[3] Ghosh, I., & Nadarajah, S. (2017). On the
Bayesian inference of Kumaraswamy
distributions based on censored
samples. Communications in Statistics-Theory
and Methods, 46(17), 8760-8777.
[4] Abd AL-Fattah, A. M., El-Helbawy, A. A., &
Al-Dayian, G. R. (2017). Inverted
Kumaraswamy distribution: PROPERTIES
AND ESTIMATION. Pakistan Journal of
Statistics, 33(1).
[5] Aly, H. M., Muhammed, H. Z., &
Abuelamayem, O. A. (2020). Estimation of the
bivariate Kumaraswamy lifetime distribution
under progressive type-I censoring. Journal of
Data Science, 18(4), 739-749.
[6] Sagrillo, M., Guerra, R. R., & Bayer, F. M.
(2021). Modified Kumaraswamy distributions
for double bounded hydro-environmental
data. Journal of Hydrology, 603, 127021.
[7] Mohammed, B. I., Hossain, M., Aldallal, R. A.,
& Mohamed, M. S. (2022). Bivariate
Kumaraswamy Distribution Based on
Conditional Hazard Functions: Properties and
Application. Mathematical Problems in
Engineering, 2022.
[8] Youssef, A. H., Kamel, A. R., & Abonazel, M.
R. (2021). Robust SURE estimates of
profitability in the Egyptian insurance
market. Statistical Journal of the IAOS, 37(4),
1275-1287.
[9] Abonazel, M., & Rabie, A. (2019). The impact
of using robust estimations in regression
models: An application on the Egyptian
economy. Journal of Advanced Research in
Applied Mathematics and Statistics, 4(2), 8-16.
[10] Kamel, A.R. (2021). Handling outliers in
seemingly unrelated regression equations
model, MSc thesis, Faculty of graduate studies
for statistical research (FGSSR), Cairo
University, Egypt.
[11] Alharbi, A. A., Kamel, A.R., & Atia, S. A.
(2022). A new robust molding of heat and mass
transfer process in MHD based on adaptive-
network-based fuzzy inference system, WSEAS
Transactions on Heat and Mass Transfer, vol.
17, pp. 80-96.
[12] Youssef, A. H., Kamel, A. R., & Abonazel, M.
R. (2022). Efficiency Comparisons of Robust
and Non-Robust Estimators for Seemingly
Unrelated Regressions Model. WSEAS
Transactions on Mathematics, vol. 21, pp. 218-
244.
[13] Zadeh, L. A. (1968). Probability measures of
fuzzy events. Journal of mathematical analysis
and applications, 23(2), 421-427.
[14] Wu, H. C. (2004). Fuzzy reliability estimation
using Bayesian approach. Computers &
Industrial Engineering, 46(3), 467-493.
[15] Huang, H. Z., Zuo, M. J., & Sun, Z. Q. (2006).
Bayesian reliability analysis for fuzzy lifetime
data. Fuzzy Sets and Systems, 157(12), 1674-
1686.
[16] Pak, A. (2017). Statistical inference for the
parameter of Lindley distribution based on
fuzzy data. Brazilian Journal of Probability
and Statistics, 31(3), 502-515.
[17] Kumaraswamy, P. (1980). A generalized
probability density function for double-
bounded random processes. Journal of
hydrology, 46(1-2), 79-88.
[18] Jones, M. C. (2009). Kumaraswamy’s
distribution: A beta-type distribution with some
tractability advantages. Statistical
methodology, 6(1), 70-81.
[19] Nadarajah, S. (2008). On the distribution of
Kumaraswamy. Journal of Hydrology, 348(3),
568-569.
[20] Tanaka, H., Okuda, T. and Asai, K. (1979).
Fuzzy information and decision in statistical
model. In: Advances in Fuzzy Sets Theory and
Applications. North-Holland, Amsterdam, 303–
320.
[21] Pak, A., Parham, G. A., & Saraj, M. (2013).
Inference for the Weibull distribution based on
fuzzy data. Revista Colombiana de
Estadistica, 36(2), 337-356.
[22] Cheng, R. C. H., & Amin, N. A. K. (1983).
Estimating parameters in continuous univariate
distributions with a shifted origin. Journal of
the Royal Statistical Society: Series B
(Methodological), 45(3), 394-403.
[23] Swain, J. J., Venkatraman, S., & Wilson, J. R.
(1988). Least-squares estimation of distribution
functions in Johnson’s translation
system. Journal of Statistical Computation and
Simulation, 29(4), 271-297.
[24] Choi, K., & Bulgren, W. G. (1968). An
estimation procedure for mixtures of
distributions. Journal of the Royal Statistical
Society: Series B (Methodological), 30(3), 444-
460.
[25] Kamel, A. R., & Alqarni, M.A. (2020). A New
Characterization of Exponential Distribution
through Minimum Chi-Squared Divergence
Principle. Journal of Advanced Research in
Applied Mathematics and Statistics, 5(1&2),
14-26.
[26] Tierney, L., & Kadane, J. B. (1986). Accurate
approximations for posterior moments and
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2022.19.14
Yasser S. Alharbi, Amr R. Kamel