drugs II: Treatment of refractory epilepsy.
Neurology. 2004;62(8):1261–1273.
[15] M. Ahmad, M. Saeed, S. Saleem, and A. M.
Kamboh, “Seizure detection using eeg: A survey of
different techniques,” in Emerging Technologies
(ICET), 2016 International Conference on. IEEE,
2016, pp. 1–6.
[16] Moghim N, Corne DW. Predicting epileptic
seizures in advance. PloS ONE 2014;9:e99334.
[17] Park Y, Luo L, Parhi KK, Netoff T. Seizure
prediction with spectral power of EEG using cost-
sensitive support vector machines. Epilepsia
2011;52:1761–70.
[18] Endling F., Bartolomei F., Senhadji L.
(2009). Spatial Analysis of intracerebral
electroencephalographic signals in the time and
frequency domain: identification of epileptogenic
networks in partial epilepsy. Philos. Trans.
Mathemat. Phys. Eng. Sci. 367, 297–316.
10.1098/rsta.2008.0220
[19] J. Cao, J. Zhu, W. Hu and A. Kummert,
“Epileptic Signal Classification With Deep EEG
Features by Stacked CNNs,” in IEEE Transactions on
Cognitive and Developmental Systems, vol. 12, no.
4, pp. 709-722, Dec. 2020, doi:
10.1109/TCDS.2019.2936441.
[20] Y. Yuan, G. Xun, K. Jia and A. Zhang, “A
Multi-View Deep Learning Framework for EEG
Seizure Detection,” in IEEE Journal of Biomedical
and Health Informatics, vol. 23, no. 1, pp. 83-94, Jan.
2019, doi: 10.1109/JBHI.2018.2871678.
[21] M. Zabihi, S. Kiranyaz, V. Jantti, T. Lipping,
and M. Gabbouj, “Patient-Specific Seizure Detection
Using Nonlinear Dynamics and Nullclines,” Ieee
Journal of Biomedical and Health Informatics, vol.
24, no. 2, pp. 543-555, Feb, 2020.
[22] S. S. Yuan, J. X. Liu, J. L. Shang, X. Z. Kong,
Q. Yuan, and Z. Ma, “The earth mover’s distance and
Bayesian linear discriminant analysis for epileptic
seizure detection in scalp EEG,” Biomedical
Engineering Letters, vol. 8, no. 4, pp. 373-382, Nov,
2018.
[23] K. M. Tsiouris, S. Markoula, S. Konitsiotis,
D. D. Koutsouris, and D. I. Fotiadis, “A robust
unsupervised epileptic seizure detection
methodology to accelerate large EEG database
evaluation,” Biomedical Signal Processing and
Control, vol. 40, pp. 275-285, Feb, 2018.
[24] R. S. Selvakumari, M. Mahalakshmi, and P.
Prashalee, “Patient-Specific Seizure Detection
Method using Hybrid Classifier with Optimized
Electrodes,” Journal of Medical Systems, vol. 43, no.
5, May, 2019.
[25] D. Zeng, K. Huang, C. Xu, H. Shen and Z.
Chen, "Hierarchy Graph Convolution Network and
Tree Classification for Epileptic Detection on
Electroencephalography Signals," in IEEE
Transactions on Cognitive and Developmental
Systems, doi: 10.1109/TCDS.2020.3012278.
[26] D. Hu, J. Cao, X. Lai, Y. Wang, S. Wang and
Y. Ding, "Epileptic State Classification by Fusing
Hand-crafted and Deep Learning EEG Features," in
IEEE Transactions on Circuits and Systems II:
Express Briefs, doi: 10.1109/TCSII.2020.3031399.
[27] W. Hu, J. Cao, X. Lai, and J. Liu, “Mean
amplitude spectrum based epileptic state
classification for seizure prediction using
convolutional neural networks,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1–11,
2019.
[28] P. Thodoroff, J. Pineau, and A. Lim,
“Learning robust features using deep learning for
automatic seizure detection,” in Machine learning for
healthcare conference, 2016, pp. 178–190.
[29] K. M. Tsiouris, V. C. Pezoulas, M. Zervakis,
S. Konitsiotis, D. D. Koutsouris, and D. I. Fotiadis,
“A long short-term memory deep learning network
for the prediction of epileptic seizures using eeg
signals,” Computers in biology and medicine, vol. 99,
pp. 24–37, 2018.
[30] Y. Yuan, G. Xun, F. Ma, Q. Suo, H. Xue, K.
Jia, and A. Zhang, “A novel channel-aware attention
framework for multi-channel eeg seizure detection
via multi-view deep learning,” in 2018 IEEE EMBS
International Conference on Biomedical & Health
Informatics (BHI). IEEE, 2018, pp. 206–209
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2022.19.3
Raveendra Kumar T. H.,
Narayanappa C. K., Raghavendra S., Poornima G. R.