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Abstract: The stochastic SIS epidemic model is well-known for its critical thresholdRs, indicating the transition
between disease eradication (Rs < 1) and epidemic outbreaks (Rs > 1). However, the scenario where Rs = 1
has been uncertain. We present a definitive resolution to this pivotal issue. Additionally, we introduce advance-
ments in analyzing the disease-free state of equilibrium whenRs < 1 to deepen our understanding of the system
dynamics. To validate our theoretical developments and provide visual evidence, extensive computer simulations
are conducted, enhancing the comprehensiveness and applicability of our findings to the broader field of epi-
demiology and infectious disease modeling. The implications of our results extend to public health policies and
interventions aimed at effectively managing and controlling infectious diseases in different communities where
Rs hovers around the critical value.
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1 Introduction
In the early 20th century, a transformative shift oc-
curred in epidemiology with the pioneering work of
renowned scientists, including Anderson Gray McK-
endrick and Janet-Leigh Claypon, who introduced
mathematical modeling. Since then, mathematical
modeling has become an indispensable tool, pro-
foundly impacting outbreak and epidemic manage-
ment and playing a crucial role in guiding evidence-
based public health interventions. Epidemiology has
evolved through the contributions of notable physi-
cians like Quinto Tiberio Angelerio, who skillfully
handled the plague outbreak in Alghero, Sardinia, for
1582. However, it was during the 19th century that
modern epidemiology as a scientific discipline began
to take shape. Often regarded as the father of mod-
ern epidemiology, John Snow made a pivotal discov-
ery when he traced a devastating cholera outbreak in
London to the contaminated water from the Broad
Street pump. This groundbreaking investigation can
be considered the seminal event that laid the foun-
dation for the science of epidemiology as we know
it today. Epidemiology is a scientific discipline that
delves into the study of epidemics, diseases in gen-
eral, and even health-related conditions unrelated to
diseases. The origins of this field can be traced back
to ancient Greece, where the renowned physicianHip-
pocrates of Kosmade significant contributions by dis-
tinguishing between epidemic and endemic diseases.

Epidemiology extends beyond human health, exam-
ining diseases affecting plants and domestic and live-
stock animals. An epidemic is an abnormal and sub-
stantial upsurge of a particular disease within a pop-
ulation that occurs relatively quickly. The intricate
process of disease transmission involves many influ-
ential factors, encompassing both the characteristics
of the infectious agent and the complexities of the
host population. Regarding the infectious agent, its
inherent properties, such as the mode of transmission
(e.g., respiratory droplets, direct contact), the duration
of infectivity, and its response to medical interven-
tions like treatments and vaccines, are critical deter-
minants of its spread among individuals. Equally sig-
nificant are the host population factors that contribute
to the dynamics of an epidemic. Social interactions,
demographics (e.g., age, gender), cultural practices,
geographic distribution, and economic conditions all
play pivotal roles in shaping the vulnerability and re-
silience of a population to the disease. Throughout
the annals of recorded history, human civilization has
grappled with recurrent epidemics and pandemics.
These infectious disease outbreaks have inflicted pro-
found human suffering, societal turbulence, and eco-
nomic disruptions. In light of such formidable chal-
lenges, accurately predicting outbreak progression is
paramount to effectively mitigating their adverse im-
pacts. Central to this endeavor lies the field of epi-
demiologic modeling, which serves as a fundamental

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2023.20.8

B. Harchaoui, M. El Idrissi, 
A. El Haitami, A. Nait Brahim, A. Settati, 

A. Lahrouz, M. El Jarroudi, M. Er-Riani, T. Amtout

E-ISSN: 2224-2902 73 Volume 20, 2023



tool in understanding the dynamics of disease trans-
mission and devising informed strategies for contain-
ment and prevention. The impact of infectious dis-
eases on human life is enormous. Each year, mil-
lions of people suffer or die from different diseases.
There are many questions about the propagation of
diseases. For instance, how many people will be
touched together and thus need treatment? How long
will the disease outbreak last? What is the potential
for a vaccination strategy to reduce the seriousness
of the epidemic? In epidemiology, the importance of
mathematical modeling is significant because it can
provide information about the mechanisms underly-
ing the propagation of diseases and propose strate-
gies for their control. The first mathematical model
of epidemiology known was developed and solved
by Daniel Bernoulli in 1760. Using compartmental-
ized models, the basics of modern mathematical epi-
demiology were established in the early 20th century,
[1]. Mathematical epidemiology expanded exponen-
tially. Various mathematical models were articulated
and discussed, [2], [3], [4], [5], [6]. The classical SIS
model for a constant population is{

dS = [µ(1− S) + γI − βSI] dt,
dI = [βSI − (µ+ γ)I] dt.

(1)

Nonetheless, real-world scenarios are often charac-
terized by abundant stochastic elements and precar-
ious occurrences. This underscores the significance
of employing stochastic calculus as a robust method-
ology for elucidating these genuine random phenom-
ena manifesting in the natural world. The integration
of stochasticity into epidemic models and population
dynamics has yielded compelling findings of notable
consequence. The technique of parameter perturba-
tion has been widely adopted by various researchers,
[7], [8], [9], [10], [11], [12], to enhance their in-
vestigations. The studies, [6], [13], [14], specifi-
cally delved into color noise effects. Their studies
meticulously scrutinized the intricate dynamics of an
epidemic model under finite regime-switching condi-
tions. Motivated by the insights gained from these
preceding endeavors, our current research focuses on
the influence of environmental fluctuations, [4], [6],
[15], [16], [17], [18], [19]. These fluctuations are hy-
pothesized to manifest as variations in the parameter
β within the deterministic model (1) discussed earlier.
As such, this study aims to unravel the implications of
integrating these fluctuations. So that

β −→ β + σ
dB

dt
.

We establish the ensuing stochastic model by assim-
ilating the described perturbations into the determin-

istic framework presented as equation (1).{
dS = [µ(1− S) + γI − βSI] dt− σSIdB,
dI = [βSI − (µ+ γ)I] dt+ σSIdB.

(2)

In this work, we study the stochastic SIS epidemic
model with the non-linearity power function, that is

dS(t) = [µ(1− S) + γI − βSpI] dt
−σSpIdB(t),

dI(t) = [βSpI − (µ+ γ)I] dt
+σSpIdB(t),

(3)

where p ≥ 1 is the non-linearity power constant.
Therefore, it is enough to study the SDE for I(t)

dI(t) = [β(1− I(t))pI(t)− (µ+ γ)I(t)] dt

+σ(1− I(t))pI(t)dB(t), (4)

where S and I are the numbers of susceptible and in-
fected individuals. This model assumes a vital dy-
namic with a mortality rate corresponding to the birth
rate, implying that S + I = 1. Besides, the param-
eter denoted as β pertains to the infection rate, rep-
resenting the rate at which new infections are con-
tracted. Conversely, γ corresponds to the recovery
rate, delineating the pace at which individuals recu-
perate from the disease. A deterministic form of (1)
is given R0 = β

µ+γ . When the basic reproduction
number R0 ≤ 1, the globally asymptotically stable
condition is achieved at the disease-free equilibrium
state E0(1, 0). Conversely, when R0 > 1, the stabil-
ity of E0 is compromised, leading to the emergence
of an endemic equilibrium state E ∗

(
1
R0

, R0−1
R0

)
which attains global asymptotic stability. In the
past few years, a number of mathematical programs
for the transmission dynamics of infectious diseases
have been proposed, [2], [4], [5], [6], [7], [8], [13],
[20], [21], [22], [23], as SIS (Susceptible-Infectious-
Susceptible), SIRS (Susceptible-Infectious-Reduced-
Susceptible). The SIS models provide proper catego-
rizations of human population dynamics for specific
bacterial diseases such as malaria, certain protozoan
diseases such as meningitis and some sexually dis-
eases such as tuberculosis (”gonorrhea”) in which in-
dividuals generally build up immunity to the disease
within 24 hours and do not develop resistance to the
disease when infected. Based on the following initial
conditions (S0, I0) in the set

∆ =
{
x ∈ R2

+; x1 + x2 = 1
}
.

Here, B is a Brownian motion on the probability
space (Ω,F , {Ft}t≥0,P) and σ > 0 indicates the in-
tensity of the white noise. Next, the authors investi-
gated the dynamic behavior of I(t) as a function of
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the new threshold

Rs =
β

µ+ γ + 1
2σ

2
.

They proved that if either Rs < 1 and β ≥ σ2 or
σ2 > β ∨ β2

2(µ+γ) , the disease will disappear. How-
ever, if Rs > 1, then the disease will persist. In
[24], the author also suggested that if Rs < 1 and
β < σ2 ≤ β2

2(µ+γ) , then the disease disappears with
the probability 1. In this paper, we will assume that
β ≥ 1

2σ
2 is not exactly a limitation because it indi-

cates that the estimation error σ2 is smaller than the
estimated value β. We investigated the case where
Rs ≤ 1. More precisely, we prove if Rs = 1, E0 is
exponentially stable. Furthermore, the disease is ex-
tinct in the mean. Themanuscript follows a structured
approach, beginning with Section 2, which presents
exponentially stable for the system described in equa-
tion 3. In Section 3, we establish sufficient condi-
tions for disease extinction. Subsequently, Section 4
provides an in-depth discussion of our theoretical dis-
coveries and includes numerical simulations to illus-
trate them. Finally, a concise conclusion succinctly
outlines the primary contributions made in this study.

2 Exponentially stable
In this section, our objective is to analyze the stability
of the disease within the SDE system (3) and establish
the stochastic threshold condition for disease control
or eradication.

Theorem 2.1 Let (S0, I0) ∈ ∆. If Rs < 1, then for
any n such as

0 < n < 2βσ−2
(
R−1

S − 1
)
, (5)

the solution I(t) meets

E (In(t)) ≤ In0 exp (−ct),

where

c = −n
[
β
(
1−R−1

S

)
+

n

2
σ2
]
> 0. (6)

Thus, the disease-free equilibrium state E0 is n-th
moment exponentially stable.

Proof. Let V1(I) = In, n > 0 be any real constant
verifying the condition (5). By the Itô formula we get
for p > 1

dV1(I) = LIndt+ nσ(1− I)pIndB, (7)

and

LV1(I) = nIn
[
− (µ+ γ) + β(1− I)p

+
1

2
σ2 (n− 1) (1− I)2p

]
,

≤ nIn

[
sup

0<x≤1

(
− (µ+ γ) + βxp

−1

2
σ2x2p

)
+

n

2
σ2

]
. (8)

We can show clearly that if β ≥ 1
2σ

2 andRs < 1 then

sup
0<x≤1

(
− (µ+ γ) + βxp − 1

2
σ2x2p

)
= β

(
1− 1

Rs

)
, (9)

Combining this with (8) we get

LIn(t) ≤ −cIn(t),

where c can be found in (6). By injecting it into (7),
then integrating the result and taking the expectations
on both sides yields

EV1(I(t)) ≤ V1(I(0))− c

∫ t

0
EV1(I(u))du,

which implies with the Gronwall inequality that

E (In(t)) ≤ In0 exp (−ct).

3 Extinction of the disease
The subsequent theorems address the scenario where
the stochastic thresholdRs = 1.

Theorem 3.1 For a given initial value (S0, I0) ∈ ∆,
ifRs = 1, then the solution of the equation (3) follows

lim
t→∞

1

t

∫ t

0
I(s)ds = 0. (10)

Proof. Let V2(I) = log(I). With the equation (3),
I ≤ 1,Rs = 1, and the formula of Itô we get

dV2(I) =

[
− (µ+ γ) + β(1− I)p

−σ2

2
(1− I)2p

]
dt+ σ(1− I)pdB,

≤ −p
(
β − σ2

)
Idt+ σ(1− I)pdB.

(11)
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By integrating (11) and using Newton’s binomial for-
mula we obtain

log I(t) ≤ −p
(
β − σ2

) ∫ t

0
I(s)ds+ log I(0)

+σ

∫ t

0
(1− I(s))pdBs. (12)

By the large number theorem for martingales it exists
Ω1 ⊂ Ω with P(Ω1) = 1, so that for all ω ∈ Ω1 and
ϵ > 0, there exist T (w, ϵ) such that for any t ≥ T we
get

log I(0) + σ

∫ t

0
(1− I(s))pdB(s) ≤ ϵt,

which implies with (12) that

1

p (β − σ2)

d

dt

[
exp

(
p
(
β − σ2

) ∫ t

0
I(s)ds

)]
= I(t) exp

(
p
(
β − σ2

) ∫ t

0
I(s)ds

)
,

≤ exp (ϵt). (13)

By integrating (13) from T to t and multiplying the
two sides by 1

t we have

1

t

∫ t

0
I(s)ds

≤ 1

p (β − σ2) t
log

[
exp

(
p
(
β − σ2

) ∫ T

0
I(s)ds

)

+
p

ϵ

(
β − σ2

) (
exp (ϵt)− exp (ϵT )

)]
. (14)

Then, by applying twice the rule of the Hospital on
(14) we get

lim sup
t→∞

1

t

∫ t

0
Is(ω)ds ≤

ϵ

p (β − σ2)
.

By letting ε → 0, the desired result (10) is obtained.

Theorem 3.2 Let (S0, I0) ∈ ∆. If Rs = 1, then for
any η > 0 and ε > 0 we have

lim
I0→0

P

(
sup

0≤t≤η
I(t) > ε

)
= 0, (15)

that is the disease-free steady state E0 is stable in
probability.

Proof. If Rs = 1, then using the formula of Itô, (7),
(8) and (9) we get

dV1(I(t)) ≤
1

2
n2σ2In + nσ(1− I)pIndB,

Integrating between 0 and t, it is easy to have for
n ≤ 1

In(t)− In(0) ≤ 1

2
n2σ2t

+nσ

∫ t

0
(1− I(s))pIn(s)dBs,

then

sup
0≤t≤η

In(t) ≤ In(0) +
1

2
n2σ2η

+nσ sup
0≤t≤η

∫ t

0
(1− I(s))pIn(s)dB(s).

Using I < 1 we get

P

(
sup

0≤t≤η
I(t) > ε

)
≤ IIn(0)≥ ε

3
+ In2

2
σ2η≥ ε

3

+P

(
nσ sup

0≤t≤η
Mt >

ε

3

)
,

where IA is the characteristic function of A and

Mt =

∫ t

0
(1− I(s))pIn(s)dB(s),

which implies that

lim
I0→0

P

(
sup

0≤t≤η
I(t) > ε

)
(16)

≤ In2

2
σ2η≥ ε

3

+ lim
I0→0

P

(
nσ sup

0≤t≤η
Mt >

ε

3

)
.

Moreover,Mt is a real-valued continuous martingale,
so by Doob inequality we get

P

(
nσ sup

0≤t≤η
Mt >

ε

3

)

≤ 9n2σ2

ε2
E

[(∫ η

0
(1− I(s))pIn(s)dBs

)2
]
,

=
9n2σ2

ε2
E
[∫ η

0
((1− I(s))pIn(s))2 ds

]
,

≤ 9n2σ2

ε2
η.

Combining it with (16) we have

lim
I0→0

P

(
sup

0≤t≤η
I(t) > ε

)
≤ In2

2
σ2η≥ ε

3

+
9n2σ2

ε2
η.

By letting n → 0we obtain the requested formulation
(15).
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4 Simulation
To validate the robustness of our discoveries, we
intend to carry out numerical simulations employ-
ing the Milstein scheme as our chosen computational
approach, as outlined in [25]. More precisely, we
plan to discretize equation (3) utilizing the subsequent
scheme:

Sk+1 = Sk +
[
µk − µkSk − βkS

p
kIk + γkIk

]
∆t

−σkS
p
kIk

√
∆tτk − σ2

k

2 Sp
kIk(τ

2
k − 1)∆t,

Ik+1 = Ik +
[
− (µk + γk) Ik + βkS

p
kIk
]
∆t

+σkS
p
kIk

√
∆tτk +

σ2
k

2 Sp
kIk(τ

2
k − 1)∆t.

In this context, τk, (k = 1, 2, ...) symbolizes an uncor-
related stochastic variable adhering to standard nor-
mal distributions, specifically represented asN (0, 1).

Example 1 We choose µ = 0.5, β = 0.92, γ = 0.4,
σ = 0.2, p = 1, I0 = 0.4, then

R0 > 1, Rs = 1.

Consequently, based on Theorems 3.2, 3.1, and Fig.
1, the stochastic disease will be removed from the pop-
ulation while the deterministic disease occurs.

Example 2 Setµ = 0.4, β = 0.9, γ = 0.45, σ = 0.5,
p = 1, I0 = 0.4, then

R0 > 1, Rs < 1.

Thus, based on Theorem 2.1, and Fig. 2, the disease-
free equilibrium state E0 is n-th moment exponen-
tially stable.

0 500 1000 1500 2000 2500 3000 3500 4000

Time(t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

I(t)

Fig. 1. Trajectories of I(t) for SDE model 3 by
using the parameters of Example 1.
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Fig. 2. Trajectories of I(t) for SDE model 3 by
using the parameters of Example 2.

5 Conclusion
This study rigorously examined a stochastic SIS epi-
demiological model within a constant-sized popula-
tion under white noise control. Through our anal-
ysis, we have comprehensively explored the long-
term behavior of the SIS stochastic epidemiological
model and drawn significant insights. Our findings
provide compelling evidence for the overall stabil-
ity of the disease dynamics and the eventual extinc-
tion of the disease within the population. This indi-
cates that the control measures implemented, repre-
sented by the white noise control in this context, have
effectively mitigated disease-sustained transmission,
leading to disease-free equilibrium over time. The
implications of our research extend to public health
and disease management strategies. By elucidating
the model stability and extinction properties, we of-
fer valuable guidance for designing effective control
interventions and optimizing resource allocation to
combat infectious diseases in similar settings. Nev-
ertheless, we acknowledge that the stochastic nature
of infectious disease dynamics poses inherent com-
plexities. Future research could explore further re-
finements to the model, considering additional factors
such as demographic heterogeneity, spatial interac-
tions, and temporal variations in control measures to
capture real-world epidemiological scenarios better.
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