Network model,” in Proceedings of the 2010 IEEE
International Conference on Computational Intelligence
and Computing Research, ICCIC 2010, pp. 653–656,
India, December 2010.
[12] M. Mitra and R. Samanta, "Cardiac Arrhythmia
Classification Using Neural Networks with Selected
Features, "Procedia Technology, vol. 10, pp. 76–84, 2013.
[13] A.Ozc¸ift, "Random forests ensemble classifier trained
with data resampling strategy to improve cardiac
arrhythmia diagnosis, "Computers in Biology and
Medicine, vol. 41, no. 5, pp. 265–271,2011.
[14] A. Batra and V. Jawa, “Classification of Arrhythmia Using
ConjunctionofMachine Learning Algorithms and ECG
DiagnosticCriteria,” Training Journal, 1975.
[15] T. Soman and P. O. Bobbie, "Classification of arrhythmia
using machine learning techniques," WSEAS Transactions
on Computers, vol. 4, no. 6, pp. 548–552, 2005.
[16] A. Fazel, F. Algharbi, and B. Haider, Classification of
CardiacArrhythmias Patients, Haider B Classification of
CardiacArrhythmias Patients.
[17] S. Samad, S. A. Khan, A. Haq, and A. Riaz, "Classification
of arrhythmia," International Journal of Electrical Energy,
vol. 2, no.1, pp. 57–61, 2014.
[18] N. Kohli and N. Verma, "Arrhythmia classification using
SVM with selected features," International Journal of
Engineering, Science and Technology, vol. 3, no. 8, pp.
22–31, 2012.
[19] D. Gao, M. Madden, D. Chambers, and G. Lyons,
"Bayesian ANN Classifier for ECG arrhythmia diagnostic
system: A comparison study," in Proceedings of the
International Joint Conference on Neural Networks,
IJCNN 2005, pp. 2383–2388, Canada, August 2005.
[20] E.Namsrai, T.Munkhdalai, M. Li, J. Shin, O.Namsrai, and
K.H.Ryu, "A feature selection-based ensemble method for
arrhythmia classification," Journal of Information
Processing Systems, vol. 9, no. 1, pp. 31–40, 2013.
[21] K. A. K.Niazi, S. A. Khan, A. Shaukat, and. Akhtar,
"Identifyingbest feature subset for cardiac arrhythmia
classification," in Proceedings of the Science and
Information Conference, SAI 2015, pp. 494–499, UK, July
2015.
[22] S.M. Jadhav, S. L.Nalbalwar, and A. A. Ghatol, "Modular
neural network-based arrhythmia classification system
using ECG signal data," International Journal of
Information Technology and Knowledge Management1,
vol. 4, no. 1, pp. 205–209, 2011.
[23] https://archive.ics.uci.edu/ml/datasets/arrhythmia
[24] Díaz-Uriarte, R., & De Andres, S. A. (2006).Gene
selection and classification of microarray data using the
random forest. BMC bioinformatics, 7(1), 3.
[25] Ding, H., Feng, P. M., Chen, W., & Lin, H. (2014).
Identification of bacteriophage virion proteins by the
ANOVA feature selection and analysis. Molecular
BioSystems, 10(8), 2229-2235.
[26] Demir, Ö.,&YılmazÇamurcu, A. (2015). Computer-aided
detection of lung nodules using exterior surface features.
Bio-medical materials and engineering, 26(s1), S1213-
S1222.
[27] Koller, D., &Sahami, M. (1996). Toward optimal feature
selection. Stanford InfoLab.
[28] Granitto, P. M., Furlanello, C., Biasioli, F., &Gasperi, F.
(2006). Recursive feature elimination with random forest
for PTR-MS analysis of agroindustrial
products. Chemometrics and Intelligent Laboratory
Systems, 83(2), 83-90.
[29] Jin, X., Xu, A., Bie, R., &Guo, P. (2006, April). Machine
learning techniques and chi-square feature selection for
cancer classification using SAGE gene expression profiles.
In International Workshop on Data Mining for Biomedical
Applications (pp. 106-115).Springer, Berlin, Heidelberg.
[30] Schölkopf, B. (2005). Introduction to Kernel Methods. The
Analysis of Patterns, Erice, Italy.
[31] Vincent, P., &Bengio, Y. (2002).K-local hyperplane and
convex distance nearest neighbor algorithms.In Advances
in neural information processing systems (pp. 985-992).
[32] Liaw, A., & Wiener, M. (2002).Classification and
regression by randomForest. R news, 2(3), 18-22.
[33] Soucy, P., &Mineau, G. W. (2001).A simple KNN
algorithm for text categorization.In Proceedings 2001
IEEE International Conference on Data Mining (pp. 647-
648).IEEE.
[34] Tabaei, B., and Herman, W., A Multivariate logistic
regression equation to screen for diabetes. Diabetes Care
25:1999–2003, 2002.
[35] Freund, Y., & Mason, L. (1999, June). The alternating
decision tree learning algorithm. In icml (Vol. 99, pp. 124-
133).
[36] Sanders, S. R., Noworolski, J. M., Liu, X. Z., &Verghese,
G. C. (1990). Generalized averaging method for power-
conversion circuits. Technical report (No. AD-A-
221977/2/XAB; LIDS-P--1970).Massachusetts Inst. of
Tech., Cambridge, MA (USA).Lab. for Information and
Decision Systems.
[37] Dietterich, T. G. (2000, June). Ensemble methods in
machine learning.International workshop on multiple
classifier systems (pp. 1-15).Springer, Berlin, Heidelberg.
[38] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., ...& Liu, T. Y. (2017). Lightgbm: A highly efficient
gradient boosting decision tree.In Advances in Neural
Information Processing Systems (pp. 3146-3154).
[39] Korada, N. K., Kumar, N. S. P., &Deekshitulu, Y. V. N. H.
(2012). Implementation of naïve Bayesian classifier and
ADA-boost algorithm using maize expert system.
International Journal of Information Sciences and
Techniques (IJIST), 2.
[40] Ridgeway, G. (2007). Generalized Boosted Models: A
guide to the gbm package. Update, 1(1), 2007.
[41] Naess, O. E. (1979). Superstack—an iterative stacking
algorithm. Geophysical Prospecting, 27(1), 16-28.
[42] Rokach, L. (2010). Ensemble-based classifiers. Artificial
Intelligence Review, 33(1-2), 1-39.
[43] Umanol, M., Okamoto, H., Hatono, I., Tamura, H. I. R. O.
Y. U. K. I., Kawachi, F., Umedzu, S., & Kinoshita, J.
(1994, June). Fuzzy decision trees by fuzzy ID3 algorithm
and its application to diagnosis systems. In Proceedings of
1994 IEEE 3rd International Fuzzy Systems
Conference (pp. 2113-2118). IEEE.
[44] Ruta, D., &Gabrys, B. (2005).Classifier selection for
majority voting. Information fusion, 6(1), 63-81.
[45] Mukhopadhyay, S., &Sircar, P. (1996).Parametric
modeling of ECG signal. Medical and Biological
Engineering and Computing, 34(2), 171-174.
[46] Mustaqeem, A., Anwar, S. M., &Majid, M. (2018).
Multiclass classification of cardiac arrhythmia using
improved feature selection and SVM
invariants. Computational and mathematical methods in
medicine, 2018.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2022.19.19
Ravinder Ahuja, SC Sharma