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Abstract: More and more information on mortality and morbidity indicates that in order to fight the COVID-19
pandemic, it is important to focus our attention on comorbidities. Several reports evidence of how many elderly
patients who become severely ill exhibit underlying illness such as cardiovascular disease, kidney disease, tumor,
and more to our special attention here, type 2 diabetes. Better understanding of the mechanism underlying the
comorbidity between different diseases requires merging models of systems across different time-scales. The
model homogenization across multiple spatial and time scales poses an important challenge to researchers in the
field of medical science. An approach that has been found relatively efficient in the analysis of such models is the
use of singular perturbation technique. Here, we study a differential equation model system with multiple time
scales which describes the diabetes and COVID-19 comorbidity. It tracks the changes in levels of plasma glucose,
insulin, and functional-cells, incorporating insulin resistance and inflammation responses. The model is analyzed
with the geometric singular perturbation technique, by which conditions on the system parameters may be derived
to identify regions in which the system exhibits different dynamic behavior, whether the system would be stable,
or eventually oscillate in a sustained fashion. Discussion of these conditions allows us to better understand how
comorbidity mediates the development of life-threatening symptoms in a diabetic patient in order that proper care
and treatment may be prescribed.
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1 Introduction
The spread of coronavirus across the globe has devel-
oped into a major pandemic which impacts all aspects
of the human society. A great deal of research effort
has been devoted to modeling and prediction of the
progress of coronavirus infection and its impacts of
social distancing and other measures in various coun-
tries hit hard by the pandemic, for example in [1], [2]
and [3].

According to Smith [4], medical doctors have been
investigating an unexpected coronavirus complica-
tion that can appear a couple of weeks or sometimes
months, after the initial COVID-19 infection. In-
creasing number of patients have been reported to
develop life-threatening symptoms that necessitate
prompt medical attention. This new complication of
corona virus is dangerous and persists throughout a
patient's life since, although both type 1 and type 2 di-
abetes can be managed with treatment, diabetes can't
be cured, which means some patients will need ex-
pensive insulin therapy for the rest of their lives [4].
Although most patients will survive COVID infec-

tion, many of them experience long-term symptoms
that frequently require medical attention. Moreover,
quite a few even progress to multisystem inflamma-
tory syndrome, according to Smith[4].

According to Campbell[5], patients with type 1 di-
abetes are more likely to die of Covid-19 than those
with type 2. Also, NHS research confirmed that di-
abetes in coronavirus patients significantly increases
the risk of their dying. "Almost one in three of all
deaths from coronavirus among people in hospitals
in England during the pandemic have been associated
with diabetes," according to the study[5].

In an attempt to gain a better understanding of such
complication, we consider here a model system of dif-
ferential equations that describes the glucose-insulin
dynamics, based on that proposed by De Gaetano et
al. [6] and those mentioned in the work on the compu-
tational patient having diabetes and COVID by Barbi-
ero and Lió[7], incorporating the effects of inflamma-
tory response and insulin resistance, which we have
modified to take into account the drastically
different time scales observed in the time variations

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2022.19.20

 
Chontita Rattanakul, Yongwimon Lenbury, 

Nathnarong Khajohnsaksumeth, Charin Modchang

E-ISSN: 2224-2902 176 Volume 19, 2022



of the concentrations of glucose, insulin, the number
of functional β-cells and the inflammatory response.

The presence of glucose (glycaemia) and insulin in
one's blood is regulated through a negative feedback
loop in which plasma glucose stimulates β-cells to re-
lease insulin giving rise to insulin-mediated increase
in tissue glucose uptake while liver gluconeogenesis
and glycogenolysis are decreased [6].

In 2001, a nonlinear mathematical model of the
glucose-insulin control mechanism was proposed by
Lenbury et al.[8], taking into account the role of β-
cells in maintaining and regulating insulin level in hu-
man's bloodstream. They utilized a gastrointestinal
term to model the absorption of glucose by the intes-
tine, and the entry of glucose into the human's plasma,
under the assumption that this process declines expo-
nentially with time. The model is analyzed using the
geometric singular perturbationmethod bywhich var-
ious conditions on the system parameters are obtained
to identify different dynamic behavior exhibited by
the system, including the possibility of limit cycle be-
havior in the system model which closely simulates
sustained oscillatory time series often observed in ex-
perimental data. To take into account the temporal ab-
sorption of glucose, they used a sinusoidal term with
the means to study how the patients respond when
subject to ambulatory-fed conditions. The resulting
model equations are as follows.

dx

dt
= r1zy − r2zx+ c1z

dy

dt
=

R3N

z
−R4x+ C2 + w(t)

dz

dt
= R5(y − ŷ)(T − z) +R6z(T − z)−R7z

where x and y are the differences in the plasma insulin
and glucose concentrations from their respective fast-
ing (basal) concentrations, and z represents the densi-
ty of the pancreatic β-cells in the proliferative phase.

In 2008, Giang et al.[9] analyzed a delay model
of the glucose-insulin system proposed by Palumbo
et al. in [10]. They proved persistence, as well as
existence and stability of a unique positive equilibri-
um point of the model system. Moreover, their work
[9] illustrates uniform persistence and global stabil-
ity of equilibrium solutions. Using omega limit set
of a persistent solution and the full time solution that
they derived, they were able to investigate the effect
of delays in terms of oscillating solutions. In addition,
global stability and slowly oscillating behavior were
shown to be possible provided suitable conditions on
the system parameters are satisfied. The model equa-

tions under consideration are as follows.

Ġ(t) = −KxgG(t)−KxgiG(t)I(t− τi) +
Tgh

VG

İ(t) = −KxiI(t) +
TiGmax

VI
f(G(t− τg))

where f(G) =
Gγ

Gγ +Gγ
∗
with sup

G≥0
f(G) = 1, G

and I are, respectively, glucose and insulin concen-
trations, with corresponding delays of τg and τi.

In the same year, Kardar et al.[11] made use of an
advisory/control algorithm in aide of out-patients suf-
fering from insulin dependent diabetes mellitus. Uti-
lizing Mamdani type fuzzy logic controllers, their ad-
visory/control algorithm combines expert knowledge
about diabetes treatments in the attempt to regulate
the glucose level in bloodstream, while the patien-
t is experiencing disturbances in glucose concentra-
tion due to food intakes or there are fluctuations in
the measured plasma glucose level due to measure-
ment errors.

Also in 2008, De Gaetano et al.[6] studied a mod-
el of the pancreatic islet compensation, and identified
certain basic qualitative characteristics of the model's
solutions. They simulated the model's performance
over one's lifetime under different conditions. They
then compared their model with two previous mod-
els of diabetes progression, and concluded that the
proposed model provided a realistic and robust de-
scription of the glucose-insulin process in healthy and
diabetic person. More importantly, by varying the
size of one of the system parameters, their model can
be reduced to either "fast", providing short-term pre-
diction, or "slow" subsystems, which describes long-
term progression.

In 2015, Cao et al.[13] studied a model which con-
sists of four states of type 2 diabetes, assuming no in-
put or output. Using a model consisting of partial
differential equations, a general well-posedness result
was obtained and the exponential stability of
dynamic solution was shown. The steady-state
solution predicts the diabetics' stable distribution
probability[13].

Themodels mentioned above are useful in answer-
ing a number of crucial questions concerning the pro-
gression of diabetes mellitus. However, in the model
analyses, they did not take into account the fact that
the state variables under consideration vary with time
at extremely different time scales.

Moreover, we observe that the model of De Gae-
tano et al.[6] has not properly accounted for the re-
ports that the ability of the cells to absorb or use up
blood sugar appears to decline as the glucose concen-
tration in the bloodstream increases to a high level.
It is mentioned in [14], that in a patient with predi-
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abetes conditions, the pancreas has to work harder to
release sufficient amount of insulin in order to control
the glucose in the bloodstream to a satisfactory low
level. It is well-known that insulin resistance takes
place when too much glucose in the blood decreases
the cells' ability to absorb and use blood sugar for en-
ergy [14]. We will therefore introduce a term in our
model, which is based on that in [6], to take into ac-
count the reduction in the ability of cells to control
plasma glucose when its concentration becomes too
high. For a patient with prediabetes conditions, we
express the insulin resistance term as a function of
glucose concentration, so that it rises as the glucose
level increases.

Recently, Ratanakul et al.[15] attempted to incor-
porate this insulin resistance effect more explicitly, as
well as account for the diversified time scales in their
model, which was analyzed by the geometric singu-
lar perturbation method, upon assuming that the level
of β-cells remains relatively constant and thus reduc-
ing the model analysis into a 2-dimensional singular
perturbation argument. In our present work, the func-
tional β cells is tracked, and although it is considered
to vary slowly, it is not taken to be constant in our
analysis, making it necessary to carry out the geomet-
ric singular perturbation analysis in the 3-dimensional
space.

To account for comorbidity between diabetes and
COVID-19, an equation describing the rate of change
in the inflammatory response is added to the mod-
el, following that given in the work by Barbiero and
Lió [7]. In this equation, the rate of change of in-
flammatory response is taken to depend on abnormal
ACE2 activity, SARS-CoV-2 affinity with ACE2, the
re-enforcement of inflammation due to drug surplus
left inside the body, inflammation rate due to glucose
surplus, and the anti-inflammatory response rate as
suggested in [7]

We will explain in subsequent sections that, based
on values of our model system parameters, reported
in various literature, we may conclude that the level
of plasma glucose varies relatively quickly, whereas
the number of β-cells changes at a much larger
time scale, and insulin concentration, on the other
hand, can be said to change at an intermediate speed
relatively. We shall then use two small parameters to
merge such diversified time-scales. Arguments based
on singular perturbation theory is thus the appropriate
geometric method of analysis which is applied to
identify different dynamic behavior permitted by our
model.

2 Materials and Methods
Insulin, I(t), is a chemical messenger produced in one
part of the body to have an action on another. It is a
protein responsible for regulating blood glucose lev-
els, G(t), as part of the metabolism. The control of
blood sugar, or glucose, by insulin is a negative feed-
back mechanism. When blood sugar rises, from our
food intake for example, receptors in the body sense
a change. In response, the control center, namely the
pancreas, is stimulated. In the pancreas, the function-
al beta cells, βf (t) , are designed to function as "fuel
sensors" triggered by glucose[16]. As glucose levels
rise in the plasma of the blood, uptake and metabolis-
m by the pancreas beta cells are enhanced, leading to
insulin secretion into the bloodstream which has the
effect of lowering plasma glucose levels. Once blood
sugar levels reach a state of equilibrium (homeosta-
sis), the pancreas stops releasing insulin.

Thus, the drop in the rate of increase of plasma
glucose sends a negative feed-back to signal the func-
tional beta cells in the pancreas to reduce the produc-
tion of insulin. In this way, the glucose-insulin con-
trol system in a healthy human's body functions has
a negative feed-back loop that regulates the glucose
level in the blood stream.

We are thus led to the following model system of
differential equations, which has been adapted from
[6],[7], and [15].

dG

dt
= R0 − EG0G− SI

GI

IRS + i
, G(t0) = G0

(1)
dI

dt
= σ

βfG
νh

α+Gνh
− kI, I(t0) = I0 (2)

dβf
dt

= −r0 + r1G− r2G
2βf , βf (t0) = βf0

(3)
dIRP

dt
= kSARS∆kACE2,0 + kDDs + kGG

− keffIRP , IRP (t0) = IPR0 (4)

The insulin resistance term IRS , in the denominator
of the last term in (1), is expressed as the following
function of glucose concentration:

IRS = a0G
2 + b0G+ c0 (5)

following the observation mentioned earlier that in-
sulin resistance occurs when excess glucose in the
blood reduces the ability of the cells to absorb and
use blood sugar for energy [15], so that the ability of
cells to control plasma glucose declines when glucose
concentration becomes too high. Here, a0 is the sec-
ond order coefficient for insulin resistance, b0 is the
first order coefficient for insulin resistance, and c0 is
insulin resistance at zero glucose.
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Table 1: State variables and parameters appearing in
the model equations (1) - (5) with their descriptions

Item Description Unit
G glucose concentration G∗

in bloodstream
I insulin concentration I∗

in bloodstream
βf density of functional β∗

f
β cells

IRS insulin resistance I∗RS
IRP inflammatory response I∗RP
t time t∗

R0 rate of glucose production G∗(t∗)−1

at zero glucose
SI insulin sensitivity I∗RS(t

∗I∗)−1

EG0 specific rate of glucose (t∗)−1

removal at zero insulin
i insulin resistance self- I∗RS

inhibition coefficient
µ i+ c0, c0 being insulin I∗RP

resistance at zero glucose
σ maximal rate of insulin I∗(β∗

f t
∗)−1

secretion by β cells
α glucose concentration (G∗)νh

yielding 50% of insulin
secretion

k combined specific rate of , (t∗)−1

insulin uptake at the liver
kidneys, and insulin
receptors

νh power coefficient for Hill- None
shaped glycemia effect on
pancreatic insulin release,
set to 4 as done in [6]

r0 death rate of functional β∗
f (t

∗)−1

β cells at zero glucose
r1 I-order coefficient for β∗

f (G
∗t∗)−1

β cell replication
r2 II-order coefficient for (G∗)−2(t∗)−1

β cell replication
kSARS inflammation rate due I∗RP

(
k∗
ACE2t

∗)−1

to SARS-CoV-2
kACE2,0 normal ACE-catalyzed k∗ACE2

conversion rate
∆ multiple of normal None

conversion rate
kD specific inflammation rate I∗RP

(
D∗

r t
∗)−1

due to ACEi surplus
Ds surplus drug concentration D∗

s
kG specific inflammation rate I∗RP

(
G∗t∗)−1

due to glucose surplus
keff specific anti- (t∗)−1

inflammatory response rate
a0 II-order coefficient for I∗RS(G

∗)−2

insulin resistance
b0 I-order coefficient for I∗RS(G

∗)−1

insulin resistance
c0 insulin resistance at I∗RS

zero glucose

The variables and parameters appearing in (1)-(5)
and their definitions are summarized in Table 1. The
unit of each of the variables or parameters is denoted
here as the star,(·)∗, of the corresponding quantity (·),
as it depends on the choice of units used by a particu-
lar researcher to measure these quantities.

In Equation (1) for the rate of change of glucose
concentration, following that given in [15], the first
term on the right, R0 , is the rate of glucose produc-
tion at zero glucose. The last term is the inhibition on
the rise of glucose exerted by the secretion of insulin,
where EG0 is the specific rate of glucose removal at
zero insulin, and SI represents the normal insulin sen-
sitivity [7].

In Equation (2), the same as that used in [7] and
by De Gaetano et al. [6], the first term on the right
accounts for the increase in insulin level due to the
increasing level of glucose, with σ being the maximal
rate of secretion of insulin by β-cells, and α the glu-
cose concentration yielding 50% of insulin secretion.
Here, νh is the power coefficient for the Hill-shaped
glycemia effect on pancreatic insulin release. This is
set to 4 in [6]. The last term here is the rate of re-
moval of insulin by natural means depending on how
much insulin is present, with k being the removal rate
constant of variation.

Equation (3) describes the rate of change of func-
tional β-cells, following [7], where r0 is the death rate
of β-cells at zero glucose, r1 the first order coefficient
for β-cells replication, and r2 is the second order co-
efficient for β-cells replication [7].

Equation (4) has been modified from that men-
tioned in [7]. The rate of increase of inflammato-
ry response IRP is taken to vary, in the absence of
drug residuals, glucose or insulin, as a product of
inflammation factor due to SARS-CoV-2 infectivi-
ty, with kSARS representing the SARS-CoV-2 affin-
ity with ACE2, and the abnormal activity of ACE2,
∆kACE2,0, which we express here as a multiple∆ of
the normal value kACE2,0 of kACE2 . According to
[17], for someone who has diabetes, taking an ACE
inhibitor or ARB can help to control high blood pres-
sure which increases the risk of problems from dia-
betes. Diabetes can damage the blood vessels in the
kidneys, and high blood pressure can also damage the
kidneys. According to [7], ACE inhibitor or ARB
treatments could increase ACE2 abundance and thus
enhance viral entry. The second term on the right of
(4) therefore accounts for the increase in inflammato-
ry response due to drug that remains in the patient's
body, kD being the rate constant in the inflammation
rate due to ACE inhibitor surplus. Assuming contin-
ual treatments by ACE inhibitor, the quantity DS in
(4) is set to the mean value of 0.0372 mg/ml on day
29 of Sotrovimab treatment, as given in [18].

The third term in (4) is the inflammation rate due
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to glucose surplus, with kG being the rate constant for
this mechanism. Finally, the last term in (4) accounts
for the anti-inflammatory response, which varies di-
rectly as the inflammation response at time t, with
constant of variation keff .

Before we carry out the singular perturbation anal-
ysis, we need the following result concerning the in-
variance property of the model system. To that end,
we let

Ḡ =
R0

EG0
, G =

k̄1
EG0

, Ī =
σ

k
, (6)

β̄f =
k̄2

r2G
2 , ĪRP =

k̄3
keff

, (7)

k̄1 =R0 − SI
Ī

b0
, k̄2 = −r0 + r1Ḡ, (8)

k̄3 =kSARS∆kACE2,0 + kDDS + kGḠ (9)

Lemma 2
Noting that all model parameters are positive, we
letB be the set in the

(
G, I, βf , IRP

)
-space defined as

B ={
(
G, I, βf , IRP

)
∈ R4 : G ≤ G ≤ Ḡ,

0 < I ≤ Ī , 0 < βf ≤ β̄f , 0 < IRP ≤ ĪRP }
(10)

Then, B is positive invariant and all solutions starting
in B are uniformly bounded, provided

min{k̄1, k̄2} > 0 (11)

Proof
Suppose

(
G0, I0, βf0, IRP0

)
∈ B. First, we show

that G, I, βf , and IRP remain positive.
By contradiction, if G were to be negative at

some point in B, then there has to be a t0 > 0 where
G(t0) = 0 and G′(t0) < 0. However, by (1), at this
point,

dG

dt

∣∣∣∣
t=t0

= R0 − EG0G(t0)− SI
G(t0)I(t0)

IRS(t0) + i

= R0 > 0

which is a contradiction, and thus G never vanishes.
Similarly, if I were to be negative at some point in

B, then there has to be a t0 > 0 where I(t0) = 0 and
I ′(t0) < 0 . However, by (2), at this point,

dI

dt

∣∣∣∣
t=t0

= σ
βfG

νh(t0)

α+Gνh
− kI(t0)

= σ
βfG

νh(t0)

α+Gνh
> 0 (12)

since we have already shown that G is always posi-
tive. This is a contradiction, and thus I never vanish-
es.

Next, if βf were to be negative at some point in
B, then there has to be a t0 > 0 where βf (t0) = 0
and β′

f (t0) < 0 . However, by (3), at this point

dβf
dt

∣∣∣∣
t=t0

= −r0 + r1G(t0)− r2G
2(t0)βf (t0)

= −r0 + r1G(t0)

> −r0 + r1G > 0

due to (11). This is a contradiction, and thus βf never
vanishes.

Finally, if IRP were to be negative at some point
in B, then there has to be a t0 > 0where IRP (t0) = 0
and I ′RP (t0) < 0 . However, by (4), at this point,

dIRP

dt

∣∣∣∣
t=t0

=kSARS∆kACE2,0 + kDDS + kGG(t0)

− keffIRP (t0)

> kSARS∆kACE2,0 + kDDs > 0

which, again, is a contradiction, and thus IRP never
vanishes.

Now, we consider the system (1)-(4)
with

(
G0, I0, βf0, IRP0

)
∈ B, and first show

that I is bounded. From (2), we have
dI

dt
= σ

βfG
νh

α+Gνh
− kI ≤ σβ̄f − kI

Then, by the comparison theorem, one has
I ≤ I0e

−kt+
σ

k

(
1−e−kt

)
≤ Īe−kt+Ī

(
1−e−kt

)
= Ī

using (6). Thus, I remains bounded above by Ī .
Then, from (1), we have
dG

dt
= R0 − EG0G− SI

GI

IRS + i
≤ R0 − EG0G

Thus, by the comparison theorem, we have

G ≤ G0e
−EG0t +

R0

EG0

(
1− e−EG0t

)
≤ Ḡe−EG0t + Ḡ

(
1− e−EG0t

)
= Ḡ

using (6). Therefore, G remains bounded above by
Ḡ. On the other hand, (1) gives
dG

dt
≥ R0 − EG0G− SI

Ī

b0
= k̄1 − EG0G

Thus, by the comparison theorem, we have

G ≥ G0e
−EG0t +

k̄1
EG0

(
1− e−EG0t

)
≥ Ge−EG0t +G

(
1− e−EG0t

)
= G (13)

using (6) and (11). Therefore, G remains bounded
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below by G. From (3),
dβf
dt

≤ −r0 + r1Ḡ− r2G
2βf = k̄2 − r2G

2βf

using (9). Then, by the comparison theorem, we have

βf ≤ βf0e
−r2G2t +

k̄2

r2G
2

(
1− e−r2G2t

)
≤ β̄fe

− r0r2
r1

t
+ β̄f

(
1− e

− r0r2
r1

t)
= β̄f (14)

using (7). Thus βf remains bounded above by β̄f .
Finally, (4) gives

dIRP

dt
≤ kSARS∆kACE2,0 + kDDS + kGḠ− keffIRP

≤ k̄3 − keffIRP

using (9) and (11). Then, by the comparison theory,
we have

IRP ≤ IRP0e
−keff t +

k̄3
keff

(
1− e−keff t

)
≤ ĪRP e

−kt + ĪRP

(
1− e−kt

)
= ĪRP

using (7). Thus, IRP remains bounded above by ĪRP .
Hence, we have shown that B is positive invari-

ant, and all solutions starting in B remain uniformly
bounded. �.

With the above result, we are in the position to an-
alyze the model to identify various dynamic behavior
permitted by the system. Substituting (5) into (1), we
introduce the following change of variables and pa-
rameters, to scale out their units, and to reflect, with
the use of small scaling factors ε and δ , the obser-
vation mentioned earlier thatG appears to be varying
at a very fast speed. βf varies at an extremely slow
speed, whereas I varies at an intermediate speed, rel-
atively, with time. As for IRP , we see in [7] that keff
is noticeable larger than kD or kG, it is reasonable to
assume that IRP varies at more or less the same speed
as I . Letting

G′ =
G

G∗ , I
′ =

I

I∗
, β′

f =
βf
β∗
f

, I ′RS =
IRS

I∗RS

, (15)

I ′RP =
IRP

I∗RP

, R′
0 =

R0t
∗

G∗ , E′
G0 = EG0t

∗, (16)

S′
I =

SII
∗t∗

a0(G∗)2
, b′0 =

a0b0
G∗ , µ =

a0(c0 + i)

(G∗)2
, (17)

σ′ =
σt∗β∗

f

εI∗
, α′ =

α

(G∗)νh
, k′ =

kt∗

ε
, (18)

r′0 =
r0t

∗

εδβ∗
f

, r′1 =
r1G

∗t∗

εδβ∗
f

, r′2 =
r2(G

∗)2t∗

εδ
, (19)

k′ACE2 =
kACE2

k∗ACE2

, k′SARS =
k∗SARSk

∗
ACE2t

∗

I∗RP

, (20)

D′
S =

DS

D∗
S

, k′D =
kDD

∗
St

∗

I∗RP

, (21)

k′G =
kGG

∗t∗

I∗RP

, k′eff = keff t
∗ (22)

where (·)∗ denotes the unit of the corresponding quan-
tity (·), and substituting the above new variables and
parameters into (1) - (4), then dropping the primes,
we arrive at the following model system, equivalent
to (1) - (4).

dG

dt
= R0 −G

(
EG0 + SI

I

G2 + b0G+ µ

)
≡ f(G, I) (23)

dI

dt
= ε

(
σ

βfG
νh

α+Gνh
− kI

)
≡ g(G, I, βf ) (24)

dβf
dt

= εδ

(
− r0 + r1G− r2G

2βf

)
≡ h(G, βf ) (25)

dIRP

dt
= kSARS∆kACE2 + kDDS + kGG− keffIRP

(26)

where now the variables are dimensionless, since we
have scaled out their corresponding units. Their or-
ders of magnitude depend on our choice of the units,
G∗, I∗, . . . and so on. However, their rates of change
are of different orders of magnitude, due to the small
sizes of ε and δ , as well as the sizes of the parameters
appearing in the equations.

We see that, once G is known by solving (23)-
(25), IRP can be found by solving (26), which does
not affect Equations (23)-(25) in any way, we can es-
sentially leave (26) out of the singular perturbation
arguments for the time being and concentrate on the
system of 3 equations (23)-(25) which are now in the
appropriate form on which geometric singular pertur-
bation analysis can be applied in the next section.

3 Model Analysis
3.1 Equilibrium Manifolds
Considering (23) - (25), we see that when f, g, and h

are finite and nonzero,
∣∣∣∣dGdt

∣∣∣∣ = O(1),

∣∣∣∣dIdt
∣∣∣∣ = O(ε),

and
∣∣∣∣dβfdt

∣∣∣∣ = O(εδ), so that, for small ε and δ , G,
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the scaled glucose concentration, has the fastest dy-
namics, while I , the scaled insulin concentration, has
intermediate dynamics, and βf the scaled functional
β -cells density, varies at the slowest speed amongst
the three state variables. Then, for sufficiently small
values of ε and δ, under suitable regularity conditions,
the singular perturbation theory allows approximating
the solution of the system (23) - (25) with a sequence
of simple dynamic transitions occurring at differen-
t speeds. More specifically, for sufficiently small ε
and δ, the solution of the model system will stay with-
in a θ-tube around the approximating transitions for
some small θ , θ > 0, which approaches 0 as ε and
δ tend to zero. For more detailed description of the
singular perturbation theory and the geometric pertur-
bation technique, please see [19, 20]. This method of
analysis allows us to predict how the solution trajec-
tories will appear when the model's state variables are
changing at radically heterogenous time scales. With-
out using this method, many dynamic behavior may
be hidden and cannot be identified. In addition, the
delineating conditions that allow such dynamics may
not possibly be derived explicitly. If the state vari-
ables were treated as having the same dynamics, then
wemaymiss the solution trajectories that could be ob-
served only if one variable were recognized to have a
very slow dynamics in comparison with the other s-
tate variables. Specifically, supported by the values
of the physiological parameters reported in the liter-
ature [6] and [7], the functional beta cells have been
found to possess a very slow dynamics since the size
of its derivative is of order εδ, while glucose has a fast
dynamics since its derivative is O(1). Insulin, on the
other hand, has the intermediate dynamics, its rate of
change is of the order ε, where ε and δ are small and
< 1.

To analyze the model, we first identify and de-
scribe the 3 equilibrium manifolds of interest.

The slow equilibrium manifold
The slow equilibrium manifold is obtained by equat-
ing the right hand side of (25) to zero. Solving it for
βf in terms ofG, we arrive at the following equation.

We observe that, on this manifold, βf = 0 when

G = G∗ ≡
r0
r1

(27)

and βf < 0 ifG becomes smaller thanG∗ . Moreover,
βf → 0 asG → ∞ , and βf → −∞ , asG → 0 . We
can easily find that, on this surface,

dβf
dG

=

(
− r1G+ 2r0

)
r2G

which means the slope of the graph will become 0

when
G =

2r0
r1

≡ Ĝ = 2G∗

βf =
r1G− r0
r2G2

(28)

Thus, the graph of this surface, for appropriate
parametric values, may be depicted as in Fig.1a)

Figure 1: The equilibrium manifolds: a) the slow
manifold, b) the intermediate manifold, c) the fast
manifold.
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By considering (25), we know that when we are
in the front of the surface where βf is large, here
dβf
dt

< 0 , then the transition will take us in the

direction of decreasing βf until the surface dβf

dt = 0

is reached. On the other hand, if we start at the
point behind this surface where βf is small, then
dβf

dt > 0 there and the transition will take us in the

direction of increasing βf until the surface
dβf
dt

= 0

is reached. These transitions will be very slow since∣∣∣dβf

dt

∣∣∣ = O(εδ).

The intermediate equilibrium manifold
The intermediate equilibriummanifold is obtained

by equating the right hand side of (24) to zero. Solv-
ing the resulting equation for I in terms of G, we ar-
rive at the following equation.

I =
σβfG

νh

kα+ kGνh
(29)

We observe that, on this manifold, I →
σβf
k

as
G → ∞ , and I → 0 as G → 0 when βf is constant.
On the other hand, when G is kept constant,I → ∞
as βf → ∞ , and I → 0 as βf → 0 . The graph
of this surface, for appropriate parametric values,
may be depicted as in Fig.1b) Looking at (24), we
see that when we are above this surface where I is
large, dI

dt
< 0 here, and then the transition will take

us in the direction of decreasing I until the surface
is reached where dI

dt
= 0. On the other hand, if we

start at the point below this surface where I is small,
then dI

dt
> 0 there and the transition will take us in

the direction of increasing I until the surface dI

dt
= 0

is reached at which point the transition stops. These
transitions will be made at an intermediate speed

since
∣∣∣∣dIdt

∣∣∣∣ = O(ε) .

The fast equilibrium manifold
The fast equilibrium manifold is obtained by e-

quating the right hand of (23) to zero. Solving the
resulting equation for I in terms of G, we arrive at
the following equation.

I =

(
R0 − EG0G)(a0G

2 + b0G+ µ)

SIG
(30)

We observe that, on this manifold, I → −∞ as

G → ∞ , I → ∞ asG → 0, and I = 0 atG =
R0

EG0
.

Moreover, since (30) does not involve βf , this surface
will be parallel to the βf - axis.

Differentiating I with respect to G gives

dI

dG
=

(
a0R0 − EG0b0

)
G2 − 2a0EG0G

3 −R0µ

SIG2

(31)
Letting

B = −a0R0 − EG0b0
2a0EG0

and D =
R0µ

2a0EG0
(32)

we can thus prove the following result.
Lemma 2 The curve resulting from the intersection
between the fast manifold Ġ = 0 and the slow mani-
fold β̇f = 0 has 2 relative extrema at G = GM1 > 0
and G = GM2 > GM1 > 0 provided (11) holds,

a0R0 − EG0b0 > 0 (33)
and

D < − 4

27
B3 (34)

Proof
From the derivative found in (31), we get that the

relative extrema will occur on the curve if the numer-
ator of (31) vanishes, that is

(a0R0 − EG0b0)G
2 − 2a0EG0G

3 −R0µ = 0 (35)

By (33), we have B < 0 and D > 0, while the
discriminant of (35) is

∂ = −4B3D − 27D2

which is positive since (34) holds. Therefore, we
can conclude that (35) has 2 positive solutions by the
Descartes' Rule of Signs. This means that there exist
2 relative extrema,G = GM1 andG = GM2 , on this
curve with GM1,2 positive. �

Let the two relative extrema on this curve on the
fast manifold be denoted by (GM1, IM1, βfM1) and
(GM2, IM2, βfM2) where

IM1,2 =
(R0 − EG0GM1,2)(a0G

2
M1,2 + b0GM1,2 + µ)

SIGM1,2

(36)
We note that, by (35), GM1,2 satisfy the equation

G3
M1,2 −

R0

2EG0
G2

M1,2 +
R0µ

2a0EG0
= 0

Thus,

R0 − EG0GM1,2 = EG0GM1,2 +
R0µ

a0G2
M1,2

> 0
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By (36), we then see that IM1,2 > 0, which means
both relative extrema are located in the first octant of
the (G, I, βf , IRP )-space in which all state variables
are positive. The graph of this surface, for appropri-
ate parametric values, may be depicted as in Fig. 1c).
If we start at a point to the above and to the right of
the fast manifold, according to (23), dG

dt
< 0 here,

then the transition will take us in the direction of de-
creasing G. On the other hand, starting from the area
below and to the left of the fast manifold, we will be
in the region where dG

dt
> 0 and hence the transition-

s will be in the direction of increasing G. Thus, as
indicated in Fig.1c), we see that the fast manifold has
two stable branches, namely the portion of the surface
where G < GM1 and the one where GM2 < G . It
has one unstable branch where GM1 < G < GM2 .

3.2 Geometric Singular Perturbation
Analysis

We now let I1,2 be the values of I on the intersection
curve between the intermediate and slowmanifolds at
the points where G = GM1,2 , that is

I1,2 =
σβf1

(
GM1,2

)(
GM1,2

)νh

kα+ k
(
GM1,2

)νh
(37)

with
βf1 =

r1GM1 − r0
r2G2

M1

(38)

and also let S(GS , IS , βf,S) be the critical point
where the 3 manifolds intersect, under appropriate
parametric values, where

f(GS , IS) = g(GS , IS , βf,S) = h(GS , βf,S)

The following theorem can then be stated.
Theorem1Themodel system (23)-(25) admits a peri-
odic solution in the form of a limit cycle surrounding
the equilibrium point S(GS , IS , βf,S) , at which the
3 manifolds intersect, provided (11), (33), (34) hold,
and

GM0 > G (39)
I1 < IM1, IM2 < I2 (40)

where G = GM0 is the smallest root of the following
equation:

IM2 =
(R0 − EG0G)(a0G

2 + b0G+ µ)

SIG

Proof
The inequality (40) insures that the graph of the

fast manifold where f = 0, for all βf , will

have, as depicted in Fig.1c), two relative extrema(
GM12, IM12, βfM2

)
. The inequality (39), consider-

ing the definition of G , insures that the value of βf
remains positive when I reaches the height IM2.

The 3 equilibriummanifolds in this case are shown
together in Fig.2a), where the fast manifold f = 0 is
shown in red, the intermediate manifold is in green
and the slow manifold is in blue. The transitiontions
are traced in purple, where the fast transitions are in-
dicated by triple arrows, double arrows indicate ones
with intermediate speed, and a single arrow indicates
a slow transition.

We see clearly in this figure that if inequality (40)
holds, then the green curve where the fast and inter-
mediate manifolds intersect, along which f = g = 0,
lies in the regionwhere themanifold f = 0 is unstable
for allG in an open intervalΩS =

(
GS −ω,GS +ω

)
for some ω > 0 . I1 < IM1 means the intermedi-
ate manifold lies below the fast manifold for G in the
interval

(
GS − ω,GS

)
, whereas IM2 < I2 means

the intermediate manifold lies above the fast manifold
for G in the interval

(
GS , GS + ω

)
. Thus, the curve

f = g = 0 lies in the region where the fast manifold
is stable for G in ΩS .

Starting from a generic initial point marked with
A in Fig.2a), A

(
G0, I0, βf,0

)
∈ B , such that G0 ∈

Ωs, G0 > GS , βf > βf,S , since dG

dt
< 0 here,

a fast transition will develop, in the direction of de-
creasing G, toward the point B on the nearest stable
branch of the manifold f = 0, while I and βf remain
frozen. The transition is made at a fast speed relative-

ly because
∣∣∣∣dGdt

∣∣∣∣ = O(1) .

Once B is reached, the intermediate system has
become active. Here, we are below the intermediate
manifold so that dI

dt
> 0 and a transition is made, in

the direction of increasing I at an intermediate speed,

since
∣∣∣∣dIdt

∣∣∣∣ = O(ε) , until the point C is reached,

where the stability is lost, and a quick jump brings
the system to the other stable branch of the manifold
f = 0 at point D. Here, dI

dt
> 0 and so a mo-

tion at intermediate speed develops down the surface
f = 0 until the point E is reached where the stability
of the manifold is again lost and a quick jump brings
the trajectory to the point F on other stable branch.
Next, for the same reason as before, a transition of
intermediate speed develops on this manifold in the
direction of increasing I again to H just missing the
point C since βf has been slowly decreasing. The
cycling motion repeats while βf decreases slowly, as
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∣∣∣∣dβfdt

∣∣∣∣ = O(ε, δ) , until the manifold f = h = 0

is reached at a point J . A quick jump to K is fol-
lowed by a upward transition to L where the stability
is lost. A quick jump is then made toM followed by a
downward transition at intermediate speed back to J
thereby completing a stable limit cycle JKLMJ sur-
rounding the unstable steady state S

(
GS , IS , βf,S

)
.�

Of equal interest, is the case in which the system
is stable and the state variables all tend towards their
respective steady state values. By similar arguments,
we can prove the following result.
Theorem 2 The model system (23)-(25) admits an
equilibrium solution,

(
GS , IS , βf,S

)
, which is local-

ly asymptotically stable provided (11), (32), (34) and
(39) hold, and the inequalities in either Case 1 or Case
2 below are satisfied.

Case 1: I1 > IM1, and I2 > IM2 (41)
Case 2: I1 < IM1, and I2 < IM2 (42)

Proof
The arguments for Case 1 or Case 2 are essentially

the same. Wewill therefore only showCase 2 here. In
this case, the shapes and positions of the 3 equilibrium
manifolds are as depicted in Fig.2b), for appropriate
parametric values. The inequalities in (42) insure that
a portion of the curve f = g = 0 intersects the curve
f = h = 0 at the point S

(
GS , IS , βf,S

)
that is located

on a stable portion of the fast manifold.
Again, Starting from a generic initial point marked

with A in Fig.2b), A
(
G0, I0, βf,0

)
∈ B , such that

G0 ∈ Ωs , where, say G0 < GS , βf > βf,S since
dG

dt
> 0 here, a fast transition will develop, in the di-

rection of increasing G, toward the point B on the n-
earest stable branch of the fast manifold f = 0, while,
for the time being, I and βf remain frozen.

Once B is reached, the intermediate system has
become active. Here, dI

dt
< 0 and a transition is made

at intermediate speed in the direction of decreasing I ,
until the pointC is reached, where the stability is lost.
As before, a quick jump brings the system to the other
stable branch of the manifold f = 0 at point D.
Here,dI

dt
> 0 and so a motion at intermediate speed

develops upward along the surface f = 0 until
we arrive at the point E on the curve where the
intermediate manifold intersects the fast manifold
and the intermediate dynamic now becomes active.
Since this is still on the stable portion of the fast
manifold, stability is maintained and a transition is
then made slowly along this curve in the direction of

increasing βf , since
dβf
dt

> 0 here. Eventually, the
point where the curve f = g = 0 intersects the slow

manifold so that the 3 manifolds intersect at the point(
GS , IS , βf,s

)
is reached, marked by S in Fig.2b),

where transitions stop since dG

dt
=

dI

dt
=

dβf
dt

= 0

here. Thus, this is the case where the steady state is
locally asymptotically stable. �

Figure 2: The fast (red), intermediate (green) and
slow (blue) manifolds are here shown in the 3-
dimensional space with transitions of fast speed
(triple arrows), intermediate speed (double arrows)
and slow speed (single arrow) in the case that a) the
model system admits a limit cycle surrounding the
steady state S, described in Theorem 1, and b) the
trajectory tends to a stable steady state in case 2 of
Theorem 2

In the next section, we show numerical simulation-
s of the model under investigation to support our the-
oretical predictions.

4 Model Simulation
We present here numerical simulations of the model
system (23) - (26) in various cases mentioned above.
The values of those parameters not involved in the sat-
isfaction of conditions that delineate different dynam-
ic behaviors are estimated or based on those utilized
in the literatures, mainly in [6],[7], and [15]. The
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units of the variables have already been scaled out by
the introduction of new variables and parameters in
(15) - (22). Thus, what units the parameters have de-
pends on the units with which you choose to measure
the state variables, ensuring that both sides of Equa-
tions (23) - (26) have the same units. To specify phys-
iological values for the model parameters, we rely as
much as possible on [6] and [7], where rigorous re-
view of the literature was carried out to identify phys-
iological values for the relevant parameters in their
model. Since information for some parameters is lim-
ited, most were based on empirical observations and
their values were derived using well established sta-
tistical methodologies [7]. Some of the parameters
are here varied to satisfy the inequalities required for
each of the cases to hold. The variations reflect vari-
ous symptoms of the patients which will be explained
accordingly.

It must be mentioned here that, according to Vice-
conti et al. [21], the utilization of integrative ap-
proaches to biomedical research creates the need to
manage large amounts of data that are radically het-
erogeneous in structure, complicated by the fact that
more often than not these data are measured or ob-
served at very different dimensional and/or temporal
scales. Their study in [21] describes a first attempt at
providing a strategical environment for homogeneous
biomedical data defined over radically different spa-
tial or temporal scales. New strategies for the man-
agement are currently discovered and developed for
the management of temporal multi-scaling or highly
heterogenous data types. It is, however, beyond the
scope of our research.

The model system (23) - (26) is simulated with
parametric values satisfying inequalities identified in
Theorem 1, in which case themodel system is predict-
ed to admit limit cycles towards which the solution
trajectory tends as time progresses, as seen in Fig.3.
The corresponding time series of the 4 state variables
are shown in Fig.4, exhibiting sustained oscillation
mimicking clinical data reported in several literatures.

Here, G0 = 2, I0 = 2, βf0 = 3, IRP0 = 1,
t0 = 0, R0 = 1.12, SI = 0.889, EG0 = 0.054,
a0 = 1, b0 = 0.2347, c0 = 0.000313, i = 0.000187,
σ = 0.20592, α = 0.0017, k = 6.5, r0 = 0.00001,
r1 = 0.0884, r2 = 0.024, kD = 0.001,
kSARS = 0.15, kACE2 = 0.4, kACE2,0 = 0.385,
DS = 0.0372, kG = 0.1, keff = 0.689,∆ = 1,
ε = 0.001, δ = 0.8 .

The inflammatory response IRP also oscillates as
time passes. This reflects a control system which is
working comparatively efficiently, in which an in-
crease in the glucose level triggers the beta cells to be-
come functional and secrete insulin in response. The
rise in insulin is then followed by the satisfactory drop
in the glucose level. It is then no longer necessary for

the beta cells to produce the hormone insulin, the lev-
el of which then drops with a little time lag following
the glucose drop.

The numerical solution of (23) - (26) in Case 2,
where inequalities identified in Case 2 of Theorem 2
are satisfied, is shown in Fig.5 and 6. Case 1 is simi-
lar, so that the simulation has been omitted.

Figure 3: Numerical solution of (23) - (26) in the case
that the inequalities in Theorem 1 are satisfied. The
solution trajectory is seen here to tend towards the sta-
ble limit cycle as time passes as theoretically predict-
ed.

Here, G0 = 0.1, I0 = 0.1, βf0 = 0.1,
IRP0 = 0.2, t0 = 0, R0 = 1.6, EG0 = 0.8,
SI = 0.04998, a0 = 1, b0 = 0.00001,
c0 = 0.000413, i = 0.000087, σ = 0.00352, α = 2,
k = 11, r0 = 0.001, r1 = 0.0884, r2 = 0.074,
kSARS = 0.15, kACE2 = 0.4, kACE2,0 = 0.385,
kD = 0.001, DS = 0.0372, kG = 0.1,
keff = 0.689,∆ = 1, ε = 0.31, δ = 0.28.

We can observe clearly here that there is a definite
delay after the level of glucose in the bloodstream
increases before insulin is secreted in response. The
difference from the previous case where sustained
oscillation is exhibited is that the value ofR0 is larger,
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Figure 4: The time courses of a) glucose concentra-
tion, b) insulin concentration, c) functional beta cells,
and d) the inflammatory response, in the case shown
in Fig.3. All 4 state variables are seen to oscillate pe-
riodically as time progresses.

which drives glucose to increase more quickly, while
a smaller SI has the effect of slowing down the
response of insulin. Moreover, σ is verymuch smaller
whichmeans the increase inG is felt to a lesser degree
by the rate of insulin production, so that it can manage

to bring down the glucose level only a little before it
settles to a rather high steady state level. More impor-
tantly, we see that the inflammatory response is able
to rise up to a sustainably high level, which is not de-
sirable in the clinical point of view of a patient with
comorbidity with COVID-19.

Figure 5: Numerical solution of (23) - (26) in the
case that the inequalities in Theorem 2 are satisfied.
The solution trajectory is seen here to tend towards
the locally asymptotically stable steady state as time
passes as theoretically predicted.

5 Discussion and Interpretation
Considering the conditions (34) and (39) in both
Theorem 1 and Theorem 2 which ensure that the
solutions remain bounded and local stability is main-
tained, we see that we must have
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Figure 6: The time courses of a) glucose concentra-
tion, b) insulin concentration, c) functional beta cells,
d) and the inflammatory response, in the case shown
in Fig.5. All 4 state variables are seen to tend toward
their respective steady state values as time progresses.

µ <
a0R

2
0

27E2
G0

(43)

for (34) to hold, and

r0 < r1GM0 (44)
for (39) to hold. Inequality (43) will be satisfied if
µ , the sum of c0 and i, should be sufficiently small
so that it is smaller than the quantity on the right of
the inequality (43). This means that the zero glucose
coefficient in the numerator of the last term in (23),
reflecting insulin resistance, is sufficiently small.
Essentially, insulin resistance should be sufficiently
small when negligible glucose is present.

In addition, r0 , the death rate ofβ-cells at zero glu-
cose, must be small in comparison to r1, the first order
coefficient for β-cells replication. This means β-cells
should be slow in dying and, at the same time, they
should be able to replicate quickly even with low glu-
cose activation. If the above conditions are not met,
the system should be recognized as defective. Abnor-
mal dynamics could be expected if these 2 conditions
are violated. Moreover, considering the position of
the slow manifold given by (28) relative to the fast
and intermediate manifolds in the phase space, we can
see that trajectories, traced by the singular perturba-
tion arguments, will develop in away that is indicative
of symptoms of serious insulin resistance if

βf

∣∣∣
g=0

=
I
(
Ĝ
)(
kα+ kĜνh

)
σĜνh

>
r1Ĝ− r0

r2Ĝ2
= βf

∣∣∣
h=0

(45)

which reflects a disfunctional control system since it
appears not to be able to produce insulin, or activate
the β-cells to do so to decrease the glucose level in the
bloodstream. Condition (45) can be achieved if k is
sufficiently large or σ is sufficiently small, in which
case k ≫ 1 or σ ≪ 1 insulin is not secreted sufficient-
ly in response to high glucose and consequently, in-
sulin level continues to drop necessitating exogenous
insulin supplements to bring the system under con-
trol. We show a simulated time series of the model's
solution in this scenario in Fig.7 withG0 = 0.8, I0 =
0.5, βf0 = 0.01, IRPO = 2, t0 = 0, R0 = 2, EG0 =
0.06, SI = 0.01, a0 = 1, b0 = 0.00001, c0 =
0.000313, i = 0.000187, σ = 0.009, α = 0.07, k =
8, r0 = 0.007, r1 = 0.018, r2 = 0.074, kSARS =
0.15, kACE2 = 0.4, kACE2,0 = 0.385, kD =
0.001, Ds = 0.0372, kG = 0.1, kff = 0.689, δ =
1, ε = 0.21, δ = 0.28.

Considering (26), the presence of high ACE2 in-
hibitor can contribute to high rate of inflammatory
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response increase. ACE inhibitors are a class of drug
known to cause inflammation and allergic reactions
[23]. Fine tuning of the drug therapy may be a good s-
trategy to compensate for worrisome constant inflam-
matory activation, in the case where the rise of glu-
cose level is unchecked and insulin level is persistent-
ly low.

Although inflammation is beneficial, since it pro-
tects against infection and injury, when that response
is constantly triggered, it can be harmful the body in-
stead of healing it in the long run. As reported in
[24], the prolonged inflammatory activation and sub-
sequent response commonly result in increased sus-
ceptibility to coronavirus infection leading to more
severe respiratory failure and end-organ damage in
patients with SARS-CoV-2.

Figure 7: The time courses of (a) glucose concen-
tration, (b) insulin concentration, (c) functional beta
cells, and (d) the inflammatory response, in the sce-
nario in which the glucose level quickly rises while
insulin drops and the inflammatory response rises to
a high level.

6 Conclusion
A model of insulin-glucose control system, incorpo-
rating inflammatory response, which, when triggered
constantly, over time, can harm the body instead of
healing it, has been studied. The inflammatory acti-
vation and subsequent response, may more common-
ly than not lead to increased susceptibility to coron-
avirus infection. Theoretical analysis by the geomet-
rical singular perturbation technique, well suited for
such systems subject to highly diversified time scales,
has been carried out, and numerical simulations dis-
cussed in terms of the delineating conditions on the
system's parameters. The state variables tracked by
our model, the glucose and insulin concentrations, the
functional β cells and the inflammatory response will

eventually tend asymptotically to their corresponding
steady state values, or oscillate in a bounded fashion,
provided that the zero glucose coefficient in the nu-
merator of the last term which represents insulin re-
sistance, in the rate equation for glucose level, is suffi-
ciently small. Essentially, insulin resistance should be
sufficiently small when negligible glucose is present.

The conditions that are indicative of a dysfunction-
al system, appearing not to be able to produce insulin,
or activate the β-cells to do so to decrease the glucose
level in the bloodstream, are manifested if k is too
large or σ is too small, in which case k ≫ 1 or σ ≪ 1.
Insulin is not secreted sufficiently in response to high
glucose and consequently, insulin level continues to
drop necessitating exogenous insulin supplements to
bring the system under control.

Further research could involve investigating the
impacts of food intakes and exercises, as well as tem-
poral drug administrations and periodic hormone sup-
plements, which can be incorporated in to the model
derived here with relative ease. Such studies can lead
to additional insights and valuable suggestions of ef-
ficient treatment protocols for patients who could be
exhibiting various symptoms of comorbidity.
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