/sublimation, temperature of gas-phase, the gas-
carrier flow, the size and construction geometry of
the cryochemical reactor and the temperature of the
cooled support.

The goal of this work lies in the creation of mathe-
matical models describing the physico-chemical pro-
cesses occurring during a cryochemical modification
of drug substances and determination of the optimal
combination of technological (experimental) parame-
ters of these processes for two antibacterial drug sub-
stances, dioxidine and chloroamphenycol, as exam-
ples.

The work on mathematical description of cry-
ochemical modification of drug substances can be di-
vided in two main tasks:

- the description of the temperature field of the
molecular beam incorporated in the inert gas flow
and interacted with the cooled support surface;

- the creation of the kinetic model, a model that
takes into account the processes of drug nano-
phase nucleation and nanocrystals growth in the
gas phase in the given temperature field.

Nowadays the needs of modern medicine and
pharmacology to develop new drugs is determined by
the fact that well-known, long-established drugs do
not meet the requirements of the 21st century. How-
ever, the creation and testing of new molecular forms
of drugs (drug discovery) require not only huge ma-
terial costs, reaching several billion dollars, but also
long, reaching several years, time spent on various
clinical and preclinical tests, at the cost of which are
human lives.

From this point of view, another approach is more
promising to increase the effectiveness of known
medicines and improve methods of their targeted de-
livery (drug delivery). This can be achieved, for ex-
ample, by reducing the particle size of the active drug
up to the nanoscale state, [4], as well as by synthe-
sizing new or obtaining previously known thermody-
namically metastable polymorphic modifications in
the form of kinetically stable forms, [5].

Various physical and chemical methods are used
to produce nanoforms of drugs, [6], which are divided
into top-down and bottom-up methods, [7]–[9]. The
essence of top-down methods is to reduce the parti-
cle size by mechanical action on initially large parti-
cles of the source substance. In this direction, "dry"
and "wet" mechanical crushing is most often used in
special mills, [10], including using low temperatures
(cryo-milling), [11]. High-pressure homogenization
methods have also been developed, [12], techniques
using nanoporous membranes, [13], [14] and others.
On the contrary, the bottom-up approach consists in
converting the initial Pharmacopoeia drug into a ho-
mogeneous state, which is a collective of individual
molecules or small molecular associates, and creating
conditions for the subsequent Assembly of new phase
embryos, their growth and formation of nanoparticles,
[15]–[17]. Examples of such techniques are: solvent
replacement method, [18], synthesis using supercriti-
cal fluids, [19]–[21], techniques including freeze dry-
ing (spray drying), [22]–[24], cryochemical synthe-
sis, [25]–[27].

The size is of primary importance, since the size
parameters largely determine the bioavailability of the
drug, [28]. For example, reducing the particle size
of the antigonadotropic drug dibazole in an aqueous
suspension from 10 microns to 169 nm led to an in-
crease in absolute bioavailability from 5.1± 1.9% to
82.3± 10.1%, [29]. Increasing bioavailability allows
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to reduce the therapeutic dose and, consequently, pos-
sible side effects. The effect of particle size may
consist not only in changing the solubility and rate
of dissolution, but also in enabling the penetration of
drug particles through the body's biological barriers,
[30]–[31].

2 Problem Setting
Essentially, the technology of cryochemicalmodifica-
tion of pharmaceutical substances is as follows. The
initial substance is heated up to a certain temperature
in a stream of preheated carrier gas. The resulting va-
pors of the initial compound are captured by the car-
rier gas stream and carried through the nozzle into the
external free vacuum space. The scheme of the ex-
periment is shown in Figure 1 with

1 - heated copper screen (mixed molecular flow
shaper),

2 - cold carrier gas flow,

3 - copper screen heater,

4 - copper–constantan thermocouple junction for de-
termining and regulating the temperature of the
copper screen,

5 - initial substance in the container,

6 - nozzle of the mixed molecular flow shaper,

7 - heated flow a carrier gas carrying vapors of a
medicinal substance (mixed molecular stream),

8 - a cooled mixed molecular stream,

9 - a cold surface (when cooled with liquid nitrogen,
the surface temperature is about 77K (−196◦C),

10 - the flow front of the carrier gas,

11 - a layer of cryochemically modified substance.

Figure 1: Scheme of the experiment.

When the mixed molecular streammoves from the
nozzle of the shaper to the cold surface, it is sharply
cooled by the mechanism of thermal conductivity. As
a result, the gas phase turns out to be multiple super-
saturated relative to the equilibrium pressure of satu-
rated vapors of the compound and conditions are be-
ing created in the system for rapid gas-phase nucle-
ation. In turn, the high rate of nucleation quickly im-
poverishes the gas phase with the vapors of the com-
pound, which limits the further growth of crystallites.
Thus, it is possible to obtain crystallites with sizes
close to the sizes of critical nuclei, which are several
tens of nanometers for organic compounds. The task
to describe mathematically the process of cryochem-
ical modification of pharmaceutical substances is di-
vided into two parts:

- calculation of the temperature field in the stream
of the carrier gas interacting with the cooled sur-
face;

- construction of a kinetic model that takes into ac-
count the processes of nucleation and growth of
nanoparticles in the gas phase in a given temper-
ature field.

To solve the first problem, we need tomake a num-
ber of assumptions:

- the mixed molecular stream does not dissipate
when moving from the nozzle of the molecular
stream shaper to the cold surface,

- the mixedmolecular stream has the same temper-
ature throughout the cross section,

- the temperature of the mixed molecular stream is
equal to the temperature the cooled surface when
reaching it,

- thermophysical characteristics of the carrier gas
do not change when the molecules and nanoparti-
cles of the pharmaceutical substance are included
in it.

Under these assumptions, the thermal conductivity
equation with mass transfer for the one–dimensional
case can be used to calculate the temperature field cre-
ated by the carrier gas stream:

∂T

∂t
= V

∂T

∂x
− µ

ρCV
· ∂

∂x

(
λ
∂T

∂x

)
. (1)

Here ρ, µ, λ are the density
(
kg/m3

)
, molecular

weight (kg/mol), thermal conductivity (W/(m · K))
of the carrier gas, respectively, CV is the molar
heat capacity of the carrier gas at constant volume
(J/(mol · K)), V is the linear velocity of the carrier-
gas flow front (m/s).
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In stationary mode we have ∂T/∂t = 0 and equa-
tion (1) reduces to the ordinary differential equation

dT

dx
− µ

ρV CV
· d

dx

(
λ
dT

dx

)
= 0. (2)

The flow rate of the carrier gas is controlled during
the experiment with the help of an external device (an
industrial gas pipeline with accuracy, according to its
passport data, not worse than 5%). The regulated gas
stream of the carrier, passing through a heated copper
screen (a mixed molecular flow shaper) of cylindrical
shape, heats up to a certain temperature, captures the
vapors of the initial substance and takes them out into
the vacuum space. Let the nozzle area of the mixed
molecular flow shaper be S(m2) Then the molar flow
rate of the carrier gas is dN/dt(mol/s) and can be
written as

Ṅ =
dN

dt
=

ρV S

µ
.

In this case, the ratio of the molar flow rate of the
carrier gas dN/dt (mol/s) to the nozzle area of the
mixed molecular flow shaper, that is, the density of
the carrier gas flow dn/dt

(
mol/(m2 · s)

)
can be rep-

resented as

ṅ =
dn

dt
=

Ṅ

S
=

ρV

µ
.

Now equation (2) can be written as

dT

dx
− d

dx

(
λ

CV ṅ
· dT
dx

)
= 0. (3)

It can be solved analytically, taking into account
the dependence of the thermal conductivity of the car-
rier gas on the temperature. An interesting fact is that
the heat capacity of gases in a wide range of pressures
practically does not depend on the pressure. This cir-
cumstance received its explanation from the molec-
ular kinetic theory. A large number of gases, such
as nitrogen, helium, argon, carbon dioxide, etc., have
the square-root dependence of the thermal conductiv-
ity on the temperature expressed by the approximate
formula

λ =
ik

3π3/2d2

√
RT

µ
, (4)

where

i is the sum of translational and rotational degrees
of freedom of molecules (5 for diatomic gases, 3
for monatomic ones),

k is the Boltzmann constant,

µ is the molar mass,

T is the absolute temperature,

d is the effective diameter of molecules,

R is the universal gas constant.

Representing λ in (4) as α
√
T with the appropriate

coefficient α, we obtain

λ

CV ṅ
=

α
√
T

CV ṅ
= b

√
T with b =

α

CV ṅ
.

Now equation (3) can be represented as

d

dx

(
T − b

√
T
dT

dx

)
= 0, b > 0. (5)

3 General Decreasing Solutions
We study the dependence of the temperature on the
distance from the nozzle under three types of bound-
ary conditions, namely the Dirichlet, Neumann, and
Robin ones.

The Dirichlet condition specifies the temperature
value at the boundary.

The Neumann condition specifies the boundary
value for the derivative of the temperature.

In the Robin condition, we specify a linear combi-
nation of the temperature value and the derivative of
the temperature at the boundary.

The coefficient of the temperature value in the
Robin condition is the Biot number (the ratio of the
conductive thermal resistance inside the object to the
convective resistance at the surface of the object).

Note that similar problems were considered for a
heat process in [32].

Theorem 1. Each positive solution T to equation (5)
is either constant or strictly monotonic. Each strictly
decreasing solution has the form

T (x) = c2Θ

(
x− x∗

bc

)2

, (6)

where x∗ and c > 0 are arbitrary constants while Θ
is a decreasing function (−∞; 0) → (0; 1) implicitly
defined by

x = 2Θ(x) + ln
1−Θ(x)

1 + Θ(x)
. (7)

The left-hand side of (5) contains an expression
in parentheses, which must be constant and, for the
solution defined by (6), equals c2.

If maximally extended, such T is defined on the
interval (−∞;x∗) and satisfies

T (x) → c2 and T ′(x) → 0 as x → −∞, (8)
T (x) → 0 and T ′(x) → −∞ as x → x∗. (9)
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Proof. First, by the substitution T = Z2 with Z > 0
we convert equation (5) into the form(

Z2 − 2bZ2Z ′)′ = 0, (10)

which immediately yields

Z2 − 2bZ2 Z ′ = C = const

with further transformations depending on sgnC.
If C = 0, then either Z ≡ 0 or 1 = 2bZ ′, which

entails that Z ′ > 0 and Z is strictly increasing.
If C = −c2 < 0, then we obtain Z2 + c2 =

2bZ2Z ′. This shows again that Z ′ > 0.
Finally, if C = c2 > 0 with c > 0, then we obtain

Z2 − c2 = 2bZ2Z ′. (11)

Now, if Z(x) = c at some point x, then, by the
uniqueness theorem, Z must coincide with the con-
stant solution Z ≡ c. If not, then either Z > c on the
whole domain or Z < c. We reject the first case (with
Z ′ > 0 due to (11)) as well as the previous constant
one. In the second case we put

Z(x) = c z
( x

bc

)
, 0 < z < 1,

which converts (11) into

z2 − 1 = 2z2z′. (12)

This can be written as

1 =
2z2z′

z2 − 1
=

(
2 +

2

z2 − 1

)
z′,

whence, for 0 < z < 1,

x− a =

∫ z(x)

0

(
2 +

2

ζ2 − 1

)
dζ

=2z(x) + ln
1− z(x)

1 + z(x)

with some a. We have a general family of implicitly
defined strictly decreasing solutions to (12) satisfying
0 < z < 1. One of them, with a = 0, is just Θ
defined by (7). All others can be obtained from Θ by
a horizontal shift. Thus, we have (6).

It follows from (7) that

Θ(x) → 0 as x → 0,

Θ(x) → 1 as x → −∞.

Then, using (12), we obtain

Θ′(x) → −∞ as x → 0,

Θ′(x) → 0 as x → −∞.

These limits, together with (6), produce the first three
limits in (8) and (9). For the fourth one, we use (11)
to obtain

T ′ = 2ZZ ′ =
Z2 − c2

2bZ
=

T − c2

2b
√
T

→ −∞ asT → 0.

4 On Existence and Uniqueness of
Solutions

Theorem 2. For any constants x0 < x1 and T1 >
T0 > 0, equation (5) has a unique solution T defined
on [x0;x1] and satisfying the conditions

T (x0) = T0, T (x1) = T1. (13)

Proof. The boundary conditions show that, according
to Theorem 1, the solution T must strictly decrease
and therefore have the form given by (6) and (7). So,
the boundary conditions become√

Tj

c
= Θ

(
xj − x∗

bc

)
, j ∈ {0, 1},

or, by using (7),

xj − x∗

bc
= 2

√
Tj

c
+ln

1−
√

Tj

c

1 +

√
Tj

c

, j ∈ {0, 1}. (14)

Thus, we have to prove the existence and uniqueness
of a pair (x∗, c) satisfying (14). Putting

q :=

√
T1

T0
∈ (0; 1) and k :=

√
T0

c
∈ (0; 1), (15)

we write the difference of the two equations (14) as

k(x1 − x0)

b
√
T0

= 2k(q − 1) + ln
(1− qk)(1 + k)

(1 + qk)(1− k)

or
x1 − x0

2b
√
T0

= Fq(k) (16)

with

Fq(k) := f(k)− qf (qk) , (17)

f(k) :=
1

2k
ln

1 + k

1− k
− 1. (18)

Lemma 3. For each A > 0 and q ∈ (0; 1), there
exists a unique k ∈ (0; 1) such that Fq(k) = A with
Fq defined by (17) and (18). The mapping (A, q) 7→ k
is a C1 function (0;+∞) × (0; 1) → (0; 1) strictly
increasing with respect to both A and q.
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Proof. Note that

f(k) =
ln(1 + k)

2k
− ln(1− k)

2k
− 1,

whence f(k) → 0 as k → 0 (by L'Hôpital's rule) and
f(k) → +∞ as k → 1.

Now we study the derivative of f by using its Tay-
lor series uniformly converging on any subsegment of
the interval (0; 1).

f ′(k) =
1

2k(1 + k)
− ln(1 + k)

2k2

+
1

2k(1− k)
+

ln(1− k)

2k2

=
1

k(1− k2)
− ln(1 + k)

2k2
+

ln(1− k)

2k2

=
1

k

∞∑
n=0

k2n +
1

2k2

∞∑
n=1

((−1)n − 1)kn

n

=
1

k

∞∑
n=0

k2n − 1

k2

∞∑
m=0

k2m+1

2m+ 1

=
1

k

∞∑
n=0

(
1− 1

2n+ 1

)
k2n =

1

k

∞∑
n=1

2n

2n+ 1
k2n

=

∞∑
n=1

2n

2n+ 1
k2n−1 > 0,

whence f(k) > 0 as well.

Further, f ′′(k) =

∞∑
n=1

2n(2n− 1)

2n+ 1
k2n−2 > 0,

whence f ′ is strictly increasing and

dFq

dk
(k) = f ′(k)− q2f ′ (qk) > 0.

So,Fq is strictly increasing in k,Fq(k) → 0 as k → 0,
and

Fq(k) = (1− q)f(k) + q
(
f(k)− f(qk)

)
> (1− q)f(k) → +∞ as k → 1.

Therefore, Fq must attain, exactly once, each A > 0,
which proves the first part of Lemma 3.

The second part follows immediately from the im-
plicit function theorem and the evident inequalities

∂(Fq(k)−A)

∂A
= −1 < 0,

∂(Fq(k)−A)

∂q
= −f(qk)− qkf ′(qk) < 0.

We return to proving Theorem 2. Having the
unique value of k satisfying (16), we obtain, from (14)
and (15), the unique values

c =

√
T0

k
>

√
T0 and

x∗ = x1 − 2b
√

T1 − bc ln
c−

√
T1

c+
√
T1

to satisfy (14). This completes the proof of Theo-
rem 2.

Nowwe are going to prove two theorems concern-
ing other boundary conditions for equation (5).

Theorem 4. For any real constants x0 < x1, T0 > 0,
and U1 < 0, equation (5) has a unique solution T
defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T ′(x1) = U1. (19)

Theorem 5. For any real constants x0 < x1, T0 > 0,
and U1 < 0, equation (5) has a unique solution T
defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T ′(x1) = U1T (x1). (20)

Proof. We try to prove the existence and uniqueness
of a constant T1 ∈ (0;T0) such that the unique solu-
tion T existing according to Theorem 2 satisfies the
boundary conditions of the related theorem.

According to Theorem 1, T − b
√
TT ′ = c2,

whence, using notation (15),

T ′(x1) =
T (x1)− c2

b
√

T (x1)
=

q2T0 − T0/k
2

bq
√
T0

=
k2q2 − 1

k2q
·
√
T0

b
,

T ′(x1)

T (x1)
=

k2q2 − 1

k2q3
· 1

b
√
T0

,

where k ∈ (0; 1) is chosen, depending on q ∈ (0; 1),
to provide the boundary conditions (13) for the solu-
tion T defined by (6).

It follows from Lemma 3 that k ∈ (0; 1) strictly
increases with respect to q ∈ (0; 1). So, in both
right-hand sides of the last equations, the numerator
k2q2 − 1 is negative and strictly increases in q, while
its absolute value decreases. The denominators are
positive and also strictly increase. Thus, the fractions
are negative with strictly decreasing absolute values.

Now consider their limits at 0 and 1.
Both fractions tend to−∞ as q → 0.As for q → 1,

there must exist k1 = lim
q→1

k ∈ (0; 1].
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If k1 < 1, then it follows from (16)–(18) that

0 <
x1 − x0

2b
√
T0

= F1(k1) = f(k1)− 1 · f(1 · k1) = 0.

This contradiction shows that k1 = 1. (For this k1, no
contradiction arises because f(k) → +∞ as k → 1.)
Hence

T ′(x1) → 0 and
T ′(x1)

T (x1)
→ 0 as q → 1.

So, both expressions strictly increase from−∞ to
0 as q increases from 0 to 1 (i. e. as T1 increases from
0 to T0). Therefore, they both must attain, exactly
once, each negative value, and this proves Theorems
4 and 5.

5 Illustrations
This section presents graphs of solutions to equation
(5) with various boundary conditions and various val-
ues of the constant b.

x, mm0 1 2 3 4 5 6 7 8 9

T, K

100

200

300

400

500

He
CH4

CO2

Figure 2: Solutions to a Dirichlet problem for various
gases.

Fig. 2 shows the solutions to (5) with the bound-
ary conditions T (0) = 473K, T (0.01) = 77K for
various values of the constant b corresponding to var-
ious gases and the same flow rate Ṅ = 10 dm3/h (i. e.
1.156 · 10−4mol/s). Here b is equal to 0.002991 for
He, 0.00063456 for CH4, and 0.000374 for CO2 (all
in m/

√
K).

Fig. 3 also shows dependence of solutions to (5)
on the constant b related to various values of the flow
rate Ṅ and the same gas CO2. Here the value of b
changes from 0.000374 (the topmost graph) to 0.0374
(the lowest one) m/

√
K, which correspond to the mo-

lar flow rates 1.156 · 10−4 and 1.156 · 10−6mol/s.
Boundary conditions are the same as in Fig. 2.

Fig. 4 shows the solutions to (5) with the boundary
conditions T (0) = 473K, T ′(0.01) = −105K/m
for various values of Ṅ and the same gas N2 with b
changing from 0.000393 to 0.0393m/

√
K.

x, mm0 1 2 3 4 5 6 7 8 9

T, K

100

200

300

400

500

0.1
1
2
5

10

N
.

CO2

Figure 3: Solutions to a Dirichlet problem for various
flow rates Ṅ .

x, mm0 1 2 3 4 5 6 7 8 9

T, K

100

200

300

400

500

0.1
1
2
5

10

N
.

N2

Figure 4: Solutions with a Neumann right-end bound-
ary condition for various Ṅ .

Fig. 5 shows the solutions to equation (5) satis-
fying the boundary conditions T (0) = 473K and
T ′(0.01)/T (0.01) = −103m−1 for the same gas CO
and various values of Ṅ . Here the constant b changes
from 0.0004169 to 0.04169m/

√
K.

Fig. 6 shows the solutions to equation (5) sat-
isfying the boundary conditions T (0) = 473K,
T ′(0.01) = (−2,−4,−8) · 104K/m for the same
gas CH4 and Ṅ = 10 dm3/h. Thus, here we have
b = 0.00063456m/

√
K.

Fig. 7 shows the solutions to equation (5) satis-
fying the boundary conditions T (0) = 473K and
T ′(0.01)/T (0.01) equal to −102,−103,−104m−1

for the same gas Ar, the flow rate Ṅ = 10 dm3/h,
and therefore the same b = 0.0004506m/

√
K.

6 Conslusions
We have analysed dependence of the temperature pro-
file on the distance from the cooled surface and com-
pared the results for various carrier gases such as
nitrogen, helium, argon, methane, carbon monoxide
and dioxide.

The above calculations show that

1) an increase in the thermal conductivity of the car-
rier gas, other parameters being constant, leads
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Figure 5: Solutions with a Robin right-end boundary
condition for various Ṅ .
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Figure 6: Solutions to Neumann problems with vari-
ous T ′

1.

to more uniform temperature distribution in the
stationary temperature field formed in the space
between the nozzle of the mixed molecular flow
and the cooled surface;

2) an increase in the flow rate of the carrier gas,
other parameters being constant, leads to an in-
crease of uneven temperature distribution in the
formed stationary temperature field.

Taking into account the identified patterns will
contribute, in the future, to the choice of optimal
regimes for cryochemical synthesis of nanoforms
of pharmaceuticals substances with specified dimen-
sional characteristics.

This is the first step in a complex investigation of
the role of various parameters in cryochemical syn-
thesis of various drugs.

The results obtained are confirmed by an experi-
ment on the formation of nanoforms for the antibacte-
rial drug dioxidine with the nitrogen as an inert carrier
gas.

Remark 1. The authors' results connected with math-
ematical modeling in other physical processes can be
found in [33]–[36].
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Figure 7: Solutions to Robin problems with various
T ′
1/T1.
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