[3] Yildirim M, Çinar A. Classification of white
blood cells by deep learning methods for
diagnosing disease. Revue d'Intelligence
Artificial 2019; 33(5): pp 335–40.
[4] G. X. Abd El Kader Isselmou, Z. Shuai, S.
Saminu, I. Javaid, and I. S. Ahmad, "Brain
Tumor identification by Convolution Neural
Network with Fuzzy C-mean Model Using MR
Brain Images." INTERNATIONAL JOURNAL
OF CIRCUITS, SYSTEMS AND SIGNAL
PROCESSING, 2020, 14(14), pp 1096-1102.
[5] I. Abd El Kader, G. Xu, Z. Shuai, S. Saminu, I.
Javaid, and I. Salim Ahmad, "Differential deep
convolutional neural network model for brain
tumor classification," Brain Sciences,2021 vol.
11, pp. 352.
[6] I. Abd El Kader, G. Xu, Z. Shuai, S. Saminu, I.
Javaid, I. S. Ahmad, et al., "Brain Tumor
Detection and Classification on MR Images by
a Deep Wavelet Auto-Encoder Model,"
Diagnostics, 2021, vol. 11, pp. 1589.
[7] A. El Kader, G. Xu, Z. Shuai, and S. Saminu,
"Brain tumor detection and classification by
hybrid CNN-DWA model using MR images,"
Current Medical Imaging,2021 vol. 17, pp.
1248-1255.
[8] A. Çinar and M. Yildirim, "Detection of tumors
on brain MRI images using the hybrid
convolutional neural network architecture,"
Medical hypotheses, 2020, vol. 139, pp. 109-
684.
[9] M. A. Khan, I. Ashraf, M. Alhaisoni, R.
Damaševičius, R. Scherer, A. Rehman, et al.,
"Multimodal brain tumor classification using
deep learning and robust feature selection: A
machine learning application for radiologists,"
Diagnostics, 2020, vol. 10, pp. 565.
[10] T. Saba, A. S. Mohamed, M. El-Affendi, J.
Amin, and M. Sharif, "Brain tumor detection
using a fusion of handcrafted and deep learning
features," Cognitive Systems Research, 2020,
vol. 59, pp. 221-230.
[11] D. J. Hemanth, J. Anitha, A. Naaji, O. Geman,
and D. E. Popescu, "A modified deep
convolutional neural network for abnormal
brain image classification," IEEE Access, 2018
vol. 7, pp. 4275-4283.
[12] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A.
Ullah, and S. W. Baik, "Multi-grade brain tumor
classification using deep CNN with extensive
data augmentation," Journal of computational
science,” 2019, vol. 30, pp. 174-182.
[13] S. K. Hasan and C. A. Linte, "A modified U-Net
convolutional network featuring a Nearest-
neighbour Re-sampling-based Elastic-
Transformation for brain tissue characterization
and segmentation," in Proceedings of IEEE
Western New York Image and Signal
Processing Workshop (WNYISPW), 2018, pp.
1-5.
[14] T. Yang, J. Song, and L. Li, "A deep learning
model integrating SK-TPCNN and random
forests for brain tumor segmentation in MRI,"
Biocybernetics and Biomedical Engineering,
2019, vol. 39, pp. 613-623.
[15] H. M. Ahmed, B. A. Youssef, A. S. Elkorany,
A. A. Saleeb, and F. Abd El-Samie, "Hybrid
gray wolf optimizer–artificial neural network
classification approach for magnetic resonance
brain images," Applied Optics, 2018, vol. 57,
pp. B25-B31.
[16] L. A. J. Prabhu and A. Jayachandran, "Mixture
model segmentation system for parasagittal
meningioma brain tumor classification based on
hybrid feature vector," Journal of medical
systems, 2018, vol. 42, pp. 251
Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Isselmou Abd El Kader: Created the Model, Writing,
Experiments simulation and analysis.
Guizhi Xu: Review& editing.
Zhang Shuai: Technical Review.
El maalouma Sidi Brahim: Writing Methodology.
Sani Saminu: Formatting.
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2022.19.10
Isselmou Abd El Kader, Guizhi Xu,
Zhang Shuai, El Maalouma Sidi Brahim, Sani Saminu