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Abstract: - This research presents a novel approach using machine learning models with the quantile loss 
function to predict blood flow characteristics, specifically the wall shear stress, in the common carotid artery 
and its bifurcated segments, the internal and external carotid arteries. The dataset for training these models was 
generated through a numerical model developed for the idealized artery. This model represented blood as an 
incompressible Newtonian fluid and the artery as an elastic pipe with varying material properties, simulating 
different flow conditions. The findings of this study revealed that the quantile linear regression model is the 
most reliable in predicting the target variable, i.e., wall shear stress in the common carotid artery. On the other 
hand, the quantile gradient boosting algorithm demonstrated exceptional performance in predicting wall shear 
stress in the bifurcated segments. Through this study, the blood velocity and the wall shear stress in the 
common carotid artery are identified as the most important features affecting the wall shear stress in the 
internal carotid artery, while the blood velocity and the blood pressure affected the same in the external carotid 
artery the most. Furthermore, for a given record of the feature dataset, the study revealed the efficacy of the 
quantile linear-regression model in capturing a possible prevalence of atherosclerotic conditions in the internal 
carotid artery. But then, it was not very successful in identifying the same in the external carotid artery. 
However, due to the use of idealized conditions in the study, these findings need comprehensive clinical 
verification. 
 
Key-Words: -  Machine-learning algorithms, Quantile loss function, Boosting algorithms, Numerical model, 

Blood flow, Carotid artery, Wall Shear Stress. 
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Abbreviations/Acronyms: 
AI: Artificial Intelligence 
CCA: Common Carotid Artery 
D: Blood Density  
ECA: External Carotid Artery 
ICA: Internal Carotid Artery 
InPr: Inlet Pressure (Blood pressure at the CCA 
entrance) 
MAE: Mean Absolute Error 
MAPE: Mean Absolute Percentage Error 
ML: Machine Learning 
MSE: Mean Squared Error 
Out1Vel: Blood velocity at outlet1, i.e., ICA  
Out2Vel: Blood velocity at outlet2, i.e., ECA  
PARDISO: Parallel Direct Sparse Solver 
RFR: Random Forest Regressor 
RMSE: Root Mean Square Error 
SVR: Support Vector Regressor 
Vel_CCA: Blood velocity in CCA 
Vel_ECA: Blood velocity in ECA 
Vel_ICA: Blood velocity in ICA 
VIF: Variance Inflation Factor 
Vis: Blood viscosity 
WSS: Wall Shear Stress 
WSS_CCA:  Wall Shear Stress in CCA 
WSS_ECA:  Wall Shear Stress in ECA 
WSS_ICA:  Wall Shear Stress in ICA    
          
             
1 Introduction 
The prediction of carotid artery blood flow has 
garnered significant attention in the medical 
community owing to its relevance in 
cerebrovascular diseases and neurological disorders. 
Conventional regression models for estimating 
blood flow have shown limitations, as they neglect 
outliers and heteroscedasticity, leading to 
suboptimal predictions. However, recent progress in 
machine learning techniques utilizing the quantile 
loss function presents promising avenues to 
overcome these challenges and improve prediction 
accuracy.  

A comprehensive review of the existing 
literature reflecting the current state of the art was 
undertaken and detailed as follows:  [1], explored 
the potential of artificial intelligence (AI) in 
predicting cardiovascular disease (CVD). Their 
study summarizes machine learning (ML) 
applications in CVD, including direct prediction 
based on risk factors and medical imaging and ML-
based hemodynamics for indirect CVD assessment. 
Their review discusses research challenges and 
envisions future AI technology development in 
cardiovascular diseases. The study, [2], proposed a 
simulation-based framework to achieve Deep 

Learning (DL) based hemodynamic prediction of 
healthy and diseased carotid arteries. The 
methodology demonstrated accurate DL predictions 
by utilizing high-quality point cloud datasets and an 
advanced DL network, aligning well with CFD 
simulations while significantly reducing 
computational costs.  

The review of the work by, [3], highlights the 
application of AI in cardiovascular imaging, 
focusing on coronary atherosclerotic plaque 
analysis. It encompasses various areas such as 
plaque component analysis, identification of 
vulnerable plaque, myocardial function detection, 
and risk prediction. The review discusses current 
evidence, strengths, limitations, future directions for 
AI in cardiac imaging of atherosclerotic plaques, 
and insights from other fields. The study, [4], 
presented a valuable guide for readers approaching 
AI algorithms in carotid atherosclerosis. Their study 
revealed that the application of AI using US 
(UltraSound), CTA (Computed Tomography 
Angiography), and MRI (Magnetic Resonance 
Imaging) would offer a new strategy for rapid and 
objective diagnosis. However, limitations such as 
small cohorts, noise, and difficulties in model 
comprehension might hinder widespread clinical 
use. They suggested the necessity of multi-center 
studies to validate AI's role in symptomatic carotid 
plaque detection, especially when considering MRI 
techniques. 

The study, [5], developed a machine-learning 
model to predict the blood flow waveform in the 
internal carotid artery (ICA). The model was trained 
on patient data, relying on state-of-the-art Doppler 
manometry measurements for obtaining accurate 
results. The study, [6], used machine learning 
models to detect arterial disease, including stenoses 
and aneurysms, from peripheral measurements of 
pressure and flow rates across the network. The 
study, [7], proposed a model to elucidate individual 
patients' cerebral circulation using blood flow 
simulation incorporating clinical data. Their 
approach enabled obtaining the probability of 
different outputs, considering patient condition 
uncertainty. By combining machine learning with 
blood flow simulation, predictions were performed 
43,000 times faster on a desktop computer, allowing 
real-time surgical risk assessment. Their prediction 
results revealed the relationship between collateral 
circulation and life-threatening surgical outcomes. 

The study, [8], investigated and compared the 
performances of different ML techniques for 
detecting the presence of a carotid disease by 
analyzing the Heart Rate Variability parameters of 
opportune electrocardiographic signals selected 
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from the available databases. The study, [9], 
introduced a 50-layer residual network as a feature 
generator for identifying carotid stenosis. The Deep 
convolutional neural networks classified 
sonographic images into four categories based on 
the features related to the ICA blood flow rate. The 
study, [10], modeled high-fidelity blood flow in 
understanding CVD. The potential for data-driven 
patient-specific blood flow modeling in 
computational and experimental cardiovascular 
research has been highlighted with an emphasis on 
the challenges and opportunities in the field. The 
study, [11], combined both statistical and machine 
learning methods to reduce information redundancy. 
By this, they could enhance accuracy in disease 
diagnosis. Their study developed Graph theory-
inspired ML models to identify significant features 
for prediction models.  

Motivated by the capability of ML algorithms to 
gain valuable insights from data, this research 
endeavors to employ these algorithms on medical 
datasets generated from the simulations of the 
numerical model for the human carotid artery 
developed in this study. The model used an 
incompressible Newtonian fluid representation for 
blood and considered the artery as an elastic pipe, 
allowing for altering its material properties during 
simulations facilitated by the COMSOL software. 
Machine-learning regression models were trained 
following the development of the numerical model 
for an idealized human carotid artery and data 
generation. 

The structure of this article is as follows: 
Section 2 introduces the problem identification and 
research objectives. In Section 3, a comprehensive 
explanation of the adopted methodology is provided. 
Sections 4 and 5 present the research results, along 
with their interpretation. Finally, Section 6 presents 
the conclusive findings of the research, highlighting 
its limitations, practical applications, and potential 
future research directions in the field. 
 
 
2 Problem Formulation 
While most of the studies in the field of medical 
data analysis concentrated on medical image 
classification or hemodynamic prediction by 
utilizing available clinical datasets on the carotid 
artery, this work takes a different approach. It 
integrates Computational Fluid Dynamics (CFD) 
with data analysis, aiming to analyze datasets 
generated from the developed models simulating the 
carotid artery under various anatomical and 
physiological conditions. The primary focus of this 
study is on translational research, aiming to predict 

blood flow characteristics accurately while avoiding 
the need for invasive or costly methods such as MRI 
and Ultrasound. By addressing this, the study aims 
to fulfill the requirement for non-invasive 
techniques in evaluating vascular changes in the 
carotid artery, as highlighted in the work by, [12]. 

A quantitative and experimental approach is 
being proposed, with computer-based simulations 
utilized to achieve this goal. The research question 
is defined as descriptive and seeks an answer to the 
following: 
 

Is it feasible for Machine Learning models trained 

on simulated data to accurately detect the presence 

of atherosclerosis in the carotid artery? 

 

2.1 Research Objectives  
Carotid artery blood flow is paramount in 
maintaining cerebral perfusion and brain health. 
Accurate carotid artery blood flow prediction is 
valuable in understanding cerebrovascular diseases 
and guiding clinical interventions. Therefore, the 
primary focus of this research is to explore the 
efficacy of machine learning models in predicting 
carotid artery blood flow and to assess the 
effectiveness of the quantile loss function in 
improving prediction accuracy and robustness.  
 
1. To develop and validate a numerical model for 

the human carotid artery. 
 Simulate the model for both healthy and 

unhealthy conditions.  
 Compute the wall shear stress (WSS) and 

compare their values with the clinical 
results. 
 

2. To estimate WSS in the carotid artery using ML 
algorithms. 
 Develop ML models that best fit the data. 
 Compute the metrics and quantile loss 

function on the train and test datasets to 
identify the most reliable ML prediction 
model. 
 

3. Since WSS acts as an initial and independent 
indicator of atherosclerotic changes, [12], the 
goal is to forecast these changes based on the 
calculated estimates of WSS. 
 

Exposures and Outcomes: 

The independent variables in this study encompass 
fluid-related parameters such as blood density and 
viscosity, flow-related parameters like the inlet 
pressure and outlets' blood velocities, and material 
parameters such as the artery's density, Bulk 
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Modulus, and Poisson ratio. The outcome to be 
measured is the WSS in all three arterial segments. 
 
 
3 Methodology 
This section presents a detailed, step-by-step 
procedure from data collection to data analysis 
designed to accomplish the proposed objectives. 
 
3.1 Prepare Data Collection Instrument 
The carotid artery is a vital supplier of blood to the 
face, neck, and brain. Its main vessel, the Common 
Carotid Artery (CCA), undergoes bifurcation into 
the External Carotid Artery (ECA) and Internal 
Carotid Artery (ICA), as depicted in Figure 1. The 
ECA primarily supplies blood to the face and neck, 
whereas the ICA delivers blood to the brain. 

 
Fig. 1: Anatomy of Carotid Artery 

 
This study has formulated a numerical model to 

accurately depict the blood flow dynamics in the 
carotid artery. The model incorporates essential 
elements of the blood circulatory system, where the 
blood is represented as a Newtonian fluid, and the 
artery is treated as an elastic circular pipe with 
bifurcation. This model was implemented using the 
COMSOL Multiphysics software, enabling the 
simulation of the blood flow problem within an 
idealized artery, as illustrated in Figure 2. Data 
collection has relied on clinical data about the 
artery's anatomy and the physiological behavior of 
blood flow to ensure realism. 

 

 
Fig. 2: Geometry of the Artery in COMSOL 

The current work focused on the stationary 
Navier-Stokes equation and implemented it using 
the laminar flow interface. Viscosity and density 
values were determined based on available human 
blood data to ensure accuracy. The elastic behavior 
of the artery was characterized using anatomical 
data specific to the carotid artery. 

The P1-P1 linear finite element Galerkin 
method was chosen for the discretization process for 
effectively handling velocity and pressure variables. 
To create a physics-based mesh, 40637 triangular 
elements and 4192 quadrilateral elements were 
employed, resulting in 76758 degrees of freedom. 
Among these, 51172 degrees of freedom were 
utilized to determine the velocity, while the 
remaining 25586 degrees of freedom were used for 
the pressure variables. For more detailed mesh 
parameters, please refer to        Table 1. 

 
Table 1. Parameters of the Extremely Fine Mesh 

Number of elements 44829 
Number of vertex elements 17 
Number of edge elements 2466 
Average element quality 0.8004 
Minimum element quality 0.08677 
Mesh area 15.76cm2 

 
Newton's method has been employed to tackle 

the resulting non-linear flow problem, which proved 
effective in finding a solution. Zero initial and no-
slip boundary conditions were enforced on the 
boundary walls, along with no backflow 
phenomena. The PARDISO solver has been used to 
efficiently solve the system, greatly facilitating the 
computation process and leading to reliable results. 
Additionally, we activated the stability settings 
within the software to guarantee the numerical 
stability of the generated Galerkin finite element 
model. Furthermore, convergence of solutions for a 
given set of model parameters was ensured 
throughout the data collection process. 

Table 2 presents the input parameters used in 
the COMSOL model builder to simulate the human 
carotid arterial blood flow, [13], [14], [15], [16], 
[17]. Values corresponding to human blood 
characteristics are assigned to the model parameters, 
density, and viscosity to represent blood as a 
Newtonian fluid. Regarding the elastic properties of 
the carotid artery, the density, bulk modulus, and 
Poisson ratio are assigned values relevant to the 
human carotid artery, as indicated in Table 2. The 
dimensions of the artery, including length, diameter, 
and other relevant measurements, are derived from 
information provided in the literature.  
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Furthermore, Table 2 and Table 3 provide 
essential ranges for the inlet pressure and output 
velocities necessary for generating realistic blood 
flow patterns in the simulation. These ranges are 
crucial in achieving biologically meaningful results 
in the model. 

Tables 3 (a) and (b) present the data necessary 
for conducting simulations. The inlet pressure is set 
to 100, 120, and 130 mm Hg. As for the blood 
velocities at outlet 1 (ICA) and outlet 2 (ECA), they 
are assigned values within the specified range 
(normal or healthy), as indicated in the eighth row 
(third and fourth columns) of Table 2. 

 
Table 2. Data on Characteristics of Blood and 

Carotid Artery, [13], [14], [15], [16], [17] 
Fluid (blood) 

Properties 
Artery Properties 

Density 
(kg/m3) 1060  Density 960  

Viscosity (Pa. 
s) 0.004  

Bulk 
Modulus 
(N/m2) 

1.2 × 108  

  Poisson 
Ratio 0.45  

ARTERY CCA ICA ECA 

Diameter 
(mm) 

6.10 ± 
0.8  4.8 ± 0.3  3.0 ± 0.6  

Length (cm) 13.6 ± 
1.2  8.6 ± 1.4  8.6 ± 1.4  

Velocity 
(m/sec)  - 0.187- 

0.295 
0.121-
0.185 

Bifurcation Angle (36 ±11)º 
 

Table 3(a). Dimensions of the Simulated Artery 
ARTERY CCA ICA ECA 

Diameter (mm) 6.2 4.8   3.0   
Length (cm) 14.2  9.0  9.0 

 
Table 3(b). Data for running simulations 

 
3.2 Review the Collected Data for Quality and 

Completeness 
The data types and counts of the numerical model 
parameters in segment CCA are summarized in    
Table 4. It is evident from the table that there is no 

missing data in this segment. Similar findings were 
observed in the other two segments, ECA and ICA. 
 
Exposures: 

Vis: Blood viscosity (Pa.s) 
D: Blood Density (kg/m3) 
InPr: Blood pressure at the CCA entrance (mm Hg) 
Out1Vel: Blood velocity at exit 1, i.e., ICA (mm 
Hg) 
Out2Vel: Blood velocity at exit 2, i.e., ECA(mm 
Hg) 
Outcomes: 
Vel_CCA: Blood velocity in CCA(m/s) 
Vel_ICA: Blood velocity in ICA(m/s) 
Vel_ECA: Blood velocity in ECA(m/s) 
WSS_CCA: Wall Shear Stress in CCA (Pa) 
WSS_ICA: Wall Shear Stress in ICA (Pa) 
WSS_ECA: Wall Shear Stress in ECA (Pa) 
 

Table 4. Information on numerical model 
Parameters from Python Code  

dtypes: float64(9), int64(3) , memory usage: 8.6 KB 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.3 Data Management 
Following the format presented in Table 5, the data 
has been systematically collected from the 
numerical model. Each set of exposures was 
evaluated using the COMSOL software, and the 
corresponding results were recorded in their 
respective columns within the table. 
 

Table 5. Data collection format 

 
 
3.4 Data Analysis 
The first step is to compute the statistics of 
exposures to get some basic information on the 
exposures. Table 6 provides a comprehensive 
breakdown of this data. 

InPr 

(mm

Hg) 

Out1vel 

(ICA) 

(m/s) 

Out2ve

l (ECA) 

(m/s) 

D 

(kg/𝒎3) 

Vis              

(Pa. s) 

Bifurc

ation 

Angle 

(degre

es) 

100 0.241 0.153 1060 0.0035 

30 º 120 0.193 
 

0.122 
 1075 0.004 

130 0.1205 
 

0.077 
  0.0045 

 
Column 

Non-null 

Count 
Dtype 

0 Vis 90non-null float64 
1 D 90non-null int64 
2 InPr 90non-null int64 
3 Out1vel 90non-null float64 
4 Out2vel 90non-null float64 
5 Vel_CCA 90non-null float64 
6 Vel_ICA 90non-null float64 
7 Vel_ECA 90non-null float64 
8 WSS_CCA 90non-null float64 
9 WSS_ICA 90non-null float64 
10 WSS_ECA_ 90non-null float64 
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Table 6. Descriptive Statistics of Exposures 
Statistic

s 
Vis D InPr 

Out1ve

l 

Out2ve

l 

count 90 90 90 90 90 
mean 0.0042 1062 112.2 0.1736 0.1102 
std 0.0004 5.0 11.4 0.0675 0.0427 
min 0.0035 1060 100 0.0723 0.046 
25% 0.004 1060 100 0.1205 0.077 
50% 0.004 1060 120 0.193 0.122 
75% 0.0045 1060 120 0.241 0.153 
max 0.0005 1075 130 0.241 0.153 

 
3.5 Data Validation 
Following the completion of the previous stage, the 
subsequent step involves data validation. During this 
phase, the reliability of the developed numerical 
model as a data source is thoroughly assessed and 
evaluated. This critical process ensures the accuracy 
and trustworthiness of the generated data for further 
analysis and interpretation. The current research also 
examined scenarios where the blood flow in ICA or 
ECA experienced a reduction due to conditions like 
atherosclerosis. Consequently, states with 20%, 
50%, or 70% reductions in blood velocity at the 
outlets were analyzed; these findings would shed 
light on the impact of various health conditions on 
blood flow distribution within the carotid artery 
network. 

For validating the model, WSS values were 
computed for the CCA under healthy conditions and 
found in the interval (0.850 Pa to 3.464 Pa), which 
is towards the right of the mean, 0.850 +/- 0.195 Pa, 
as reported by [18].  

The subsequent section introduces an in-depth 
analysis of the collected (simulated) data utilizing 
advanced ML algorithms. The flow chart in Figure 4 
illustrates the step-by-step process employed during 
this analysis, offering a clear and systematic 
overview of the entire procedure. 

 
 

4 Results and Discussions for WSS in 

CCA 
This section presents plots depicting the shear stress 
in the carotid artery for specific parameters. These 
visualizations offer a comprehensive understanding 
of the flow dynamics within the artery. 
Subsequently, we delve into data analysis using 
machine learning (ML) algorithms. Figure 3 depicts 
shear stress contours when InPr is 100, out1vel 
=0.241, out2vel is 0.077, D =1060, and Vis=0.0045.  
The initial step involved is conducting a univariate 
analysis of the features within the dataset. This 
analysis encompassed an exploration of their range 

and central tendency. Furthermore, descriptive 
statistics were thoroughly examined to identify any 
potential outliers in the data. This meticulous 
scrutiny determined that noteworthy disparities 
between the exposures' maximum and 75th  
percentile values were absent. This absence of 
outliers underscores the robust nature of the dataset, 
rendering it well-suited for subsequent analysis. 
Following the comprehensive univariate analysis of 
the features, a parallel assessment was executed on 
the target variables using bar charts. The results of 
this evaluation indicated an absence of skewness in 
the data distribution, thereby signifying a well-
balanced distribution of the target variables. 
 

 
Fig. 3: Shear Stress Contour 
 

Moving forward, the next phase involved 
conducting a multivariate analysis. This phase 
encompasses the exploration of interdependencies 
among multiple dependent variables or features 
concerning an outcome or target variable. This 
approach facilitates a more holistic comprehension 
of the intricate relationships embedded within the 
dataset. Each feature underwent computation of its 
Variance  Inflation Factor (VIF) score to gauge the 
extent of correlation. This process allowed for 
assessing the degree of correlation among the 
features. Notably, the analysis revealed that the 
features exhibited a modest level of correlation, as 
evidenced by VIF scores below 5 for each feature. 
Subsequently, the first model, namely the linear 
regression model, was developed using Vis, D, InPr, 
Out1vel, and Out2vel as features and WSS_CCA as 
the target variable. 
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Fig. 4: Flow Chart 
 

Various metrics such as MAE (Mean Absolute 
Error), RMSE (Root Mean Square Error), R2, and 
adj-R2 scores were calculated for both train and test 
data sets and presented in Table 7. The assumptions 
on the linear regression model have been carefully 
examined and deemed satisfactory. As a result, the 
linear regression model appears to be well-suited for 
the dataset. Nonetheless, in addition to this, non-
linear regression models, ensembled, and boosting 
models were also applied and evaluated. 

 
A Python code was developed to evaluate the 
metrics of polynomial regressors with various 
degrees. To determine the optimal-fit polynomial, 
graphs depicting the Mean Squared Error (MSE) 
versus the polynomial degree were plotted for both 
the training and testing data, as illustrated in Figure 
5. 
 

 
Fig. 5: Graphs depicting MSE vs. degree of the 
polynomial 
 

The analysis of these graphs showed that a 
third-degree polynomial exhibited the best 
performance as a non-linear prediction model for the 
given data. In the subsequent steps, the SVR 
(Support Vector Regressor), RFR (Random Forest 
Regressor), Adaboost, Gradient boosting, and XG 
boost algorithms were utilized, and their 
corresponding metrics were calculated and 
displayed in Table 7. 
 
Observations: 

1. The RMSE on the test dataset is the lowest 
for the polynomial model, showing that this 
model can predict the target value most 
accurately. 

2. MAE is the average error between the 
predicted and actual values and is the 
minimum for the polynomial model. 

3. A significant reduction in MAE was 
observed after hyper-tuning the SVR model 
using the RBF (Radial Basis Function) 
kernel with the parameters C=100 and 
gamma=0.01. This improved performance  

4. R2 for the training dataset is significantly 
higher for the SVR, decision tree, RFR, 
RFR-tuned, and all the boosting models, 
showing that all these models have over-
fitted the data. 

5. MAPE is 1.1 for the SVR-tuned model, 
which means, on average, the prediction is 
off by 1%. 
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 Table 7. Metrics of Regressor Models 

Regresso

r Models 

Data 

Set 
RMSE MAE R2 Adj-R2 MAPE 

Linear 
Train 0.2148 0.1829 0.9525 0.9488 - 

Test 0.2559 0.2373 0.9405 0.9157 - 

Poly 

degree 3 

Train 0.1295 0.0768 0.9827 0.9814 - 

Test 0.1574 0.0983 0.9775 0.9681 - 

Support 

Vector 
Train 0.1961 0.1412 0.9603 0.9573 8.2001 

Test 0.2913 0.2194 0.9229 0.8907 7.4285 
Support 

Vector 

Tuned 

Train 0.1640 0.1191 0.9723 0.9702 9.0159 

Test 0.1764 0.1241 0.9717 0.9599 1.1255 

Decision 

Tree  
Train 0.3523 0.2884 0.8770 0.8677 38.0824 

Test 0.4239 0.3322 0.7948 0.7093 -27.4147 

Random 

Forest 
Train 0.1336 0.0938 0.9823 0.9810 17.5722 

Test 0.2481 0.1907 0.9297 0.9004 -29.4441 
Random 

Forest 

(Tuned) 

Train 0.1383 0.1002 0.9810 0.9796 17.6054 

Test 0.2491 0.1945 0.9292 0.8997 -32.1883 

Ada 

Boost  
Train 0.2281 0.1887 0.9484 0.9445 29.3324 

Test 0.2935 0.2300 0.9017 0.8607 -33.2171 
Gradien

t 

Boosting 

Train 0.1177 0.0660 0.9863 0.9852 15.7419 

Test 0.2186 0.1615 0.9454 0.9227 -24.6019 

XG 

Boost 
Train 0.1104 0.0441 0.9879 0.9870 14.7957 

Test 0.2697 0.1939 0.9169 0.8823 -31.9448 
 

While MAE or MAPE plays a crucial role in 
identifying acceptable regressor models, it is equally 
essential to have a more comprehensive evaluation 
performed to ascertain the most dependable 
regressor model, [19]. By integrating the quantile 
loss function, prediction uncertainty can be 
adequately considered, and deeper insights can be 
gained into the performance of the models. 
Moreover, with this comprehensive approach, 
reliable predictions can be made on unfamiliar 
datasets. 

During the crucial final stage, the main 
objective was to quantify the prediction uncertainty 
associated with the model. The Quantile loss 
function was utilized to accomplish this and provide 
valuable insights into the degree of uncertainty 
surrounding the point estimation. The outcomes for 
the 0.1, 0.5, and 0.9 quantiles are illustrated in 
Figure 6, offering a comprehensive view of the 
models' performance concerning uncertainty. The 

plot analysis revealed that the linear Regression 
model exhibited the lowest quantile loss, signifying 
its superior capability to capture prediction 
uncertainty effectively. 

Developing a Python code to implement the 
quantile linear regressor model also enabled the 
computation of interval estimates for the target 
variable. The results of these interval estimates are 
presented in Table 8. These results provide insights 
into the efficacy of the linear regression model in 
capturing the possible prevalence of atherosclerotic 
conditions in ICA. Notably, the WSS values 
highlighted in Table 8 were not in the range 
associated with healthy cases, as detailed in section 
3.5. However, the identification of a similar 
condition in the ECA proved to be less successful.  

 
 

5 Results and Discussions for ICA 

and  ECA 
Figure 7 (Appendix) presents the flow chart for data 
analysis generated for ICA and ECA. In contrast to 
the case of CCA, where only the fluid and blood 
vessel properties act as exposures, here we assumed 
that the features and target variables in CCA and 
ECA are the features of ICA. Similarly, the features 
and target variables of CCA and ICA constitute the 
feature set for ECA. This assumption is considered 
appropriate for the present problem, as any stenotic 
conditions in one of the segments impact the blood 
flow characteristics in the other carotid artery 
segments. 

As a consequence of this assumption, 
multicollinearity was observed among the feature 
sets of both ICA and ECA. Consequently, 
regularized regression models, including Ridge, 
Lasso, and Elasticnet, were applied to the dataset. 
Additionally, the dataset was subjected to a 
Decision tree, Random forest, and boosting 
algorithms to determine the most suitable predictor 
model for assessing the WSS in both bifurcated 
segments. This process also aided in identifying the 
significant features of the target variables WSS_ICA 
and WSS_ECA. It was found that WSS_CCA and 
Vel_CCA had the most significant impact on 
WSS_ICA, whereas Vel_CCA and blood pressure in 
CCA influenced WSS_ECA, see Table 9(a) & Table 
9(b). 
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Fig. 6: Plot of Quantile Loss function for the ML developed  to predict   

 
Table 8. Quantile predictions of WSS_CCA 

Exposures Target Variable (WSS_CCA) 

Vis D InPr Out1vel Out2vel Actual 
0.1 

Quantile 

0.5 

Quantile 

0.9 

Quantile 

0.004 1060 100 0.1202 0.153 0.679323 0.660288 0.684708 0.845187 

0.004 1060 100 0.0717 0.153 0.638733 0.490863 0.476632 0.638733 

0.0045 1060 100 0.0717 0.153 0.576934 0.576934 0.571987 0.765744 

0.0035 1060 100 0.1931 0.153 0.853178 0.829056 0.902331 1.028715 
0.0045 1060 120 0.2414 0.046 1.128829 1.000332 1.128829 1.18801 
0.005 1060 120 0.2414 0.153 1.61143 1.28635 1.458091 1.61143 
0.0035 1060 100 0.2414 0.077 0.85576 0.85576 0.943403 1.023779 
0.0035 1060 100 0.0717 0.153 0.454918 0.404791 0.381278 0.511722 

0.0045 1075 120 0.1202 0.077 0.640726 0.640726 0.640726 0.640726 

0.004 1060 130 0.0717 0.046 0.336452 0.336452 0.336452 0.336452 

0.004 1060 100 0.1931 0.122 0.874334 0.857199 0.929918 1.06985 
0.004 1060 120 0.2414 0.046 1.033475 0.91426 1.033475 1.061 
0.005 1060 120 0.0717 0.153 0.693363 0.693363 0.729826 0.88884 

0.0045 1060 120 0.0717 0.153 0.634472 0.607292 0.634472 0.761829 

0.004 1060 100 0.1202 0.077 0.518568 0.51827 0.518568 0.634654 

0.004 1060 100 0.2414 0.046 1.064914 0.883903 0.97099 1.064914 
0.004 1060 120 0.2414 0.122 1.271533 1.056278 1.199615 1.271533 
0.0045 1060 100 0.2414 0.046 0.969974 0.969975 1.066344 1.191925 

 
Table 9(a). Important Features for WSS_ICA Identified by Gradient Boosting Model 

Feature Importance (ICA) 

0 Out1vel 0.834239 
1 WSS_CCA 0.064805 
2 Vel_CCA 0.058523 
3 Vel_ECA 0.020121 
4 log WSS_ECA 0.011729 
5 Out2vel 0.008123 
6 Vis 0.001929 
7 InPr 0.000529 
8 D 0 
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The reliable predictor model for all the target 
variables was identified in the subsequent steps. 
The quantile loss function was plotted for all the 
ML models developed to predict the target 
variables. The plot of the quantile loss function for 
the models developed to predict WSS in ICA is 
shown in Figure 8 (Appendix), while Figure 9 
(Appendix) displays the same for WSS in ECA. 

 
Table 9(b). Important Features for WSS_ECA 

Identified by Gradient Boosting Model 
Feature Importance (ECA) 

0 InPr 0.500923 
1 Out2vel 0.292016 
2 Vel_CCA 0.142237 

3 log 
WSS_ICA 0.02052 

4 Vel_ICA 0.019159 
5 WSS_CCA 0.014632 
6 Vis 0.008388 
7 Out1vel 0.002126 
8 D 0 

 

These graphs indicate that the most reliable 
predictor model is the Gradient Boosting algorithm. 
Consequently, the quantile intervals were computed 
using the Gradient Boosting Quantile algorithm for 
WSS_ICA and WSS_ECA, and they are presented 
in Table 10 (Appendix) and Table 11 (Appendix). 

The importance of recognizing these 
observations relies on a numerical model of an 
idealized carotid artery, formulated with specific 
assumptions detailed in this paper's methodology 
section, which cannot be overstated. Consequently, 
additional investigation and validation are 
imperative to corroborate the findings.  
 
5.1 Limitations of this Study 

The model proposed in this paper is specifically 
designed for an idealized carotid artery. Several 
key assumptions have been considered to ensure 
numerical tractability and practical feasibility. 
These assumptions include treating the blood as a 
Newtonian fluid, assuming the arterial segments to 
be circular elastic pipes with a constant radius, and 
considering the blood flow steady. These 
simplifications enabled efficient computational 
handling and facilitated reasonably reliable insights 
into the blood flow dynamics within the carotid 
artery. 
 
 
6 Conclusions 
This study focused on developing a numerical 
model to simulate blood flow in the carotid artery 

under different medical conditions associated with 
stenosis or atherosclerosis. ML models were 
tailored to the simulated data and used to predict 
blood flow characteristics in the artery. Utilizing 
the quantile loss function designed to assess 
prediction uncertainty, the Linear regression model 
better estimates wall shear stress within the CCA. 
On the other hand, when considering the ICA and 
ECA, the gradient boosting algorithm emerged as 
the most effective model for predicting wall shear 
stress. 

Through this study, we identified the blood 
velocity and the WSS in CCA as the most 
important features affecting the wall shear stress in 
ICA, while the blood velocity and the blood 
pressure affected the WSS in ECA the most.   
Results also showed that the quantile linear 
regression model could effectively detect 
atherosclerotic conditions in ICA for a given set of 
exposures. But then, such a condition in ECA was 
not successfully identified. However, it is important 
to recognize certain limitations in this study, as 
specific assumptions were made to ensure 
numerical tractability for the problem. Therefore, 
the future scope of this work involves extending it 
to a patient-specific model and utilizing advanced 
data-analytic tools like ANN to enhance its 
reliability as a reference source for the medical 
community. The model's accuracy and applicability 
would significantly improve for personalized 
medical assessments and interventions by 
incorporating patient-specific data.  
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APPENDIX 

 
 

                 
      Fig. 7: Flow Chart 
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Fig. 8: Plot of Quantile Loss function for the ML developed  to predict  WSS_ICA
 

 
Fig. 9: Plot of Quantile Loss function for the ML developed  to predict  WSS_ECA 
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 Table 10. Quantile predictions of WSS_ICA 

 
Exposures Target Variable (WSS_ICA) 

Vis D InPr Out1vel Out2vel Vel_CCA Vel_ECA WSS_CCA WSS_ECA Actual 0.1 
Quantile 

0.5 
Quantile 

0.9 
Quantile 

0.0045 1060 100 0.1202 0.077 0.074543 0.088532 0.580231 0.662184 0.226674 0.160194 0.233145 0.280177 

0.0045 1075 120 0.1202 0.077 0.075314 0.144331 0.640726 2.1063 0.254805 0.174545 0.228197 0.285173 
0.0035 1060 100 0.0717 0.153 0.108956 0.179861 0.454918 2.235889 0.051677 0.06892 0.067079 0.229342 
0.0045 1060 100 0.2414 0.077 0.108724 0.219893 1.050035 1.060807 0.600673 0.443052 0.664104 0.644709 
0.004 1060 130 0.1931 0.122 0.122154 0.231282 0.949304 5.115034 0.402931 0.344504 0.378675 0.372254 

0.0045 1075 120 0.2414 0.122 0.134627 0.267775 1.388943 4.024413 0.536366 0.471021 0.533134 0.553694 
0.0045 1060 120 0.2414 0.153 0.15496 0.29696 1.492572 4.715618 0.464327 0.410518 0.465193 0.491097 
0.0045 1060 100 0.1202 0.153 0.12139 0.211839 0.756643 2.518693 0.151853 0.130723 0.16931 0.229326 
0.0035 1060 100 0.2414 0.046 0.091876 0.193223 0.786211 0.537146 0.557896 0.289502 0.501484 0.508154 

0.005 1060 120 0.0717 0.046 0.043588 0.084415 0.391744 1.232727 0.178367 0.144455 0.161412 0.272236 
0.0035 1060 100 0.2414 0.153 0.162901 0.294481 1.035599 1.815765 0.348964 0.344433 0.389457 0.479634 
0.005 1060 120 0.1931 0.153 0.141493 0.262393 1.328196 4.738597 0.37826 0.323486 0.390723 0.332452 

0.0045 1060 120 0.0717 0.046 0.043801 0.084641 0.355445 1.133036 0.159392 0.14206 0.158376 0.291015 
0.004 1060 120 0.1931 0.122 0.12296 0.235956 1.029243 3.286256 0.337066 0.355958 0.361726 0.393369 
0.005 1060 120 0.1202 0.077 0.074938 0.143758 0.698544 2.289476 0.286675 0.174522 0.230012 0.271204 

0.0045 1060 120 0.1202 0.077 0.07527 0.144261 0.639244 2.1008 0.255183 0.16861 0.223877 0.284382 

0.004 1060 100 0.2414 0.153 0.155719 0.290189 1.369311 2.47078 0.491992 0.410518 0.433442 0.485729 
0.004 1060 100 0.1202 0.153 0.12307 0.2124 0.679323 2.457015 0.131503 0.131523 0.140757 0.229243 
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Table 11. Quantile predictions of WSS_ECA 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Exposures Target Variable (WSS_ECA) 

Vis D InPr Out1vel Out2vel Vel_CCA Vel_ICA  WSS_CCA WSS_ICA Actual 0.1 Quantile 0.5 Quantile 0.9 Quantile 
0.0045 1060 100 0.1202 0.077 0.074543 0.149824 0.580231 1.742598 0.081353 0.119975 0.128186 0.29356 
0.0045 1075 120 0.1202 0.077 0.075314 0.146314 0.640726 1.946125 0.277067 0.260029 0.294618 0.37747 
0.0035 1060 100 0.0717 0.153 0.108956 0.14498 0.454918 0.431412 0.295152 0.247443 0.278725 0.369031 
0.0045 1060 100 0.2414 0.077 0.108724 0.251491 1.050035 4.373594 0.134003 0.126406 0.134317 0.318121 
0.004 1060 130 0.1931 0.122 0.122154 0.235182 0.949304 2.999843 0.709028 0.379176 0.712675 0.698942 

0.0045 1075 120 0.2414 0.122 0.134627 0.267429 1.388943 3.930097 0.550008 0.410095 0.54931 0.548763 
0.0045 1060 120 0.2414 0.153 0.15496 0.282304 1.492572 3.429711 0.650533 0.435107 0.645038 0.655274 
0.0045 1060 100 0.1202 0.153 0.12139 0.187694 0.756643 1.193764 0.33483 0.252674 0.342368 0.358923 
0.0035 1060 100 0.2414 0.045 0.091876 0.232939 0.786211 4.078895 0.065181 0.083116 0.078782 0.294 
0.005 1060 120 0.0717 0.045 0.043588 0.090326 0.391744 1.389675 0.157107 0.211608 0.16612 0.410847 

0.0035 1060 100 0.2414 0.153 0.162901 0.281886 1.035599 2.618967 0.236766 0.209832 0.235724 0.34013 
0.005 1060 120 0.1931 0.153 0.141493 0.24371 1.328196 2.826104 0.653889 0.438416 0.613141 0.566112 

0.0045 1060 120 0.0717 0.045 0.043801 0.090234 0.355445 1.249647 0.143685 0.134091 0.142067 0.37729 
0.004 1060 120 0.1931 0.122 0.12296 0.227379 1.029243 2.534565 0.443784 0.379176 0.48513 0.496302 
0.005 1060 120 0.1202 0.077 0.074938 0.146681 0.698544 2.175203 0.302649 0.260029 0.294055 0.411042 

0.0045 1060 120 0.1202 0.077 0.07527 0.14636 0.639244 1.948855 0.276301 0.260029 0.294618 0.37747 
0.004 1060 100 0.2414 0.153 0.155719 0.289628 1.369311 3.622354 0.328089 0.267149 0.325061 0.496317 
0.004 1060 100 0.1202 0.153 0.12307 0.187177 0.679323 1.042109 0.326153 0.260591 0.311447 0.358339 
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