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Abstract: We investigate therapeutic effects of monotherapy of oncolytic viruses, of adopted cell transfer, as well
as the two combined therapies over a short time treatment period by applying optimal control techniques. The
goal is to minimize the number of susceptible tumor cells and the costs associated with the therapy over the
treatment period. We verify that there exists an optimal control pair and derive the necessary conditions. The
optimality system is solved numerically to provide optimal protocols under different scenarios with respect to
initial tumor sizes and parameter values. Although the two types of therapy do not work synergistically when
the viral killing rate by immune cells is large, a small anti-viral killing can improve therapy success of either
monotherapy of oncolytic viruses or combined therapy of oncolytic viruses and adopted T cell transfer. This
finding can be accomplished either bymanipulating certain genes of viruses via genetic engineering or by chemical
modification of viral coat proteins to avoid detection by the immune cells.
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1 Introduction

Cancer immunotherapy is a promising strategy to
treat cancer of various types. It consists of activat-
ing and harnessing the immune system to fight can-
cers [7, 31]. The therapy takes on several differ-
ent approaches such as immune checkpoint inhibitors,
adoptive cell transfer, monoclonal antibodies, cancer
vaccines, and oncolytic virus therapy (OVT) [7, 31].
Adoptive cell transfer (ACT) is implemented through
selecting and expanding patients’ own tumor-specific
T cells in vitro and then reinfusing back into pa-
tients to boost the patients’ own immune ability to
target cancer [16, 33]. Oncolytic viruses (OVs), on
the other hand, are genetically engineered or natu-
rally occurring viruses that selectively replicate in
and kill cancer cells without harming the normal
tissues [12, 31]. In recent years, an array of on-
colytic viruses have demonstrated anti-tumor effi-
cacy, including adenoviruses, herpes simplex viruses,
measles viruses, vesicular stomatitis virus and New-
castle disease virus [5, 14, 17, 31]. Compared with
conventional treatment strategies, immune system ac-
tivating agents produced by oncolytic viruses enable
the infected tumor cells to be localized and concen-
trated, reducing possible side effects. In 2015, the
USAFood and DrugAdministration (FDA) approved
Talimogene Laherparepvec (T-VEC), an herpes sim-
plex virus, as the first oncolytic virus for the treatment
of advancedmelanoma [1, 10]. Awide variety of OVs

are currently going through studies in phase I/II clin-
ical trials or in preclinical cancer models [1].

The interaction between tumor and tumor mi-
croenvironment is a very complicated process and this
activity is changing rapidly. Mathematical modeling
provides a valuable tool for understanding the com-
plex interaction among the many components of the
tumor microenvironment [8, 13]. Mathematical mod-
els can represent a natural phenomena by an equation
system. This process can allow a more efficient and
accurate analysis of the phenomenon. In addition to
clinical and experimental research, mathematical and
computational models can be very useful in studying
various mechanisms involved in cancer development
and can be used to illuminate the underlying dynamics
of therapy systems, which can lead to more optimal
treatment strategies.

The immune system interacts intimately with tu-
mors over the entire process of disease development
and progression. This complex cross talk between im-
munity and cancer cells can both inhibit and enhance
tumor growth [7, 15, 36]. Recently, Vithanage et al.
[37] proposed and investigated a mathematical model
of tumor-immune system interactions with oncolytic
viral therapy, wherein the immune cells can either be
simulated to proliferate or be suppressed to increase
their mortality. They concluded that reducing the vi-
ral killing rate by immune cells always increases the
effectiveness of the viral therapy. The reduction of
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anti-viral killing rate can be obtained by either ma-
nipulating certain genes of viruses via genetic engi-
neering or by chemical modification of viral coat pro-
teins to evade recognition by the immune cells [37].
However, their conclusion is based on the long term
dynamical behavior of the tumor by analyzing the dy-
namical system of ordinary differential equations both
analytically and numerically.

The goal of this work is to study short term effects
of the therapy using optimal control theory. Several
researchers have applied optimal control techniques
to study OVT strategies [23, 28, 35]. For example,
Kim et al. [23] investigated a tumor-immune system
model with viral and immunotherapy in an optimal
control setting. The immune cells in their model do
not kill viruses and the infection rate is modeled by a
simple mass action. Malinzi et al. [28] applied opti-
mal control theory to study a model of tumor-immune
system interactions with viral therapy and chemother-
apy and they demonstrated numerically that viral ther-
apy can enhance chemotherapy. Su et al. [35], on
the other hand, studied a model with oncolytic viral
therapy along with MEK inhibitor and compared op-
timal control strategy on the dosage of MEK inhibitor
with the constant control strategy. Their simulations
showed that the optimal control has better control ef-
fect than constant control.

In this investigation, the immune cells can kill
viruses from the oncolytic therapy and the viral infec-
tion rate is modeled by a Michaelis-Menten kinetics.
Specifically, the model of no optimal control is based
on the work of Vithanage et al. [37] in which there
are three boundary equilibria whereas the number of
positive equilibria cannot be determined analytically.
We will devise a best immunotherapy using optimal
control theory techniques. In the following section,
the mathematical model in [37] is revisited. An op-
timal control problem is introduced in Section 3 and
the existence of an optimal control pair is verified. We
apply the Pontryagin’s maximum principle to derive
the necessary conditions and the optimality system in
the subsections. Section 4 presents numerical exam-
ples to illustrate monotherapy of OVT, of ACT, and a
combination of OVT andACT. The paper ends with a
summary and conclusions in the final section.

2 AMathematical Model
We first provide a brief description of the model stud-
ied in [37].

The tumor cells are classified into susceptible x
and infected y. The compartment of free viral parti-
cles is denoted by v, and z is the collection of immune
cells including both the innate and adaptive immune
cells. The units of cell populations are numbers of
cells and the unit of viral particles is given by pfu, the
plaque-forming unit, with day as the time unit.

The susceptible tumor population x grows logis-
tically with intrinsic growth rate r and carrying ca-
pacity 1/b for all tumor cells [26, 30, 34, 38, 40].
The mass action kinetics has been used by numer-
ous researchers [22, 32, 34, 38] to describe viral in-
fection of susceptible tumor cells. However, virus
spread is likely to be slower, limited by spatial con-
straints [39]. Since viruses released from one infected
cell cannot reach all susceptible tumor cells, the in-
fection rate must be a saturating function of suscep-
tible tumor cells [39]. As in [37], the infection pro-
cess is modeled by a Michaelis-Menten term with a
half saturation constant g and a maximum infection
rate β. How the immune cells detect cancer cells
and kill them is a complicated process [7]. It is as-
sumed that the tumor killing by immune cells follows
a mass action law [13, 25] and let k denote the rate by
which susceptible tumor cells are killed by immune
cells. The corresponding killing rate of infected tu-
mor cells by immune cells is given by c. The infected
tumor cells have an extra death rate a due to infection
[30, 32, 34, 38].

Upon lyses, new progeny virions are released from
infected tumor cells and the viral burst size per in-
fected tumor cell is denoted by q [30, 32, 34, 38]. Im-
mune cells recognize viruses as foreign pathogens and
mount strong anti-viral responses which can eventu-
ally kill viruses from the OVT. We model this killing
by the law of mass action with rate γ [3]. The natural
death rates of viruses and immune cells are constant
and are denoted by δ and d, respectively [34, 38]. As
in [13, 25], it is assumed that there is a constant sup-
ply of immune cells from the lymph nodes into the tu-
mor microenvironment at a rate s. When OVs infect
and destroy cancer cells, specific antigens are released
into the tumor microenvironment allowing immune
cells to be activated [14, 29]. We use a Michaelis-
Menten mechanism to model this activation from in-
fected tumor cells [22, 30, 34] with p denoting the
maximum rate and h the half saturation constant.

There are numerous mechanisms used by tumors
to counter effect immune cells [7, 19]. Therefore, im-
mune cells can either be stimulated to proliferate or be
impaired to reduce their growth by susceptible can-
cer cells. A combination of stimulation and suppres-
sion on growth between cancer and immune cells may
act simultaneously and may be modeled by the sim-
ple mass action at a rate m [13, 37]. The net growth
increases or decreases due to presence of cancer cells
can either be positive (m > 0), negative (m < 0) or
null (m = 0). Negative m indicating tumor cells ex-
ert significant effect on the immune system leading to
immunosuppression.

Based on the above descriptions, the model takes
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the following form

x′ = rx
(
1− b(x+ y)

)
−

βxv

g + x
− kxz

y′ =
βxv

g + x
− ay − cyz

v′ = qay − δv − γvz

z′ = s− dz +mxz +
pyz

h+ y

(1)

with the initial condition x(0) > 0, y(0) ≥ 0, x(0)+
y(0) < 1/b, v(0) ≥ 0, z(0) ≥ 0. All of the parame-
ters r, b, β, k, a, c, q, δ, γ, s, d, p, h are positive
exceptmwhich can be any real number. The negative
m indicating the net effect of tumor on immune cells
decreases their growth.

The authors in [37] provided several sufficient
conditions in terms of model parameters for which
the tumor can be eradicated for all sizes, that is,
lim
t→∞

x(t) = 0 for all 0 < x(0) < 1/b. In particular,

if m < 0 and k >
r(bd−m)

sb
, then the tumor-free

equilibrium E0 = (0, 0, 0, s/d) is globally asymptot-
ically stable [37, Theorem 3.3]. However, it may take
a very long time, longer than a patient’s life time, to
eliminate the tumor.

3 Optimal Control Problem
As elaborated above, the eradication results derived in
[37] are with respect to the long term dynamics of the
tumor, which may not be applicable in real life sce-
nario. The aim of this section is to apply optimal con-
trol techniques to understand short term effects of im-
munotherapy relative to tumor regression. The goal is
to minimize the number of susceptible tumor cells and
the costs associatedwith immunotherapies over the fi-
nite treatment period [0, T ], where T > 0 is fixed.

Let s1 ≥ 0 and s2 ≥ 0 be the strengths of oncolytic
viral therapy (OVT) and immunotherapy of adoptive
cell transfer (ACT) respectively with s1 + s2 > 0.
Denote u1(t) and u2(t) the controls for the OVT and
ACT, respectively. In particular, the units of s1 and s2
are pfu day−1 and cell day−1 respectively, whereas u1
and u2 are dimensionless. The state equations take the
following form

x′ = rx
(
1− b(x+ y)

)
−

βxv

g + x
− kxz

y′ =
βxv

g + x
− ay − cyz

v′ = qay − δv − γvz + s1u1(t)

z′ = s− dz +mxz +
pyz

h+ y
+ s2u2(t)

(2)

and the initial condition are given by x(0) >
0, y(0) ≥ 0, x(0)+y(0) < 1/b, v(0) ≥ 0, z(0) ≥ 0.
Since the goal is to minimize susceptible tumor size
as well as the costs of implementing immunotherapies
over the treatment period [0, T ], the objective func-
tional is written as

J(u1, u2) =

∫ T

0
(x(t)+

c1
2
(u1(t))

2+
c2

2
(u2(t))

2)dt,

(3)
where (u1, u2) belonging to the class

U = {(u1, u2) : ui(t)is piecewise continuous with
0 ≤ ui(t) ≤ 1 on [0, T ], i = 1, 2}. (4)

The parameters c1 ≥ 0 and c2 ≥ 0 are the weighted
constants used to balance the contributions between
the two types of treatment. We assume ci > 0 if si >
0. The optimal control problem consists of

min
(u1,u2)∈U

J(u1, u2) (5)

subject to the state equations (2).
Once the optimal control problem is specified, we

proceed to discuss the existence of optimal controls,
their characterizations and the optimality system in
the following subsections.

3.1 Existence of optimal control pair

Classical theory of optimal control [11] can be applied
directly to study the problem formulated in (2)–(5).
We first verify the existence of an optimal control pair.

Theorem 3.1. There exists an optimal control pair for
the problem (2)–(5).

Proof. It is enough to show that the following condi-
tions given in Corollary 4.1 of [11] are satisfied.

(a) The set of all initial conditions with a control pair
(u1, u2) ∈ U for which the state equations being
satisfied is nonempty.

(b) U is closed and convex.

(c) The right hand side of each of the state equations
is continuous, bounded above by the sum of the
control and the state, and can be written as a lin-
ear function of u1(t), u2(t) with coefficients de-
pending on time and the state.

(d) The integrand of J(u1, u2) is convex in U and
is bounded below by −k2 + k1|(u1, u2)|η with
k1 > 0 and η > 1.

Clearly for each fixed initial condition and control
pair, (1) has a unique solution on [0, T ] and (a) is
satisfied. Moreover, as x′|x=0 = 0, y′|y=0 ≥ 0,
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v′|v=0 ≥ 0 and z′|z=0 > 0, solutions remain non-
negative on [0, T ]. It is obvious that (b) is true and
(d) is satisfied with η = 2. To verify (c), notice
x(t) > 0, y(t) ≥ 0, v(t) ≥ 0, z(t) ≥ 0 and
0 < x(t) + y(t) < 1/b for all t ∈ [0, T ]. Thus
x′ ≤ rx, y′ ≤ βv − ay, v′ ≤ qay − δv + s1u1(t),
and z′ ≤ s − dz + pz + s2u2(t) for m < 0 while
z′ ≤ s− dz +mz/b+ pz + s2u2(t) ifm ≥ 0, i.e.,


x′

y′

v′

z′

 ≤ M


x

y

v

z

+


0

0

s1u1(t)

s+ s2u2(t)

 ,

where

M =


r 0 0 0

0 −a β 0

0 qa −δ 0

0 0 0 −d+m/b+ p

 ifm ≥ 0

and

M =


r 0 0 0

0 −a β 0

0 qa −δ 0

0 0 0 −d+ p

 ifm < 0.

Let X = (x, y, v, z)tr, the transpose of (x, y, v, z).
Then

||
dX

dt
|| ≤ ||M || · ||


x

y

v

z

 ||+ ||


0

0

s1u1
s+ s2u2

 ||.

Thus (c) is verified and there exists an optimal control
pair for the control problem (2)–(5) by [11, pages 68-
69].

3.2 The adjoint system and characterization

of control pair

We apply the Pontryagin’s maximum principle to de-
rive necessary conditions [27]. Let (λ1, λ2, λ3, λ4)
denote the adjoint vector. The Hamiltonian of the op-

timal control problem (2)–(5) is

H(x, y, v, z, u1, u2, λ1, λ2, λ3, λ4)

= x+
c1

2
u21 +

c2

2
u22

+λ1

(
rx(1− b(x+ y))−

βxv

x+ g
− kxz

)
+λ2

(
βxv

x+ g
− ay − cyz

)
+λ3

(
qay − δv − γvz + s1u1

)
+λ4

(
s− dz +mxz +

pyz

h+ y
+ s2u2

)
(6)

where the adjoint variables satisfy

λ′
1 = −

∂H

∂x
, λ′

2 = −
∂H

∂y
,

λ′
3 = −

∂H

∂v
, λ′

4 = −
∂H

∂z
,

with the transversality conditions

λi(T ) = 0 for 1 ≤ i ≤ 4.

Setting
∂H

∂ui
= 0, i = 1, 2, we obtain u1 =

− λ3s1

c1
and u2 =

− λ4s2

c2
. Since the controls u1 and

u2 are bounded, 0 ≤ u1, u2 ≤ 1, the characterization
of the optimal control pair is therefore given by

u∗1(t) = min

{
1,max{0, −s1λ3

c1
}
}

u∗2(t) = min

{
1,max{0, −s2λ4

c2
}
} (7)

provided ci > 0, i = 1, 2. The above discussion is
summarized as follows.

Proposition 3.1. Given an optimal control pair
(u∗1, u

∗
2) and solutions of the corresponding state

equations (2), there exist adjoint variables λi, 1 ≤
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i ≤ 4, satisfying

λ′
1 = −1−

βgv

(g + x)2
λ2 −mzλ4

−
(
r(1− 2bx− by)

βgv

(g + x)2
− kz

)
λ1

λ′
2 = λ1rbs+ (a+ cz)λ2 − qaλ3 −

phz

(h+ y)2
λ4

λ′
3 =

βx

g + x
λ1 −

βx

g + x
λ2 + (δ + γz)λ3 (8)

λ′
4 = kxλ1 + cyλ2 + γvλ3

− (−d+mx+
py

h+ y
)λ4

λi(T ) = 0, 1 ≤ i ≤ 4.

Moreover, u∗1 and u∗2 are represented by (7).

The optimality system consisting of the state and
adjoint equations is given as

x′ = rx
(
1− b(x+ y)

)
−

βxv

g + x
− kxz

y′ =
βxv

g + x
− ay − cyz

v′ = qay − δv − γvz

+ s1min

{
1,max{0, −s1λ3

c1
}
}

z′ = s− dz +mxz +
pyz

h+ y

+ s2min

{
1,max{0, −s2λ4

c2
}
}

λ′
1 = −1− λ1

(
r(1− 2bx− by)− βgv

(g + x)2
− kz

)
− λ2

βgv

(g + x)2
−mzλ4 (9)

λ′
2 = rbxλ1 + (a+ cz)λ2 − qaλ3 −

phz

(h+ y)2
λ4

λ′
3 = λ1

βx

g + x
− λ2

βx

g + x
+ λ3(δ + γz)

λ′
4 = hxλ1 + cyλ2 + γvλ3

− λ4(−d+mx+
py

h+ y
)

with boundary conditions x(0) > 0, y(0) ≥
0, v(0) ≥ 0, z(0) > 0, x(0)+y(0) < 1/b, λi(T ) =

0, 1 ≤ i ≤ 4. The optimality system (9) yields a
two-point boundary value problem. It can be verified
as in [2, 20] that the solution of (9) is unique if T > 0
is small.

4 Numerical Investigations
We apply the numerical technique of backward-
forward sweep method described in [27] combined
with the fourth-order Runge-Kutta scheme to numer-
ically solve the optimality system (9).

Before numerical explorations, a plausible range
of parameter values and their sources are provided in
Table 1 with the baseline values given in equation
(10). There is a wide range of tumor growth rates
in the literature. For example, r = 0.18 in [25],
r = 0.514 in [6, 13], and r ∈ (0.69, 0.97) are adopted
in [9]. In the review paper [9], tumor growth rates of
0.23, 0.43 and 1.636 are simulated in the numerical
examples to demonstrate model outcomes. Motivated
by the work in [21], the tumor growth rate is estimated
using the doubling time of about 48-60 hours of the
BxPC-3 cell line [4] by assuming an initial exponen-
tial growth phase. These parameter values were also
adopted in the numerical investigations in [37].

Parameter Value Reference

r 0.2773–0.3466 day−1 [37]

b 1.02× 10−9 cell−1 [6]

β 6×10−12–0.862 cell pfu−1day−1 [9]

k 10−5–10−3 cell−1day−1 [13]

a 1.333–2.6667 day−1 [13]

c 0.0096–4.8 cell−1day−1 [13]

q 10–1350 pfu day−1 [13]

δ 0.024–24 day−1 [34]

γ 0.024–48 cell−1day−1 [34]

m -1–1.5×10−9 cell−1day−1 [13]

p 2.4×10−4–2.5008 day−1 [34]

h 20–5×104 cell [34]

s 5×103 cell day−1 [13]

d 2 day−1 [13]

g 40–105 cell [30]

s1 varied pfu day−1

s2 varied cell day−1

u1 0–1 dimensionless [27]

u2 0–1 dimensionless [27]

Table 1: Parameters values and their sources

The baseline parameter values are given by

r = 0.346, b = 1.02× 10−9, a = 1.333, c = 1.8,

q = 100, d = 2, δ = 1.83, p = 2.4× 10−4, (10)

h = 5× 104, g = 105, s = 5× 103,

and we vary the parameter values of β, γ, m and k.
Unless otherwise stated, c1 = 10 and c2 = 10 are
used when the corresponding therapy is applied. The
values of c1 and c2 are chosen arbitrary. However,
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if we vary these values we obtain similar simulation
results.

In [24], 5 × 106 human BxPC-3 cells of pancre-
atic ductal adenocarcinoma were injected into mice
subcutaneously. When the tumor had grown to a di-
ameter of 5–7 mm, two different oncolytic viruses at
a MOL of 108 pfus were injected subcutaneously to
different groups of mice. Therefore, the dosage s1 of
OVT is varied around 108 pfus. In [18], 105 to 2×106

number of T cells were infused to the experimental
mouse. In our numerical examples, the values of s1
and s2 are hypothetical but are close to the values of
above experiments.

We first consider the monotherapy of OVT, of
ACT, and then the combined immunotherapy of OVT
and ACT in the following subsections.

4.1 Monotherapy of oncolytic viruses

We explore the situation when only the OVT is ap-
plied by letting c2 = s2 = 0.

First, consider the strength s1 of OVT as s1 = 108

with a fixed treatment period of 100 days, i.e., T =
100. Unless otherwise stated, the initial condition is
chosen as

(x(0), y(0), v(0), z(0)) = (2× 107, 0, 0, 300),

which is the larger tumor size given in the numerical
examples of [37]. The simulation results are provided
in Figures 1–4, where the susceptible tumor sizes of
no therapy denoted by x(t) and of optimal OVT repre-
sented by x∗(t) are plotted in the top row. The bottom
row plots the corresponding optimal controls u∗i (t).
Figure 1 shows that the OVT has to be performed dur-
ing the whole treatment period in order to control the
tumor. Notice that the susceptible tumor is increas-
ing in Figure 1(b) and 1(c) when there is no therapy,
and it is either stabilized in Figure 1(b) or slowly de-
creases in Figure 1(c) during the whole treatment pe-
riod. With the parameter values in Figure 1(d), the
tumor size is decreasing slowly when no OVT is ap-
plied. However, the OVT has to be applied for the
whole treatment period in order to reduce the suscep-
tible tumor size more effectively.
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Figure 1: s1 = 108 and β = 0.6 with γ = 0.9 in (a),
(b) and (d), and γ = 0.7 in (c). (a)m = −10−6, k =
10−5. (b)–(c) m = 10−9, k = 1.33 × 10−4. (d)
m = 1.5× 10−9, k = 1.33× 10−4.
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Figure 2: Parameters s1 = 108 and γ = 0.05 are
fixed. (a) m = −10−6, β = 0.6, k = 1.33 × 10−4.
(b) m = 10−9, β = 0.6, k = 1.33 × 10−4 with
T = 65. (c) m = 10−9, β = 0.8, k = 1.33 × 10−4.
(d)m = −10−6, β = 0.8, k = 10−3.

Next, s1 = 108 with γ = 0.05 are simulated and
the results are provided in Figure 2. The viral killing
rate by immune cells is smaller than in Figure 1 and
we can see that the OVT is more effective. Particu-
larly, the treatment period can be shortened to 65 days
in Figure 2(c) as the susceptible tumor cells are erad-
icated by day 60 using the OVT alone. Comparing
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Figure 2(c) and (d), there is a change in tumor killing
rate k but a huge difference between the two treatment
outcomes even though the tumormicroenvironment is
more immunosuppressive in Figure 2(d).

In Figure 3 we choose the viral infection rate β as
0.8 and let γ = 0.05 with various values of m and
k. When the tumor killing rate k is increased from
10−4 to 1.33 × 10−4, the susceptible tumor is eradi-
cated by day 45 shown in Figure 3(a) and (b). If tumor
is more immunosuppressive but with a larger tumor
killing rate k = 10−3, the tumor can be eliminated by
day 10 as illustrated in Figure 3(d). On the contrary,
the tumor cannot be eradicated if the tumor killing rate
is smaller with k = 10−4 in Figure 3(c).
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Figure 3: s1 = 108, β = 0.8 and γ = 0.05. (a) m =
10−9, k = 10−4. (b) m = 10−9, k = 1.33 × 10−4

with T = 45. Notice that x∗(t) becomes extinct by
t = 45. (c)m = −10−6, k = 10−4. (d)m = −10−6,
k = 10−3, T = 20.

In the next figure, Figure 4, we let β = 0.6,
m = −10−6 but with a smaller initial tumor size
(107, 0, 0, 300). In this scenario, the susceptible tu-
mor is oscillating over the treatment period with sizes
smaller than the tumor with no treatment. In addition,
the therapy needs not to be implemented for the whole
treatment period. There are short periods of times
when no therapy is required. We also simulated the
cases that correspond to Figure 4 with c1 = 100. Sim-
ilar results are obtained and they are not presented.
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Figure 4: s1 = 106, β = 0.6, m = −10−6, and
(x(0), y(0), v(0), z(0)) = (107, 0, 0, 300). (a) k =
10−5, γ = 0.15 . (b) k = 10−4, γ = 0.15. (c)
k = 10−5, γ = 0.25. (d) k = 10−4, γ = 0.25. The
susceptible tumor without treatment and with OVT
are given by x(t) and x∗(t) respectively.
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Figure 5: s1 = 106, m = −10−6, k = 10−5, and
(x(0), y(0), v(0), z(0)) = (107, 0, 0, 300) are fixed.
(a) β = 0.58, γ = 0.15. (b) β = 0.61, γ = 0.15. (c)
β = 0.6, γ = 0.16. (d) β = 0.6, γ = 0.17. The sus-
ceptible tumor without treatment and with OVT are
given by x(t) and x∗(t) respectively

Figure 5 presents simulation results with a smaller
tumor size x(0) = 107 under different scenarios. The
only difference between (a) and (b) is the viral infec-
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tion rate, where β is 0.58 in (a) and 0.61 in (b), and
their effect is small with respect to the timing of ther-
apy as well as susceptible tumor size. In (c) and (d),
the viral infection rate β is the same but with differ-
ent viral killing rate γ. It is 0.16 in (c) and 0.17 in (d).
With a slight larger viral killing rate, the viral therapy
will need to apply for a longer period of time in order
to control the tumor.

4.2 Monotherapy of adopted cell transfer

In this subsection, monotherapy of adopted immune
cell transfer (ACT) is considered, i.e., c1 = s1 = 0.
If there are no virus and infected tumor cells initially,
v(0) = 0 = y(0), then since onlyACT is applied, it is
sufficient to consider the xz-subsystem with ACT. In
particular, parameter values of β and γ will not affect
treatment outcome.
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Figure 6: (a) m = −10−6, k = 10−5,
s2 = 108, and (x(0), y(0), v(0), z(0)) = (2 ×
107, 0, 0, 300). (b) m = −10−6, k = 10−5,
s2 = 108, (x(0), y(0), v(0), z(0)) = (108, 0, 0, 300).
(c) m = 10−9, k = 10−5, s2 = 108,
(x(0), y(0), v(0), z(0)) = (2 × 107, 0, 0, 300).
(d) m = 10−9, k = 10−5, s2 = 105,
(x(0), y(0), v(0), z(0)) = (108, 0, 0, 300). The sus-
ceptible tumor without treatment and with OVT are
given by x(t) and x∗(t) respectively

The parameter values m = −10−6 and k = 10−5

are fixed in Figure 6(a)-(b) and we vary s2 and the ini-
tial susceptible tumor size. In this scenario, the crit-
ical immune cell size needed to eradicate susceptible
tumor cells derived in [37] is 3.3991×107. From Fig-
ure 6(a), we see that with anACT strength of s2 = 108

the x∗(t) can be eliminated within the first 5 days.
We increase the initial tumor size x(0) to 108 in Fig-

ure 6(b) and obtain a similar conclusion. In Figure
6(c)-(d), the tumor microenvironment is less suppres-
sive with m = 10−9. The result shows that a smaller
tumor size can be eradicated by day 100 using only
s2 = 105.

4.3 Combined OVT and ACT
We consider combined therapy of OVT and ACT in
this subsection. In Figure 7(a)-(b), β = 0.6, k =
10−5, m = −10−6, s1 = 105 and s2 = 103 with
initial condition (2 × 107, 0, 0, 300) are fixed. The
anti-viral killing rate γ is 0.9 in Figure 7(a) and 0.09
in Figure 7(b). We see that if γ is reduced, theACT is
more valuable and effective. The OVTneeds not to be
implemented for the whole treatment period and the
tumor can be reduced further with oscillations under
more frequent ACT. In Figure 7(c), β = 0.9, k =
10−5,m = −10−6, γ = 0.09, s1 = 104 and s2 = 102

with initial condition (2 × 107, 0, 0, 300). The virus
is more transmissible but with a smaller dose of OVT.
The OVT is applied for the whole treatment period in
order to control the tumor.
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Figure 7: k = 10−5, m = −10−6 with initial condi-
tion (2× 107, 0, 0, 300). Then s2cri = 3.3991× 107.
(a) β = 0.6, γ = 0.9, s1 = 105, s2 = 103. (b)
β = 0.6, γ = 0.09, s1 = 105, s2 = 103. (c) β = 0.9,
γ = 0.09, s1 = 104, s2 = 102.

In Figure 8, β = 0.9, γ = 0.09,m = −10−6, s1 =
104, s2 = 102 and initial condition (2×107, 0, 0, 300)
are fixed. We vary the anti-tumor killing rate k with
k = 8× 10−4, 7× 10−4 and 6× 10−4 in Figure 8(a),
(b) and (c), respectively. Since the anti-vrial killing
rate γ = 0.09 is small, ACT does not affect much of
the OVT efficacy. The OVT has to be applied for the
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whole treatment period when k is small. The therapy
does not need to be employed for the whole treatment
period when k is larger.
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Figure 8: β = 0.9 , γ = 0.09,m = −10−6, s1 = 104,
s2 = 102 with initial condition (2 × 107, 0, 0, 300)
are fixed. (a) k = 8 × 10−4. (b) k = 7 × 10−4.(c)
k = 6× 10−4.

Comparing Figures 7 and 8, notice that when γ =
0.9 is large in Figure 7(a), the ACT is detrimental to
the effectiveness of OVT and thus ACT is only ap-
plied initially and the tumor is not reduced signifi-
cantly. When γ gets smaller with γ = 0.09 in Fig-
ure 7(b), the ACT and OVT work somewhat syner-
gistically and the tumor can be controlled with oscil-
lations. The tumor can be reduced further if β = 0.9
given in plot (c) of Figure 7.

Finally, k = 10−5, m = −10−6, s1 = 105, s2 =
103 with initial condition (2×107, 0, 0, 300) are fixed
while varying β and γ in Figure 9. Comparing plots
(a) and (b), as γ is increased, the ACT is detrimental
to the effectiveness of OVT and thus the ACT is only
applied in the beginning of the treatment period. As
γ is increased further but with a larger infection rate
β, the ACT can be applied intermittently as shown in
plot (c).
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Figure 9: k = 10−5, m = −10−6, s1 = 105, s2 =
103 with initial condition (2×107, 0, 0, 300) are fixed
for all the simulations. (a) β = 0.5, γ = 0.06. (b)
β = 0.5, γ = 0.07. (c) β = 0.8, γ = 0.1.

5 Summary and Conclusion
In this study, we apply optimal control techniques to
investigate effectiveness of the oncolytic viral therapy
and adopted T cell transfer over a short time treatment
period. Specifically, the model of no control is based
on an earlier study given in [37] where amathematical
model of the tumor-immune system interactions with
OVTwas studied. The authors in [37] derived several
sufficient conditions in terms of model parameters for
which the susceptible tumor cells can be eradicated
for all sizes. However, these results are based on the
asymptotic dynamics of the tumor which may not be
applicable in real life scenarios.

The goal of the control is to minimize the num-
ber of susceptible tumor cells along with the costs or
the tolerances associated with the therapy. We do not
minimize the number of infected tumor cells since
these cells do not proliferate. As immune cells can
kill viruses from the OVT, the two types of therapy do
not provide synergistic effects. This is especially true
when the viral killing rate γ is large. When the dosage
s2 of ACT is larger than the critical size derived in
[37], the susceptible tumor cells can be eradicated by
the first 20 days as shown in Figure 6. In general, the
monotherapy of OVT is more effective if the viral in-
fection rate β is larger while the viral killing rate γ
is smaller even when the tumor microenviroment is
very immunosuppressive. See Figures 1–3. If the ini-
tial tumor size is smaller, that is, x(0) = 107 instead
of x(0) = 2 × 107, the OVT needs not to be imple-
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mented for the whole treatment period and the suscep-
tible tumor exhibits dormant and elapse phenomenon
shown in Figures 4 and 5. For the combined therapy
of OVT and ACT, the ACT is not useful on control-
ling the tumor if anti-viral killing rate γ is large as
shown in Figures 7–9. From these simulations, we
conclude that sole OVT is more effective than the sole
ACT if s2 is below the critical value. However, if s2 is
above the threshold, then the susceptible tumor cells
can be eradicated less than 100 days while the results
obtained in [37] are with respect to the long term dy-
namics of the susceptible tumor cells.
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