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Abstract: - This paper proposes the fuzzy Bayesian (FB) estimation to get the best estimate of the unknown 

parameters of a two-parameter Kumaraswamy distribution from a frequentist point of view. These estimations 

of parameters are employed to estimate the fuzzy reliability function of the Kumaraswamy distribution and to 

select the best estimate of the parameters and fuzzy reliability function. To achieve this goal we investigate the 

efficiency of seven classical estimators and compare them with FB proposed estimation.  Monte Carlo 

simulations and cancer data set applications are performed to compare the performances of the estimators for 

both small and large samples. Tierney and Kadane approximation is used to obtain FB estimates of traditional 

and fuzzy reliability for the Kumaraswamy distribution. The results showed that the fuzziness is better than the 

reality for all sample sizes and the fuzzy reliability at the estimates of the FB proposed estimated is better than 

other estimators, it gives the lowest Bias and root mean squared error.  

 

Key-Words: - Fuzzy Bayesian estimation, Fuzzy information system, Kumaraswamy Distribution, Maximum 

likelihood estimator, Maximum product spacing estimator, Monte Carlo simulation, Reliability analysis,          

R software. 
 

Received: May 25, 2021. Revised: March 16, 2022. Accepted: April 16, 2022. Published: June 7, 2022.    

 

1.  Introduction 
In probability and statistics, the Kumaraswamy 

double bounded distribution is a family of 

continuous probability distributions defined on the 

interval [0, 1]. It is similar to the Beta distribution, 

but much simpler to use especially in simulation 

studies since its probability density function, 

cumulative distribution function and quantile 

functions can be expressed in closed form. The 

behavior of both distributions is governed by two 

shape and two boundary parameters. The 

relationships between the distributions possible 

shapes and the values of their shape parameters are 

qualitatively identical, and both distributions are 

special cases of McDonald’s [1] generalized Beta of 

the first kind. Most importantly, these two 

distributions are very flexible and can take 

approximately the same shapes. This distribution 

was originally proposed by Poondi Kumaraswamy 

in 1980 for variables that are lower and upper 

bounded with a zero-inflation. This was extended to 

inflations at both extremes [0, 1]. 
Over the last few years, there has been a great 

interest in studying the Kumaraswamy distribution, 

and mixing it with other well-known probability 

models to achieve greater flexibility in modeling 

several types of real data exhibiting various patterns. 

Some of these recent developments in the 

Kumaraswamy distribution are: Barreto-Souza and 

Lemonte [2] introduced a bivariate Kumaraswamy 

distribution for which the marginal distributions are 

univariate Kumaraswamy laws. Ghosh and 

Nadarajah [3] studied in details, Bayesian inference 

for Kumaraswamy distribution based on censored 

samples. Al-Fattah et al. [4] introduced the inverted 

Kumaraswamy distribution with two positive shape 

parameters. Aly et al. [5] studied the estimation of 

the bivariate Kumaraswamy lifetime distribution 

under progressive Type-I censoring. Sagrillo et al. 

[6] discussed new modified Kumaraswamy 

distributions for double bounded hydro-

environmental data. Finally, Mohammed et al. [7] 

introduced bivariate Kumaraswamy distribution 

based on conditional hazard functions. 

Moreover, the maximum likelihood (ML) and 

method of moments (MM) estimation methods are 

known to be traditional estimation methods. Even 

though ML is efficient and has good theoretical 
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features, there is evidence that it does not perform 

effectively, particularly for small samples. The MM 

approach is simple to use and frequently produces 

explicit forms for unknown parameter estimators. In 

other circumstances, however, the MM does not 

provide explicit estimators. As a result, different 

estimating approaches have been offered in the 

literature as alternatives to traditional methods. The 

L-moments (LM), ordinary least squares (OLS) and 

maximum Product Spacing (MPS) estimators are 

frequently recommended among them. These 

approaches, in general, do not have good theoretical 

properties, but they can yield better estimates of 

unknown parameters in specific instances than the 

ML and the MM when the data set does not contain 

extreme observations. These Traditional techniques 

are ineffective when the data set comprises extreme 

observations. The parameters must be estimated 

using a robust estimator. Many papers in several 

models explore many robust estimators; see e.g.    

[8-12]. 

On the other hand, the occurrence of fuzzy 

random variable makes the combination of 

randomness and fuzziness more persuasive, since 

the probability theory can be used to model 

uncertainty and the fuzzy sets theory can be used to 

model imprecision. In the fuzzy reliability analysis, 

the survivors are sometimes unable to be reported 

accurately due to unforeseen circumstances. For 

example, the item may not have failed fully during 

the test, or some failed items may have been 

recorded incorrectly due to human error. It claims 

that the survival probability cannot be calculated 

precisely. As a result, in this case, the survival 

probability should be treated as a fuzzy real number. 

However, one of the most essential and 

successful strategies for evaluating the work of 

systems or units is reliability. It is the function that 

determines the likelihood of a unit or vehicle 

operating without failure for a given period of time. 

In its traditional form, many approaches and models 

in reliability theory assume that all of the parameters 

of the life-time probability function are crisp. In 

real-world applications, it is required to 

generalize traditional real-number statistical 

estimation methods to fuzzy numbers. This is 

because, due to flaws in experience, personal 

judgment, estimation, or unanticipated conditions, 

the parameters of a probability distribution can 

occasionally be inaccurately reported. The 

parameters in the life distributions are then 

ambiguous. As a result, dealing with the function of 

traditional dependability may prove problematic for 

the system of reliability. As a result, we can deal 

with a broader word than the standard concept of 

dependability. Zadeh [13] introduced fuzzy logic in 

1968, when he used the phrase “fuzzy variables” to 

describe approximate or erroneous linguistic 

expressions and language. This is the first book to 

lay the groundwork for the theory of fuzzy sets. A 

fuzzy set is a collection of objects or elements with 

varying degrees of membership. The function of 

membership to each object in the set distinguishes 

them. The degree of membership is usually 

somewhere between zero and one.  

In recent years, numerous papers on 

generalization of classical statistical methods to 

analysis of fuzzy data have appeared in the 

literature. Wu [14] calculated fuzzy dependability in 

the fuzzy environment using the Bayes approach, 

assuming a fuzzy treatment of fuzzy variables with 

preceding fuzzy distributions. By incorporating the 

notion of resolution identity and determining the 

degree of membership to any Bayes estimate of 

reliability, the classic Bayes estimation method was 

applied to develop the fuzzy estimator of reliability. 

In 2006, Huang and Zuo [15] looked on the basis 

reliability of fuzzy life data. By assuming a new 

approach to identify the function of membership 

estimation and the reliability function of multi-

parameter life distributions, the Bayes method was 

used to estimate fuzzy reliability based on the size 

of a small sample. 

Pak [16] used the Lindley distribution with one 

parameter when the data was available in a fuzzy 

data format, using ML estimation and Bayes 

estimation by EM-algorithm to determine the MLE 

of the parameter and establish confidence limits 

using the maximum potential estimator's asymptotic 

normality. The researcher determined from the 

Monte Carlo investigation that Bayes estimates 

based on prior non-informative as well as maximum 

likelihood estimates provided identical estimation 

outcomes. The Bayes estimate has the lowest 

average error squares in the case of previous 

information. 

The main objective of this paper is to propose the 

fuzzy Bayesian (FB) estimation method to get the 

best estimate of the unknown two-parameter 

Kumaraswamy distribution and reliability function. 

To achieve this goal we investigate the efficiency of 

seven classical estimators and compare them with 

FB proposed estimation.  Simulations are used to 

compare the performance as it is not possible to 

compare all estimators theoretically and also to 

determine which method is more efficient according 

to the Bias and root mean square error (RMSE). The 

uniqueness of this study comes from the fact that 

thus far no attempt has been made to compare all 
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these estimators for the two-parameter 

Kumaraswamy distribution. 

The rest of this paper is organized as follows: 

After this introduction, Section 2 presents the 

Kumaraswamy distribution, definition and 

properties. While Section 3, provides fuzzy systems, 

basic definitions and fuzzy reliability analysis. In 

Section 4, we discuss the seven classical point 

estimation methods for the unknown parameters. 

The fuzzy Bayesian estimation analyses are 

provided in Section 5. A Monte Carlo simulation 

study and caner real data application are presented 

in Section 6, which provides a comparison of all 

estimation procedures developed in this paper. 

Finally, conclusions appear in Section 7. 

 

2. The Kumaraswamy Distribution: 

Definition and Properties 
Kumaraswamy [17] introduced a two parameter 

absolutely continuous distribution which compares 

extremely favorably, in terms of simplicity, with the 

beta distribution. In its general form, the probability 

density function of the continuous part of the 

distribution Kumaraswamy introduced in his 1980 

article can be written as; 

𝑓𝑍(𝑧) =
1

(𝑑 − 𝑐)
𝜃𝛽 (

𝑧 − 𝑐

𝑑 − 𝑐
)
𝜃−1

[1 − (
𝑧 − 𝑐

𝑑 − 𝑐
)
𝜃

]

𝛽−1

 

;   𝑐 < 𝑧 < 𝑑 (1) 
 

with shape parameters 𝜃 > 0 and 𝛽 > 0, and 

boundary parameters 𝑐 and 𝑑. The general form of 

the distribution will be denoted by 𝐾(𝜃, 𝛽, 𝑐, 𝑑). 

Making the transformation 𝑋 =
𝑍−𝑐

𝑑−𝑐
 and using the 

change of variable theorem, we obtain the standard 

form of the Kumaraswamy density function. The 

cumulative distribution function (CDF) and the 

corresponding probability density function (PDF) 

can be expressed as; 

𝐹(𝑥; 𝜃, 𝛽) = 1 − (1 − 𝑥𝜃)
𝛽
, 0 < 𝑥 < 1  

;  𝜃, 𝛽 > 0   (2) 

𝑓(𝑥; 𝜃, 𝛽) = 𝜃𝛽𝑥𝜃−1(1 − 𝑥𝜃)
𝛽−1

, 0 < 𝑥 < 1   

;  𝜃, 𝛽 > 0   (3) 
 

Which will be denoted by 𝐾(𝜃, 𝛽) ≡
𝐾(𝜃, 𝛽, 0,1). In what follows the standard form of 

the distribution will be employed unless otherwise 

indicated. 

For simplicity, we denote Kumaraswamy 

distribution with two positive parameters 𝜃 and 𝛽 as 

𝐾(𝜃, 𝛽). Based on varying values of 𝜃 and 𝛽, there 

are similar shape properties between Kumaraswamy 

distribution and Beta distribution. However, the 

former is superior to the latter in some respects: 

there are not any special functions involved in 

𝐾(𝜃, 𝛽) and its quantile function; the generation of 

random variables is simple, as L-moments and 

moments of order statistics for 𝐾(𝜃, 𝛽) have simple 

formulars. For the PDF of 𝐾(𝜃, 𝛽), as shown on the 

Figure 1 , when 𝜃 > 1 and 𝛽 > 1, it is unimodal; 

when 𝜃 > 1 and 𝛽 ≤ 1, it is increasing; when 𝜃 ≤ 1 

and 𝛽 > 1, it is decreasing; when 𝜃 < 1 and 𝛽 < 1, 

it is uniantimodal; when 𝜃 = 𝛽 = 1, it is constant. 

The CDF of 𝐾(𝜃, 𝛽) as shown on the Figure 2, has 

an explicit expression, while the CDF of the Beta 

distribution appears in an integral form. Therefore, 

Kumaraswamy distribution is considered as a 

substitutive model for Beta distribution in practical 

terms.  
 

 
Fig. 1 The PDF plots of the Kumaraswamy 

distribution for different parameter values. 
 

From Eq. (2), it immediately follows that the 

quantile function 𝐹−1(𝑃) is also available in closed-

form: 

𝑄(𝑃; 𝜃, 𝛽) = (1 − (1 − 𝑃)
1

𝛽)

1

𝜃

, 0 < 𝑃 < 1        (4) 

In particular, the median of the Kumaraswamy 

distribution can be written as; 

𝑚𝑑(𝑥) = 𝜔 = (1 − 0. 5
1

𝛽)
1

𝜃                (5) 

Therefore, the reliability and hazard functions at 

an arbitrary time 𝑡 for the Kumaraswamy 

distribution are given by; 
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𝑅(𝑡) = (1 − 𝑥𝜃)
𝛽
,                   (6) 

and: 

𝐻(𝑡) =
𝜃𝛽𝑡𝜃−1

1−𝑡𝜃
  ,      0 < 𝑡 < 1          (7) 

 respectively. 

If the random variable 𝑋 is distributed 𝐾(𝜃, 𝛽) 
its moments around zero can be expressed as; 

𝜇𝑟
′ (𝑋) = 𝛽𝐵 (1 +

𝑟

𝜃
, 𝛽)                    (8) 

where 𝐵(𝜃, 𝛽) = ∫0
1
 𝑠𝜃−1(1 − 𝑠)𝛽−1𝑑𝑠 =

𝛤(𝜃)𝛤(𝛽)

𝛤(𝜃+𝛽)
 

is the Beta function and 𝛤(𝑣) = ∫0
∞
 𝑡𝑣−1𝑒−𝑡𝑑𝑡 is 

the Gamma function. Thus, the expectation and 

variance of 𝑋 are; 

𝐸(𝑋) = 𝜇 = 𝜇1
′ (𝑋) = 𝛽𝐵 (1 +

1

𝜃
, 𝛽),  

𝑉𝑎𝑟 (𝑋) = 𝜇2 = 𝜇2
′ (𝑋) − 𝜇2  

               = 𝛽𝐵 (1 +
2

𝜃
, 𝛽) − [𝛽𝐵 (1 +

1

𝜃
, 𝛽)]

2
.    

 

 
Fig. 2 The CDF plots of the Kumaraswamy 

distribution for different parameter values. 
 

Many natural phenomena with lower and upper 

boundaries, such as individual heights, test scores, 

atmospheric temperatures, hydrological data, 

economic data (such as unemployment data), etc., 

are suitable to this distribution. Despite its 

adaptability, this distribution has received little 

statistical attention. However, recently, the genesis 

and the basic properties of the Kumaraswamy 

distribution were studied by Jones [18]. He noted 

that while this distribution has many of the same 

properties as the Beta distribution, it has some 

advantages in terms of tractability: its quantile 

function is simple and does not require any special 

functions, random variate generation is simple, L-

moments and moments of order statistics have 

simple formulae and statistical meanings for the 

parameters, and so on. 

Moreover, this distribution has a close relation 

with Beta and generalized Beta (first kind) listed 

below: 
 

 If 𝑋 ∼ 𝐵𝑒𝑡𝑎 (1, 𝛽) then 𝑋 ∼ 𝐾 (1, 𝛽). 

 If X ∼ 𝐵𝑒𝑡𝑎 (𝜃, 1) then 𝑋 ∼ 𝐾 (𝜃, 1). 

 If 𝑋 ∼ 𝐾(𝜃, 𝛽) then 𝑋 ∼ 𝐺𝐵 1(𝜃, 1,1, 𝛽). 

where 𝐺𝐵1 stands for the generalized Beta 

distribution of the first kind. 

Nadarajah [19] stated that the Kumaraswamy 

distribution can capture the shape of several well-

known distributions such as the uniform 

distribution, triangular distribution, or practically 

any single modal distribution depending on the 

choice of the two shape parameters. The 

Kumaraswamy distribution is a specific instance of 

a three-parameter Beta distribution. 

 

3. Fuzzy Systems 
In the following, at first, we consider the 

fundamental notation and some basic definitions of 

fuzzy set theory which will be frequently used in 

this paper. Consider an experiment characterized by 

a probability space 𝑋 = (Ω,Ψ,Φα), where (Ω,Ψ) is 

a Borel measurable space and 𝛷𝜆 belongs to a 

specified family of probability measures        

(Φα, 𝛼 ∈ Θ) on (Ω,Ψ)Assume that the observer 

cannot distinguish or transmit with exactness the 

outcome in the performance of , but that rather the 

available observation may be described in terms of 

fuzzy information which is defined as follows, For 

details on this topic, see [20]. 
 

3.1 Basic Definitions 
 

Definition 3.1: A fuzzy event 𝑥 on 𝑋, characterized 

by a Borel measurable membership function 𝜇𝑥̃(𝑥) 
from 𝑋 to [0,1], where 𝜇𝑥̃(𝑥) represents the “grade 

of membership” of 𝑥 to 𝑥̃, is called fuzzy 

information associated with the experiment 𝑋. The 

set consisting of all observable events from the 

experiment 𝑋 determines a fuzzy information 

system associated with it, which is defined as 

follows. 
 

Definition 3.2: A fuzzy information system 

(henceforth, in short FIS) 𝑋̃ associated with the 

experiment 𝑋 is a fuzzy partition with fuzzy events 
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on 𝑋, that is a finite set of fuzzy events on 𝑋 

satisfying the orthogonality condition 
 

∑  x̃∈𝑋̃ (𝑥) = 1,  
 

for all 𝑥 ∈ 𝑋. Alternatively, according to Zadeh 

(1968), given the experiment 𝑋 = (Ω,Ψ,Φα), 𝛼 ∈
Θ and a FIS 𝑋̃ associated with it, each probability 

measure Φα on (Ω,Ψ), induces a probability 

measure on 𝑋̃ defined as follows. 
 

Definition 3.3: The probability distribution on 𝑋̃ 

induced by Φα is the mapping Φ from 𝑋 to 

[0,1] such that; 

𝛷(𝑥̃) = ∫  
𝑋

𝜇𝑥‾(𝑥)𝑑𝛷𝛼  (𝑥), 

for 𝑥̃ ∈ 𝑋̃. In particular, the conditional density of a 

continuous random variable 𝑈 with PDF 𝑔(𝑢) given 

the fuzzy event 𝐴̃ can be defined as; 

𝑔(𝑢 ∣∣ 𝐴̃ ) =
𝜇𝐴‾(𝑢)𝑔(𝑢)

∫ 𝜇𝐴‾(𝑢)𝑔(𝑢)𝑑𝑢
. 

For more details about the membership functions 

and probability measures of fuzzy sets, one can refer 

to Pak et al. [21]. 
 

Definition 3.4: A fuzzy number is a subset, denoted 

by 𝑥̃, of the set of real numbers (denoted by ℝ ) and 

is characterized by the so called membership 

function 𝜇𝑥̃, satisfying the following constraints: 
 

(i) 𝜇𝑥̃: ℝ ⟹ [0,1] is Borel measurable. 

(ii) For every 𝑥0 ∈ ℝ, 𝜇𝑥̃(𝑥0) = 1. 

(iii) The usual λ-cuts (0 < 𝜆 ≤ 1), defined as 

𝐵𝜆(𝑥̃) = {𝑥 ∈ ℝ: 𝜇𝑥̃(𝑥) ≥ 𝜆}, are all 

closed interval, i.e., 𝜆(𝑥̃) = [𝜃𝜆, 𝛽𝜆],  ∀𝜆 ∈

(0,1]. 

Some widely known examples of membership 

functions to characterize fuzzy numbers are 

triangular and trapezoidal fuzzy numbers. For 

example, triangular fuzzy number is defined as 𝑥̃ =
(𝜉, 𝜔, Υ) with the corresponding membership 

function; 

𝜇𝑥̃ =

{
 
 

 
 
𝑥−𝜉

𝜔−𝜉
,  𝜉 ≤ 𝑥 ≤ 𝜔

Υ−𝑥

Υ−𝜔
,  𝜔 ≤ 𝑥 ≤ Υ

     0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  

Similarly, a trapezoidal fuzzy number can be 

defined as 𝑥̃ = (𝜉, 𝜔, Υ, 𝛼) with the corresponding 

membership function. 

𝜇𝑥̃ =

{
 
 
 

 
 
 
𝑥 − 𝜉

𝜔 − 𝜉
,  𝜉 ≤ 𝑥 ≤ 𝜔

1,  𝜔 ≤ 𝑥 ≤ Υ
𝛼 − 𝑥

𝛼 − Υ
,  𝛿 ≤ 𝑥 ≤ 𝛼

 

       0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Let us again revisit the example as mentioned 

earlier in the context of life length of an electric 

bulb. 
 

3.2 Fuzzy Reliability Analysis 
Reliability was defined as the probability that the 

unit or device will remain valid after a period of 

time (𝑡) on use. If 𝑇 is a continuous random 

variable,𝑇 > 0, the reliability function is: 
 

𝑅𝑇(𝑡) = 𝑃(𝑇 ≥ 𝑡) = ∫  
∞

𝑡

𝑓𝑇(𝑥)𝑑𝑥 

= 1 −∫  
𝑡

0

𝑓𝑇(𝑥)𝑑𝑥 = 1 − 𝐹𝑇(𝑡) 

Its properties are: 
 

 𝑅(0) = 𝑝(𝑇 < 0) = 1. 

 𝑅(∞) = 1. 

 0 ≤ 𝑅(𝑡) ≤ 1. 

 If 𝑡1 < 𝑡2 then,  𝑅(𝑡1) ≥ 𝑅(𝑡2) 
 

Now, we can say that the fuzzy reliability 

represents the probability of the unit performing the 

work required. It is with varying degrees of success 

for a specified period of time under normal 

conditions and symbolized by 𝑅̃, which is a function 

in the fuzzy set 𝐴̃ : 
 

𝑅̃ = 𝜇𝐴̃𝑖(𝑅). 𝑅, While 𝑅(𝑡) = ∫𝑡
∞
 𝑓(𝑡) 𝑑𝑡 then; 𝑅̃ =

𝜇𝐴̃𝑖(𝑅) ⋅ ∫𝑡
∞
 𝑓(𝑡)𝑑𝑡, 𝑅(𝑡) = (1 − 𝑥𝜃)

𝛽
 

 

We will assume that the values of the random 

variable 𝑇̃ are fuzzy number, 𝑡̃ =

{[0,∞), 𝜇𝑡̃𝑖}; 𝑘̃𝑡𝑡̃ = 𝑡 ∈ 𝑇 So; the fuzziness is a real 

triangular fuzzy number, and: 
 

𝜇𝑘̃(𝑘) =
𝑘 − 𝑘𝑚𝑎𝑥
1 − 𝑘𝑚𝑎𝑥

{

𝑘 − 𝑘𝑚𝑖𝑛
1 − 𝑘𝑚𝑖𝑛

𝑘 ∈ (𝑘𝑚𝑖𝑛, 1)

𝑘 ∈ (1, 𝑘𝑚𝑎𝑥)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where; 0 <  𝑘𝑚𝑖𝑛 ≤ 1 ≤ 𝑘𝑚𝑎𝑥. 
 

If the random variable 𝑇 has a traditional 

fractional distribution with 𝐾(𝜃, 𝛽), the 

corresponding 𝑇̃ of random variable will have 

𝐾(𝜃̃, 𝛽̃) variable. For each 𝑡 ∈  [0,∞), the 

cumulative fuzzy distribution function is; 
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𝐹̃(𝑡̃) = 1 − (1 − 𝑘̃𝑡𝜃̂)
𝛽̂
 ;  𝑡̃ > 0         (9) 

Then, the fuzzy reliability function is: 

𝑅̃(𝑡) = (1 − 𝑘̃𝑡𝜃̂)
𝛽̂

                (10) 

 

4. Classical Point Estimation Methods  
In this section, we describe some methods for 

estimating the parameters  𝜃 and 𝛽 of the 

Kumaraswamy distribution. We assume throughout 

that 𝑥 =  (𝑥1, . . . , 𝑥𝑛) is a random sample of size 𝑛 

from the Kumaraswamy distribution with both 

parameters 𝜃 and 𝛽 unknown. We let 𝑥1:𝑛 < · · · <
 𝑥𝑛:𝑛  denote the associated order statistics. The 

parameters estimations of the Kumaraswamy 

distribution is investigated using seven estimations 

methods, namely, the maximum likelihood (ML), 

maximum product spacing (MPS), method of 

moments (MM), probability weighted moment 

(PWM), ordinary least squares (OLS), weighted 

least squares (WLS) and Cramér–von Mises (CVM) 

will be discussed in details.  
 

4. 1 Maximum Likelihood Estimation  
The method of maximum likelihood (ML) 

estimation is the most frequently used method of 

parameter estimation. Its success stems from its 

many desirable properties including consistency, 

asymptotic efficiency, invariance property as well as 

its intuitive appeal. For the random sample          

𝑥 =  (𝑥1, . . . , 𝑥𝑛), the log-likelihood function can be 

written as: 
 

𝑙(𝜃, 𝛽 ∣ 𝑥) = 𝑛log (𝜃𝛽) + (𝜃 − 1)∑  𝑛
𝑖=1 log (𝑥𝑖)  

+(𝛽 − 1)∑  𝑛
𝑖=1 log (1 − 𝑥𝑖

𝜃).          (11) 

The ML estimations, 𝜃𝑀𝐿 and 𝛽̂𝑀𝐿, can be 

obtained by maximizing Eq. (11) with respect to 𝜃 

and 𝛽. The partial derivatives, 𝑈𝜃 =
𝜕

𝜕𝜃
𝑙(𝜃, 𝛽 ∣ 𝑥) 

and 𝑈𝛽 =
𝜕

𝜕𝛽
𝑙(𝜃, 𝛽 ∣ 𝑥), are; 

𝑈𝜃 =
𝑛

𝜃
+ ∑  𝑛

𝑖=1  log (𝑥𝑖) − (𝛽 − 1)∑  𝑛
𝑖=1  

𝑥𝑖
𝜃log (𝑥𝑖)

1−𝑥𝑖
𝜃 .   

𝑈𝛽 =
𝑛

𝛽
+ ∑  𝑛

𝑖=1  log (1 − 𝑥𝑖
𝜃)  

Setting these to zero, we obtain the ML 

estimation 𝜃ML is the solution of: 

𝑛

𝜃
+ ∑  𝑛

𝑖=1 log (𝑥𝑖) − [𝛽 − 1]∑  𝑛
𝑖=1

𝑥𝑖
𝜃log (𝑥𝑖)

1−𝑥𝑖
𝜃 = 0  (12)   

The ML estimation 𝛽̂𝑀𝐿, that is: 

𝛽̂𝑀𝐿 = −
𝑛

∑  𝑛
𝑖=1  log (1−𝑥𝑖

𝜃)
.                     (13) 

 

In determining the estimation in equations (12) 

and (13) of Kumaraswamy distribution by the ML 

estimation method which cannot be solved 

analytically, this can be solved by numerical 

iteration method that is Newton Raphson’s method. 
 

 Newton Raphson Algorithm  

The steps in Newton Raphson’s (NR) algorithm are:  

1. Determining the starting value 𝜃 and 𝛽̂. 

2. Determining the first derivative and the second 

derivative of 𝑧 = 𝑓(𝜃, 𝛽) i.e. : 
 

𝜕𝑙𝑛 𝐿

𝜕𝜃
=

𝑛

𝜃
+∑  𝑛

𝑖=1  𝑙𝑛 (𝑥𝑖) + (𝛽 − 1)∑  𝑛
𝑛=1  𝑙𝑛 (1 − 𝑥𝑖

𝜃)

𝜕𝑙𝑛 𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑  𝑛

𝑖=1  𝑙𝑛 (1 − 𝑥𝑖
𝜃)

𝜕2𝑙𝑛 𝐿

𝜕2𝜃
= −

𝑛

𝜃2
+ (𝛽 − 1)∑  𝑛

𝑖=1  
−𝑥𝑖𝜃𝑙𝑛2 (𝑥𝑖)

(1−𝑥𝑖
𝜃)
2

𝜕2𝑙𝑛 𝐿

𝜕2 𝛽
= −

𝑛

𝛽2

     

  
3. Defining 𝑔𝜂 as the first gradient vector and 

derivative vector of its parameters: 

𝑔𝜂 = [

𝑛

𝜃
+∑  𝑛

𝑖=1  𝑙𝑛 (𝑥𝑖) + (𝛽 − 1)∑  𝑛
𝑖=1  𝑙𝑛 (1 − 𝑥𝑖

𝜃)
𝑛

𝛽
+ ∑  𝑛

𝑖=1  𝑙𝑛 (1 − 𝑥𝑖
𝜃)

]      

4. Next defining the Hessian matrix 𝐻𝜂 where the 

Hessian Matrix or second derivative matrix to 

its parameters, denoted by 𝐻𝜂 are: 
 

 

𝐻𝜂 =

[
 
 
 
 −

𝑛

𝜃2
+ (𝛽 − 1)∑  𝑛

𝑖=1  
−𝑥𝑖

𝜃𝑙𝑛2 (𝑥𝑖)

(1−𝑥𝑖
𝜃)
2

𝑛

𝛽
+ ∑  𝑛

𝑖=1  
−𝜃𝑥𝑖

𝜃−1

1−𝑥𝑖𝜃

(𝛽 − 1)∑  𝑛
𝑖=1  

−𝑥𝑖
𝜃𝑙𝑛2 (𝑥𝑖)

(1−𝑥𝑖
𝜃)
2 −

𝑛

𝛽2 ]
 
 
 
 

    

5. Iteration will stop when ‖
𝜃𝜂+1 − 𝜃𝜂
𝛽𝜂+1 − 𝛽𝜂

‖ < 𝜀, 

where 𝜀 is the specified error limit. 
 

4.2 Maximum Product of Spacing Estimation 
In statistics, maximum product spacing (MPS) 

estimator is a method for estimating the parameters 

of univariate statistical models. The method requires 

maximization of the geometric mean of spacings in 

the data, which are the differences between the 

values of the cumulative distribution function at 

neighbouring data points. One of the most common 

methods for estimating the parameters of a 

distribution from data, the method of ML estimates, 

can break down in various cases, such as involving 

certain mixtures of continuous distributions. In these 

cases the method of MPS method may be 

successful. The MPS method chooses the parameter 

values that make the observed data as uniform as 

possible, according to a specific quantitative 

measure of uniformity, see [22]. 

The uniform spacing of the random sample 𝑥 =
(𝑥1, … , 𝑥𝑛) can be defined as: 
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𝐷𝑖(𝜃, 𝛽) = 𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) − 𝐹(𝑥𝑖−1:𝑛 ∣ 𝜃, 𝛽)  
𝐹(𝑥0:𝑛 ∣ 𝜃, 𝛽) = 0,  𝐹(𝑥𝑛+1:𝑛 ∣ 𝜃, 𝛽) = 1 

;𝑖 = 1,… , 𝑛, 
Clearly, 

𝐷0(𝛼, 𝛽) + 𝐷1(𝛼, 𝛽) + ⋯+𝐷𝑛+1(𝛼, 𝛽) = 1. 

Following Cheng and Amin [22], the MPS 

estimation, 𝜃MPS and 𝛽̂MPS, are the values of 𝜃 and 

𝛽 maximizing the geometric mean of the spacing: 

𝐺(𝜃, 𝛽) = [∏  𝑛+1
𝑖=1  𝐷𝑖(𝜃, 𝛽)]

1

𝑛+1  

or, equivalently, maximizing the function: 

𝐻(𝜃, 𝛽) =
1

𝑛+1
∑  𝑛+1
𝑖=1 log 𝐷𝑖(𝜃, 𝛽)  

The estimators, 𝜃MPS and 𝛽̂MPS, can also be 

obtained by solving: 
∂

∂𝜃
𝐻(𝜃, 𝛽) =

1

𝑛+1
∑  𝑛+1
𝑖=1  

1

𝐷𝑖(𝜃,𝛽)
   

[Δ1(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) − Δ1(𝑥𝑖−1:𝑛 ∣ 𝜃, 𝛽)] = 0  
 
∂

∂𝛽
𝐻(𝜃, 𝛽) =

1

𝑛+1
∑  𝑛+1
𝑖=1  

1

𝐷𝑖(𝜃,𝛽)
  

[Δ2(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) − Δ2(𝑥𝑖−1:𝑛 ∣ 𝜃, 𝛽)] = 0  
 

where; 

Δ1(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = −(1 − 𝑥𝑖:𝑛
𝜃 )

𝛽
log (1 − 𝑥𝑖:𝑛

𝜃 )   (14) 

and; 

Δ2(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 𝛽(1 − 𝑥𝑖:𝑛
𝜃 )

𝛽−1
𝑥𝑖:𝑛
𝜃 log 𝑥𝑖:𝑛    (15) 

Cheng and Amin [22] showed that maximizing 

𝐻 as a method of parameter estimation is as efficient 

as ML estimation and that the MPS estimators are 

consistent under more general conditions than ML 

estimators. 
 

4.3 Method of Moments Estimation 
The method of moments (MM) estimation can be 

obtained by equating the mean and variance of Eq. 

(3) to their sample counterparts, that is; 

𝐸(𝑋 ∣ 𝜃, 𝛽) = 𝜃𝛽 (1 +
1

𝜃
𝛽) = 𝑥‾, 

Var(𝑋 ∣∣ 𝜃, 𝛽 ) = 𝜃𝛽 (1 +
2

𝜃
𝛽)   

                           −[𝜃𝛽 (1 +
1

𝜃
𝛽)]

2
= 𝑠2,   

where 𝑥̅ and 𝑠2 are the sample mean and sample 

variance, respectively. 
 

4.4 Probability Weighted Moment 

Estimation 
To estimate the parameters of Kumaraswamy 

distribution (𝜃, 𝛽) we have to find the inverse 

function of the cumulative distribution function, 

while the inverse function as is obtained as follows: 

𝑥 = [1 − (1 − 𝐹)
1

𝛽]

1

𝜃

 

Next to search for probability weighted moment 

(PWM) estimation of Kumaraswamy distribution by 

searching for the-r moment is as follows: 

𝑀1, 𝑠,0  = ∫  
1

0
 𝑥(𝐹)[𝐹(𝑥)]𝑠𝑑𝑓

 = ∫  
1

0
  [1 − (1 − 𝐹)

1

 𝛽]

1

𝜃

[ 𝐹(𝑥)]𝑠𝑑𝑓
  

So the obtained PWM form to estimate 

parameter 𝜃 and 𝛽 from Kumaraswamy distribution 

is: 

𝑀1, 𝑠,0 = 𝛽∑𝑘=0
𝑠  (−1)𝑘 (

𝑠
𝑘
)
𝛤(

1

𝜃
+1)𝛤(𝛽𝑘+𝛽)

𝛤(
1

2
+1+𝛽𝑘+𝛽)

   

After obtaining the-r moment (𝑀𝑠)  then the next 

step is to determine the estimators for parameters 

𝜃PWM and 𝛽̂PWM respectively; 
 

𝜃PWM  =

(
𝑀̂0

𝛤(
1
𝜃
+1)𝛤(𝛽)

)𝛤(
1

𝜃
)(

𝛤(𝛽)𝛤(
1
𝜃
+1+2 𝛽)−𝛤(2𝛽)𝛤(

1
𝜃+1+𝛽

)

𝛤(
1
𝜃
+1+2𝛽)

)

𝑀̂1
  

𝛽̂PWM =
𝑀̂0𝛤(

1

𝜃
+1+𝛽)

𝛤(
1

𝜃
+1)𝛤(𝛽)

  

Moreover, after obtaining the respective 

estimators from the Kumaraswamy distribution, the 

next step is to examine the unbiased characteristic 

for estimator a and b with the definition of unbiased 

are 𝐸(𝜃) = 𝜃, and 𝐸(𝛽̂) = 𝛽, respectively. 

𝐸(𝜃) = 𝐸 [

(
𝑀̂0

𝛤(
1
𝜃
+1)𝛤(𝛽)

)𝛤(
1

𝜃
)(

𝛤(𝛽)𝛤(
1
𝜃
+1+2𝛽)−𝛤(2𝛽)𝛤(

1
𝜃
+1+𝛽)

𝛤(
1
𝜃
+1+2𝛽)

)

𝑀̂1
]  

E(𝜃) = 𝜃  

𝐸(𝛽̂) = 𝐸 [
𝑀̂0Γ(

1

𝜃
+1+𝛽)

Γ(
1

𝜃
+1)Γ(𝛽)

]  

𝐸(𝛽̂) = 𝛽  

Thus, 𝜃̂ and 𝛽̂ are unbiased estimator for 𝜃 and 𝛽. 
 

4.5 Ordinary Least Squares Estimation 
Swain et al. [23] introduced the ordinary least 

squares estimator (OLS) method is used to estimate 

the parameters of Beta distribution. 

 Let 𝑥1:𝑛 < · · · <  𝑥𝑛:𝑛  be the order statistics of 

a sample from the Kumaraswamy distribution and 

then the OLS of 𝜃OLS and 𝛽̂OLS can be obtained by 

minimizing the following function with respect 

to 𝜃 and  𝛽: 

𝑆(𝜃, 𝛽) = ∑  𝑛
𝑖=1 [𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

𝑖

𝑛+1
]
2
,  

with respect to 𝜃 and 𝛽, where 𝐹(⋅) is given by Eq. 

(2). Equivalently, they can be obtained by solving: 
 

 ∑  𝑛
𝑖=1   [𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

𝑖

𝑛+1
] Δ1(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 0,

 ∑  𝑛
𝑖=1   [𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

𝑖

𝑛+1
] Δ2(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 0,
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where Δ1(⋅∣ 𝜃, 𝛽) and Δ2(⋅∣ 𝜃, 𝛽) are given by 

equations (14) and (15), respectively. 
 

4.6 Weighted Least Squares Estimation 
Swain et al. [23] introduced the weighted least 

square (WLS) estimators. We use the WLS 

procedure for estimating the parameters 𝜃 and 𝛽 of 

the Kumaraswamy distribution. The WLS, 𝜃WLS 

and 𝛽̂WLS, can be obtained by minimizing the 

following function; 

𝑊(𝜃, 𝛽) = ∑  𝑛
𝑖=1

(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

𝑖

𝑛+1
]
2
  

These estimators can also be obtained by 

solving: 

∑  𝑛
𝑖=1  

(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

𝑖

𝑛+1
]  

Δ1(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 0  
 

∑  𝑛
𝑖=1  

(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

𝑖

𝑛+1
]  

Δ2(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 0       

where Δ1(⋅∣ 𝜃, 𝛽) and Δ2(⋅∣ 𝜃, 𝛽) are given by 

equations (14) and (15), respectively. 
 

4.7 Cramér–von-Mises Estimation 
Cramér–von Mises type minimum distance 

estimators are based on minimizing the distance 

between the theoretical and empirical cumulative 

distribution functions. Choi and Bulgren [24] 

provided empirical evidence that the bias of these 

estimators is smaller than the bias of other minimum 

distance estimators. The Cramér–von Mises (CVM) 

estimator, 𝜃CVM and 𝛽̂CVM, are the values of 𝜃 and 𝛽 

minimizing the following function; 

𝐶(𝜃, 𝛽) =
1

12𝑛
+ ∑  𝑛

𝑖=1 [𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −
2𝑖−1

2𝑛
]
2
  

 

The estimators can also be obtained by solving: 
 

∑  𝑛
𝑖=1  (𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

2𝑖−1

2𝑛
) Δ1(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 0,  

∑  𝑛
𝑖=1  (𝐹(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) −

2𝑖−1

2𝑛
) Δ2(𝑥𝑖:𝑛 ∣ 𝜃, 𝛽) = 0,  

 

where Δ1(⋅∣ 𝜃, 𝛽) and Δ2(⋅∣ 𝜃, 𝛽) are given by 

equations (14) and (15), respectively. 

 

5. Fuzzy Bayesian Estimation  
Fuzzy Bayesian (FB) approach has been adopted to 

enhance the probability updating process with fuzzy 

evidences by utilizing the conditional probability 

densities and the membership functions of the 

evidence's values. This approach has been widely 

applied in structural reliability to access the safety 

of the constructed projects, see [14]. 

This technique can be used to calculate the 

likelihood probability and posterior probability for a 

given fuzzy value using the likelihood density 

function. However, determining the likelihood 

density function is difficult. The density functions 

are approximated as a certain sort of distribution, 

such as Guassian or Weibull, in many of its 

applications, and the parameters of the 

approximated distributions are calculated using 

laboratory tests and statistical methodology. This 

estimation is complicated and time consuming. 

Furthermore, once we know the likelihood density 

function for the continuous valued data, determining 

the likelihood probability for the fuzzy valued 

evidence is a waste of time. The likelihood density 

function for continuous valued evidence should be 

calculated using the likelihood probability for fuzzy 

valued data. 

The Bayes theorem can be expressed as the 

conditional distribution of 𝛽 given x is given as; 
 

Π(𝛽|𝑥) =
𝑓(𝑥|𝛽) ℎ(𝛽)

∫ 𝑓(𝑥|𝛽) ℎ(𝛽) 𝜕𝛽
, 

 

where 𝑓(𝑥|𝛽) is the likelihood function of the 

distribution, ℎ(𝛽) is the prior probability 

distribution for the parameter 𝛽 and Π(𝛽|𝑥) is the 

posterior probability distribution. The initial stage 

needs to be done is to determine the prior 

distribution. Prior Gamma distribution is used as a 

conjugate prior distribution for 𝛽, see [25]. Suppose 

𝛽 random variable with following prior density 

function; 

Π(𝛽) =
𝛽𝛿−1

Γ(𝛿)𝜗𝛿
𝑒−

𝛽

𝜗,  𝜗 > 0, 𝛿 > 0  

or it can be written ℎ(𝛽) ∝ 𝛽𝛿−1𝑒−
𝛽

𝜗. 
 

Note that 𝛽 is Gamma distribution with 

parameter 𝛿 and 𝜗. By using the method of 

moments will be obtained parameter values as 

follows; 

𝛿 =
𝑋‾2

∑𝑖=1
𝑛  

𝑥𝑖
2

𝑛
−𝑋‾2

,  

and; 

𝜗 =
∑𝑖=1
𝑛  

𝑥𝑖
2

𝑛
−𝑋‾2

𝑋‾
. 

In the Bayesian estimation unknown parameter is 

assumed to behave as random variable with 

distribution commonly known as prior probability 

distribution. Here, we consider the following 

independent gamma priors for all the parameters 𝜃 

and 𝛽 given as follows: 
 

 Prior for 𝜃: Π(𝜃)~𝛤(𝛿, 𝜗). 

 Prior for 𝛽: Π(𝛽)~𝛤(𝛿, 𝜗). 
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We make no claims that these hyperparameter 

selections are optimum or uniformly best in all 

cases. However, we found this to be a fair option in 

all of the simulations/examples we explored. Of 

course, there could be more. By combining Eq. (11) 

with the above set of independent priors, the joint 

density functions of the data and the parameters 𝜃 

and 𝛽 becomes; 
 

Π( 𝑥 , 𝜃, 𝛽) ∝ (𝜃𝛿𝛽𝜗𝑒𝑥𝑝 (−[𝛿𝜃 + 𝜗𝛽]))   

× 𝑛(log 𝜃 + log 𝛽) + (𝜃 − 1)∑𝑖=1
𝑛  log ∫ 𝑥𝑖𝜇𝑥‾𝑖(𝑥)𝑑𝑥 

+(𝛽 − 1)∑𝑖=1
𝑛  log ∫ (1 − 𝑥𝑖

𝜃)𝜇𝑥‾𝑖(𝑥)𝑑𝑥              (16) 
 

Therefore, the marginal posterior density 

functions of 𝜃 and 𝛽  respectively given the data (𝑥) 
can be obtained as; 
 

 Π(𝜃 ∣ 𝑥 ) ∝ ∫0
∞
 Π(𝑥 , 𝜃, 𝛽) 𝑑𝛽. 

 Π(𝛽 ∣ 𝑥 ) ∝ ∫0
∞
 Π( 𝑥 , 𝜃, 𝛽) 𝑑𝜃. 

 

Note that the FB estimate of any function of 𝜃, 

say ℎ(𝜃), under squared error loss function is the 

posterior mean which is given by; 
 

∫  
∞

0
Π(𝜃 ∣ 𝑥 )ℎ(𝜃) 𝑑𝜃                    (17) 

 

and similarly for the other parameter 𝛽 as well. 

However, the Equations (16) and (17) are not 

available in analytically tractable and closed nice 

form due to the complex form of the likelihood 

function. Therefore, we use Tierney and Kadane 

approximation as well as Markov Chain Monte 

Carlo (MCMC) technique for computing the FB 

estimate of 𝜃 and 𝛽, see [26]. 

First, we rewrite the expression in Eq. (16) as 

(for both the parameters 𝜃 and 𝛽 respectively); 
 

∫  
∞

0
Π(𝜃 ∣ 𝑥 )ℎ(𝜃)𝑑𝜃 =

∫  
∞

0
 𝑒𝑥𝑝(𝑛𝐹∗(𝜃))𝑑𝜃

∫  
∞

0
 𝑒𝑥𝑝(𝑛𝐹(𝜃))𝑑𝜃

,      (18) 

and; 

∫  
∞

0
Π(𝛽 ∣∣ 𝑥 )ℎ(𝛽) 𝑑𝛽 =

∫  
∞

0
 𝑒𝑥𝑝(𝑛𝐹∗(𝛽))𝑑𝛽

∫  
∞

0
 𝑒𝑥𝑝(𝑛𝐹(𝛽))𝑑𝛽

,    (19) 

where; 

𝐹(𝜃) =
1

𝑛
log Π(𝑥, 𝜃), 

and; 

𝐹∗(𝜃) = 𝐹(𝜃) +
1

𝑛
log ℎ(𝜃). 

 

Tierney and Kadane [26] applied Laplaces 

method to produce an approximation of Eq. (22) as 

follows: 

ℎ̂𝐵𝑇(𝜃) = [
𝜆∗

𝜆
]
1/2

𝑒𝑥𝑝 (𝑛[𝐹∗(𝜃‾∗) − 𝐹(𝜃̅)]),     (20) 

where 𝜃‾∗ and 𝜃̅ maximize 𝐹∗(𝜃‾∗) and 𝐹(𝜃̅), 
respectively, and λ∗ and λ are minus of the inverse 

of the second derivatives of 𝐹∗(𝜃) and 𝐹(𝜃) at 𝜃‾∗ 
and 𝜃̅ respectively. 

Similar operation will be assumed for the other 

parameter 𝛽 as well. Next, we apply this 

approximation to obtain the FB estimate of the 

parameter 𝜃. Setting ℎ(𝜃) = 𝜃, we have; 
 

𝐹(𝜃) =
1

𝑛
∫  
∞

0
  {𝛿 log 𝜃 − (𝛿𝜃 + 𝜗𝛽) + 𝜗 log𝛽  

+𝑛(log𝜃 + log𝛽) + (𝜃 − 1)∑  𝑛
𝑖=1   log ∫  𝑥𝑖𝜇𝑥‾𝑖(𝑥)𝑑𝑥  

+(𝛽 − 1)∑  𝑛
𝑖=1  log ∫  (1 − 𝑥𝑖

𝜃)𝜇𝑥‾𝑖(𝑥)𝑑𝑥} 𝑑𝛽        (21) 

and; 
 

𝐹∗(𝜃) =
1

𝑛
∫  
∞

0
  {𝛿log 𝜃 − (𝛿𝜃 + 𝜗𝛽) + 𝜗log 𝛽   

+𝑛(log 𝜃 + log 𝛽) + (𝜃 − 1)∑  𝑛
𝑖=1  log ∫  𝑥𝑖𝜇𝑥̃𝑖(𝑥)𝑑𝑥   

+(𝛽 − 1)∑  𝑛
𝑖=1  log ∫  (1 − 𝑥𝑖

𝜃)𝜇𝑥𝑖˜ (𝑥)𝑑𝑥} 𝑑𝛽        (22) 
 

On substitution of equations (21) and (22) in Eq. 

(20), one can obtain the FB estimate of 𝜃 under 

squared error loss function (SELF). Similar 

approach can also be made to obtain the FB estimate 

of 𝛽 under SELF.  

 

6 Numerical Studies 
 

6.1 Simulation Study 
In this section, simulation study are conducted to 

compare the performances of the different 

estimators of unknown parameters (𝜃, 𝛽) and 

reliability function for Kumaraswamy distribution 

and to illustrate the effect of the estimation method 

of the reliability function. Our main objective is to 

compare the performances of the seven classical 

estimation methods and the proposed method FB 

estimates of the unknown parameters and reliability 

function for various sample sizes and parameter 

values. 

All the computations are performed in an R-

programming environment “version 4.1.2”. App For 

simulation purposes, we have considered              

𝑛 = (50,75,100,150,200) , 𝜃 = (0.5,1.5,2,3) and 

𝛽 = (0.5,1.5,2.5,3.5). For each combination of 𝑛, 𝜃 

and 𝛽, we simulated 𝐿 = 10,000 samples each of 

size 𝑛 for each simulation experiment to obtain 

homogenous in estimating the reliability function of 

the Kumaraswamy distribution. The inversion 

method was used. For each  𝑛, we have generated 

random sample from the Kumaraswamy distribution 

with different parameter values. Then, using the 

method as proposed by Pak et al. [27], each 

realization of the generated samples was fuzzified 

by employing FIS. The estimates of the parameters 

𝜃 and 𝛽 for the fuzzy sample were computed using 

the maximum likelihood method and under the 

Bayesian paradigm (with independent priors set up).  
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For initial choices of the parameters (𝜃, 𝛽) 
required for the ML method, we have taken values 

that are wide apart from the actual values of the 

parameters. For computing the FB estimates, we 

have assumed that both 𝜃 and 𝛽 have independent 

gamma priors with specific choices of the 

hyperparameters (described earlier). The generation 

of a variable follows a uniform distribution 

𝑢 ~ 𝑈 (0,1) using the rand term. Generate fuzzy 

data following the Kumaraswamy distribution by 

inverse transformation method using the following 

formula: 
 

𝑡𝑖 = 𝛽 (𝑙𝑛 (
1

𝑢
))
−
1

𝜃
;  𝑖 = 1,2,…… , 𝑛        (23) 

The sample is represented by vector 𝑡 of 

Kumaraswamy distribution. The 𝑡-sample vector is 

converted to fuzzy using the fuzzy hypothetical 

information system as in Figure 3, corresponding to 

the following membership functions: 
 
 

𝜇𝑡̃1(𝑡) = {

     1 𝑡 ≤ 0.05
0.25−𝑡

0.2
0.05 ≤ 𝑡 ≤ 0.25

     0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃2(𝑡) = {

𝑡−0.05

0.2
0.05 ≤ 𝑡 ≤ 0.25

0.5−𝑡

0.25
0.25 ≤ 𝑡 ≤ 0.5

     0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃3(𝑡) = {

𝑡−0.25

0.25
0.25 ≤ 𝑡 ≤ 0.5

0.75−𝑡

0.25
0.5 ≤ 𝑡 ≤ 0.75

      0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃4(𝑡) = {

𝑡−0.5

0.25
0.5 ≤ 𝑡 ≤ 0.75

1−𝑡

0.25
0.75 ≤ 𝑡 ≤ 1

    0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃5(𝑡) = {

𝑡−0.75

0.25
0.75 ≤ 𝑡 ≤ 1

1.5−𝑡

0.5
1 ≤ 𝑡 ≤ 1.5

    0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃6(𝑡) = {

𝑡−1

0.5
1 ≤ 𝑡 ≤ 1.5

2−𝑡

0.5
1.5 ≤ 𝑡 ≤ 2

   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃7(𝑡) = {

𝑡−1.5

0.5
1 ≤ 𝑡 ≤ 1.5

3 − 𝑡 2 ≤ 𝑡 ≤ 3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑡̃8(𝑡) = {
𝑡 − 2 2 ≤ 𝑡 ≤ 3
1 𝑡 ≥ 3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
Fig. 3 The FIS hypothetical used in simulating 

simulation data. 
 

 

The estimates of  𝜃, 𝛽 and reliability function for 

after the creation of the randomized fuzzy values 𝑡̃𝑖 
of the CDF function according to the size of the 

given samples and the default values of initial 

parameters according to the formula 𝑅̃(𝑡𝑖), the 

values of 𝑡𝑖 and the initial parameters were 

computed according to the functions of the 𝜇𝑡̃𝑖(t) 

for each fuzzy unit 𝑡̃𝑖. Then, extract for each 𝑅̃(𝑡𝑖) 
and find expectation of 𝑅̃(𝑡𝑖) as follows: 
 

𝑅̃(𝑡) = 𝐸̂(𝑅̃(𝑡𝑖)/𝑥̃𝑖) =
1

𝐿
∑  𝐿
ℎ=1 𝑅

(ℎ)(𝑡)       (24) 
 

The parameters 𝜃, 𝛽 and fuzzy reliability 

function were estimated by each of the seven 

methods and FB estimates for each of the simulated 

samples. We compare the performances of the ML, 

the MPS, the MM, the PWM, the OLS, the WLS, 

the CVM and the FB estimates in terms of Bias and 

root mean squared error (RMSE) criteria defined by: 
 

Bias(𝜃) =
1

𝐿
∑  𝐿
𝑖=1 (𝜃𝑖 − 𝜃),   

Bias(𝛽̂) =
1

𝐿
∑  𝐿
𝑖=1 (𝛽̂𝑖 − 𝛽),  

Bias(𝑅̃) =
1

𝐿
∑  𝐿
𝑖=1 (𝑅̃𝑖 − 𝑅),    

and; 

RMSE(𝜃) = √
1

𝐿
∑  𝐿
𝑖=1   (𝜃𝑖 − 𝜃)

2
,   

RMSE(𝛽̂) = √
1

𝐿
∑  𝐿
𝑖=1   (𝛽̂𝑖 − 𝛽)

2
,    

RMSE (𝑅̃) = √
1

𝐿
∑  𝐿
𝑖=1   (𝑅̃𝑖 − 𝑅)

2
.     

 

Where 𝜃𝑖, 𝛽̂𝑖 and 𝑅̃𝑖  is the estimated of 𝜃 , 𝛽 and 

𝑅(𝑡) respectively, at 𝑖𝑡ℎ experiment of 𝐿 = 10,000 

Monte Carlo experiments. 

The results of the simulation study have been 

provided in Appendix A, Tables (A.1-A.5). The 

following concluding remakes are noticed based on 

these results as follows; 
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1. All the estimates reveal the property of 

consistency, i.e., the Biases and the RMSE of 

𝛼̂ , 𝛽̂ and 𝑅 ̃always decreased as n increased  

2. The MPS method has more relative efficiency 

than ML, PWM and OLS for most parameters 

of Kumaraswamy distribution in all tables. 

3. The FB estimation method exceeds the 

estimate of the seven classical methods are 

used. The fuzzy reliability was estimated using 

FB method with the lowest Bias and the least 

RMSE. 

4. In the FB method, when sample size is larger, 

the Bias and the RMSE are reduced to as little 

as the sample size is 200. 

5. The Biases and the RMSE of 𝜃 and 𝛽̂ always 

appeared smallest for the MPS, WLS and 

CVM methods. 

6. The parameter estimated by FB method and 

MPS and CVM methods with the default 

values as well as the fuzzy reliability 

converges from the default reliability as the 

size of the sample increases. 

7. FB estimation method has achieved the lowest 

value of the seven classical estimation 

methods. This indicates that the duration data 

of linear accelerator is more consistent with 

the fuzzy Kumaraswamy distribution when 

estimating the parameters of this distribution 

in Bayes. 

 

6.2 An Application to Cancer Data Set 
Cancer is a deadly disease that spreads quickly. 

Millions of people are affected with this disease 

each year. This lethal disease is a major focus of 

scientific research and new breakthroughs in the 

field of treatment. As a result of these efforts, new 

technology gadgets have been developed that 

provide new sources of cancer detection and 

therapy. As a result, the significance of gadgets that 

show disease has to be addressed. One of the most 

important is the linear accelerator device, which is a 

modern and advanced device in the detection of 

cancer and radiation treatment. These data are taken 

from a cancer study described by [28]. 
 

6.2.1 Linear Accelerator 
The linear accelerator device is one of the most 

advanced and cutting-edge devices for detecting and 

killing cancer cells using radiation. In the following 

situations, this gadget is used: 

1. To treat cancer by destroying cancer cells. 

2. Control cancer by preventing cancer cells 

from growing and spreading. 

3.  Relieving cancer symptoms such as pain. 
 

The device is one of the most modern medical 

devices used to treat tumors in the Babylonian 

center for tumor therapy. The center only operates 

one piece of equipment for a linear accelerator that 

provides continuous service to citizens. However, if 

the first device fails or stops working for technical 

reasons, the second device is used to offer ongoing 

service. However, it should be emphasized that 

there is no reliable tracking of the device's operating 

and halting times. In the event that the gadget 

malfunctions, the operators must have a precise 

understanding of the operation periods and holidays. 

For example, the device operator must inform the 

center's management and the hospital’s management 

orally. In turn, management must contact the 

device's manufacturer to arrange for the devices 

imprecision in recording operating times and 

holidays to be repaired. As a result, data on the 

linear accelerator’s operation time are fuzzy integers 

that belong to fuzzy times with varying degrees of 

membership, as shown in [29]. 

Approximate information was obtained on the 

length of operation of the equipment until the work 

of the specialists in charge of the device, the 

supervising engineers and the administration of the 

center. These times were arranged in Table 1, 

measured in months for the period from the 

beginning of installation of the equipment at the 

center. 
 

Table 1 
Cancer data set extend the speed of the linear 

accelerator system until (𝑖) it stops working in months 
 

1.3, 1.3, 1.4, 1.6, 1.7, 1.7, 1.8, 1.8, 1.9, 2, 2, 2, 2, 

2.1, 2.2, 2.2, 2.4, 2.4, 2.4, 2.5, 2.6, 2.8, 3, 3, 3.1, 3.3, 

3.3, 3.3, 3.4, 3.5, 3.5, 3.6, 3.7, 3.8, 3.8, 3.9, 4.1, 4.2, 

4.5, 4.5, 4.6, 5.1, 5.2, 5.3, 5.5, 5.8, 5.8, 5.9, 6.1, 6.3, 

6.5, 6.6, 6.8, 7.7, 8.5, 10.4, 10.6, 10.6, 10.9, 11.4, 

12.6, 14, 17.7 

 

6.2.2 Data Fuzzification 
The real sample vector 𝑥 was converted to mist 

using the FIS as in Figure 4, corresponding to the 

following functions; 
 

𝜇𝑡̃1(𝑥) = {

1 𝑥 ≤ 1.3
1.7−𝑥

0.4
1.3 ≤ 𝑥 ≤ 1.7

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     

 

𝜇𝑥̃2(𝑥) = {

𝑥−1.3

0.4
1.3 ≤ 𝑥 ≤ 1.7

1.8−𝑥

0.1
1.7 ≤ 𝑥 ≤ 1.8

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2022.19.14 Yasser S. Alharbi, Amr R. Kamel

E-ISSN: 2224-2902 128 Volume 19, 2022



𝜇𝑥̃3(𝑥) = {

𝑥−1.7

0.1
1.7 ≤ 𝑥 ≤ 1.8

2.1−𝑥

0.3
1.8 ≤ 𝑥 ≤ 2.1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃4(𝑥) = {

𝑥−1.8

0.3
1.8 ≤ 𝑥 ≤ 2.1

2.6−𝑥

0.5
2.1 ≤ 𝑥 ≤ 2.6

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃5(𝑥) = {

𝑥−2.1

0.3
2.1 ≤ 𝑥 ≤ 2.6

3.3−𝑥

0.7
2.6 ≤ 𝑥 ≤ 3.3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃6(𝑥) = {

𝑥−2.6

0.7
2.6 ≤ 𝑥 ≤ 3.3

3.8−𝑥

0.5
3.3 ≤ 𝑥 ≤ 3.8

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃7(𝑥) = {

𝑥−3.3

0.5
3.3 ≤ 𝑥 ≤ 3.8

3.9−𝑥

0.1
3.8 ≤ 𝑥 ≤ 3.9

       0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃8(𝑥) = {

𝑥−3.8

0.1
3.8 ≤ 𝑥 ≤ 3.9

5.1−𝑥

1.1
3.9 ≤ 𝑥 ≤ 5.1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃9(𝑥) = {

𝑥−3.9

1.1
3.9 ≤ 𝑥 ≤ 5.1

6.1−𝑥

1
5.1 ≤ 𝑥 ≤ 6.1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃10(𝑥) = {

𝑥−5.1

1
5.1 ≤ 𝑥 ≤ 6.1

6.1−𝑥

4.5
6.1 ≤ 𝑥 ≤ 10.6

      0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝜇𝑥̃11(𝑥) = {

𝑥−6.1

7.1
10.6 ≤ 𝑥 ≤ 17.7

      1 𝑥 ≥ 17.7
      0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
 

 
Fig. 4 FIS used to process cancer data set. 

We have used the relationship between the 

arithmetic mean and the variance for the distribution 

of the parameter matrix. This is to obtain the initial 

value of the algorithms used in the estimation of the 

parameters by solving the non-linear equations and 

using the NR algorithm. In Table 2, we computed 

the Kolmogorov-Smirnov (K-S) distance between 

the empirical and the fitted Kumaraswamy 

functions. 
 

Table 2 

Goodness of-fit for cancer data set 

D 0.0648 

P-value 0.7513 
 

The distance (D) between the fitted and the 

empirical distribution functions for the data is 

0.0648 and the corresponding p-value is 0.7513. 

Therefore, it indicates that Kumaraswamy 

distribution can be fitted to the data set, by use 

empirical cumulative distribution function (ecdf) to 

obtain a data graph to confirm the accuracy of the 

K-S test as Figure 5. 

 
Fig. 5 Kolmogorov-Smirnov test and the plot of 

max distance between two ecdf Curves. 
 

The selection of models for specific data is one 

of the basic tasks of the scientific study in choosing 

a predictive model from a group of candidate 

models. Several statistical methods are available to 

determine the best method of estimation, where the 

most widely used are the Akaike information 

criterion (AIC), the correct Akaike information 

criterion (CAIC), Bayesian information criterion 

(BIC) and Hannan-Quinn information criterion 

(HQIC). However, the better estimation method 

corresponds to the smaller values of AIC, CAIC, 

BIC and HQIC. These methods are determined 

according to the following formulas respectively. 

The AIC is evaluated as follows: 
 

AIC = 2𝑘 –  2ℓ,                    (25) 
 

 The CAIC is: 

CAIC =
2𝑛𝑘

𝑛−𝑘−1
 –  2ℓ,                 (26) 
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The BIC is given by: 

 

BIC = 𝑘 log(𝑛) –  2ℓ,               (27) 

The HQIC is: 
 

HQIC = 2𝑘 log (log(𝑛)) –  2ℓ.           (28)  

where ℓ is the ML estimation log-likelihood 

function value, 𝑘 is parameters count in the 

distribution in the proposed distribution , and 𝑛 is 

considered as the size of the sample used in 

calculations. 

 

Table 3 

 Parameter estimates and goodness-of-fit measures for cancer data set  

Methods 
Estimate Goodness-of-Fit Measures 

𝜃 𝛽̂ 𝑅̃ AIC BIC CAIC HQIC 

ML 31.3795 1.9606 0.7165 243.6362 284.2593 257.3357 228.175 

MPS 24.1267 1.8244 0.4678 158.7529 178.1246 191.8282 156.247 

MM 34.0458 2.0133 0.8305 173.0514 194.3498 184.0239 168.398 

PWM 34.3898 1.9509 0.5224 172.6098 139.2743 182.3851 177.436 

OLS 27.8196 1.9587 0.9187 241.3962 209.0632 253.1743 219.513 

WLS 29.2665 1.9628 0.6153 229.7521 238.6071 233.0747 252.8726 

CVM 32.4227 2.0424 0.4321 151.6935 131.3964 172.7658 167.409 

FB 22.4979 1.8102 0.2452 132.0517 117.67383 160.9147 145.5824 

 

Table 3, summarizes the estimates of the 

methods of Kumaraswamy distribution parameters, 

reliability function and the rate of uncertainty 

function and the values of goodness-of-fit measures 

for cancer data set. We note that from the results in 

Table 3, the four varieties of goodness-of-fit 

measures for FB estimation method have achieved 

the lowest value of the seven classical estimation 

methods. This indicates that the duration data of the 

linear accelerator is more consistent with the fuzzy 

Kumaraswamy distribution when estimating the 

parameters of this distribution in FB proposed 

estimation method. 

 

7. Conclusions 
In this paper, we have discussed several estimation 

procedures for the Kumaraswamy distribution. In 

particular, we have discussed seven classical 

estimation methods and propose a fuzzy Bayesian 

procedure to estimate the unknown parameters and 

fuzzy reliability function. The seven classical 

methods are; maximum likelihood estimation, 

maximum product spacing estimation, method of 

moments, probability-weighted moment, ordinary 

least squares, weighted least squares and Cramér–

von Mises estimation. It is not feasible to compare 

these methods theoretically. We have performed an 

extensive simulation study to compare these 

methods. R software is used to perform this study, 

see Appendix B. We have also compared estimators 

by cancer data set application; the results show that 

the four varieties of goodness-of-fit measures for the 

FB estimation method have achieved the lowest 

value of the seven classical estimation methods.  In 

terms of overall comparison (with respect to Bias 

and RMSE) the performance of the proposed FB 

estimates is generally the best. 
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Appendices 

Appendix A: Simulation Results 

Table A.1 

 Bias and RMSE values of the parameters and reliability for 𝜃 = 0.5 and 𝛽 = 0.5 

𝒏 Estimate 
ML MPS MM PWM OLS WLS CVM FB 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

50 

𝜃 0.2089 0.2382 0.1589 0.1688 0.1559 0.198 0.2038 0.1520 0.1524 0.1042 0.1936 0.1159 0.1252 0.1071 0.0963 0.0816 

𝛽̂ 0.1438 0.1699 0.0702 0.0609 0.1293 0.1243 0.0766 0.0801 0.0907 0.0959 0.1038 0.1092 0.0858 0.0906 0.0742 0.0659 

𝑅̃ 0.1398 0.1650 0.1292 0.1365 0.1522 0.1784 0.1783 0.2029 0.1227 0.1304 0.1728 0.2085 0.1123 0.1210 0.1070 0.0903 

75 

𝜃 0.1652 0.1884 0.0762 0.0646 0.1257 0.1335 0.1233 0.1566 0.1531 0.0917 0.1612 0.1202 0.0990 0.0847 0.1205 0.0824 

𝛽̂ 0.1138 0.1344 0.0678 0.0716 0.0555 0.0474 0.0821 0.0864 0.0870 0.0983 0.0718 0.0758 0.0587 0.0521 0.0606 0.0633 

𝑅̃ 0.1411 0.1605 0.1367 0.1586 0.1204 0.1411 0.1106 0.1305 0.0888 0.0957 0.1022 0.1080 0.0970 0.1032 0.0846 0.0714 

100 

𝜃 0.0994 0.1056 0.0953 0.0652 0.1307 0.1491 0.1275 0.0951 0.0975 0.1239 0.0783 0.0670 0.1211 0.0725 0.0602 0.0511 

𝛽̂ 0.0900 0.1063 0.0439 0.0375 0.0688 0.0778 0.0649 0.0683 0.0537 0.0567 0.0568 0.0600 0.0479 0.0501 0.0464 0.0412 

𝑅̃ 0.1116 0.1269 0.0703 0.0757 0.1081 0.1254 0.0875 0.1033 0.0952 0.1116 0.0768 0.0816 0.0808 0.0854 0.0669 0.0565 

150 

𝜃 0.1034 0.1179 0.0787 0.0835 0.0771 0.0980 0.0620 0.0530 0.0958 0.0573 0.1009 0.0752 0.0754 0.0516 0.0477 0.0404 

𝛽̂ 0.0712 0.0841 0.0424 0.0448 0.0544 0.0615 0.0347 0.0297 0.0449 0.0474 0.0513 0.0540 0.0379 0.0396 0.0367 0.0326 

𝑅̃ 0.0817 0.0855 0.0556 0.0599 0.0753 0.0883 0.0692 0.0883 0.1004 0.0992 0.0607 0.0645 0.0639 0.0675 0.0530 0.0447 

200 

𝜃 0.0818 0.0933 0.0597 0.0408 0.0622 0.0661 0.0610 0.0775 0.0798 0.0595 0.0758 0.0454 0.0490 0.0419 0.0377 0.0320 

𝛽̂ 0.0563 0.0665 0.0300 0.0313 0.0430 0.0487 0.0406 0.0427 0.0355 0.0375 0.0336 0.0355 0.0275 0.0235 0.0290 0.0258 

𝑅̃ 0.0596 0.0699 0.0440 0.0474 0.0698 0.0794 0.0547 0.0646 0.0676 0.0785 0.0506 0.0534 0.0480 0.0511 0.0419 0.0353 
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Table A.2 

Bias and RMSE values of the parameters and reliability for 𝜃 = 1.5 and 𝛽 = 0.5 

𝒏 Estimate 
ML MPS MM PWM OLS WLS CVM FB 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

50 

𝜃 0.4958 0.5654 0.2971 0.2543 0.3772 0.4006 0.4837 0.3607 0.4594 0.2750 0.3700 0.470 0.3617 0.2473 0.2285 0.1899 

𝛽̂ 0.3414 0.4032 0.1649 0.1423 0.2610 0.2951 0.2463 0.2592 0.2035 0.2150 0.2153 0.2275 0.1760 0.1446 0.1817 0.1900 

𝑅̃ 0.4101 0.476 0.3612 0.4235 0.4233 0.4816 0.3319 0.3917 0.2912 0.3096 0.3066 0.3239 0.2665 0.2873 0.2540 0.1668 

75 

𝜃 0.3681 0.4197 0.2685 0.1836 0.2800 0.2973 0.3590 0.2678 0.3410 0.2042 0.2746 0.3489 0.2206 0.1888 0.1697 0.1410 

𝛽̂ 0.2534 0.2993 0.1236 0.1057 0.1938 0.2190 0.1828 0.1924 0.1511 0.1596 0.1598 0.1689 0.1349 0.1411 0.1306 0.1073 

𝑅̃ 0.3142 0.3575 0.2276 0.2405 0.2681 0.3144 0.2161 0.2298 0.2464 0.2908 0.3045 0.3532 0.1978 0.2133 0.1885 0.1238 

100 

𝜃 0.2217 0.2528 0.1617 0.1106 0.1687 0.1791 0.1654 0.2101 0.1329 0.1137 0.2054 0.1230 0.2163 0.1613 0.1022 0.0849 

𝛽̂ 0.1101 0.1159 0.0963 0.1017 0.1167 0.1319 0.1527 0.1803 0.0745 0.0637 0.0910 0.0961 0.0813 0.0850 0.0787 0.0646 

𝑅̃ 0.1893 0.2153 0.1371 0.1448 0.1615 0.1894 0.1484 0.1751 0.1834 0.2127 0.1302 0.1384 0.1192 0.1285 0.1136 0.0746 

150 

𝜃 0.1506 0.1913 0.1472 0.1007 0.2018 0.2301 0.1968 0.1468 0.1870 0.1119 0.1535 0.1630 0.1209 0.1035 0.0930 0.0773 

𝛽̂ 0.1389 0.1641 0.0828 0.0875 0.1062 0.1201 0.0678 0.0579 0.1002 0.1055 0.0876 0.0926 0.0716 0.0588 0.0740 0.0773 

𝑅̃ 0.1723 0.1960 0.1669 0.1936 0.1470 0.1724 0.1351 0.1594 0.1248 0.1318 0.1185 0.1260 0.1085 0.1169 0.1034 0.0679 

200 

𝜃 0.1634 0.1864 0.0979 0.0838 0.1243 0.1320 0.1219 0.1549 0.1514 0.0907 0.1594 0.1189 0.1192 0.0815 0.0753 0.0626 

𝛽̂ 0.0860 0.0973 0.0599 0.0626 0.1125 0.1329 0.0812 0.0854 0.0549 0.0469 0.0671 0.0709 0.0710 0.0750 0.0580 0.0477 

𝑅̃ 0.1191 0.1396 0.0878 0.0947 0.1395 0.1587 0.1352 0.1568 0.1094 0.1291 0.1011 0.1068 0.0960 0.1020 0.0837 0.0550 
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Table A.3 

Bias and RMSE values of the parameters and reliability for 𝜃 = 2 and 𝛽 = 1.5 

𝒏 Estimate 
ML MPS MM PWM OLS WLS CVM FB 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

50 

𝜃 0.9418 1.0740 0.7027 0.8927 0.7165 0.7608 0.9187 0.6852 0.8726 0.5224 0.5644 0.4830 0.6870 0.4698 0.4341 0.3607 

𝛽̂ 0.6485 0.7659 0.3164 0.2704 0.4958 0.5605 0.4678 0.4923 0.4090 0.4321 0.3866 0.4083 0.3452 0.3610 0.3343 0.2746 

𝑅̃ 0.8040 0.9147 0.7790 0.9037 0.6861 0.8045 0.6305 0.7440 0.5824 0.6153 0.5531 0.5880 0.5062 0.5457 0.4824 0.3169 

75 

𝜃 0.5675 0.6026 0.5565 0.7070 0.7459 0.8506 0.7276 0.5427 0.4470 0.3825 0.6911 0.4137 0.3041 0.2721 0.3438 0.2857 

𝛽̂ 0.5136 0.6066 0.2506 0.2142 0.3926 0.4439 0.3705 0.3899 0.3239 0.3423 0.3062 0.3234 0.2734 0.2859 0.2648 0.2175 

𝑅̃ 0.6368 0.7244 0.6170 0.7157 0.5434 0.6371 0.4380 0.4657 0.4613 0.4873 0.4993 0.5893 0.4009 0.4322 0.3821 0.2510 

100 

𝜃 0.5213 0.5945 0.3089 0.2481 0.3966 0.4211 0.5085 0.3793 0.4830 0.2892 0.3124 0.2674 0.3803 0.2600 0.2403 0.1997 

𝛽̂ 0.3590 0.4239 0.1751 0.1497 0.2744 0.3103 0.2589 0.2725 0.2264 0.2392 0.2140 0.2260 0.1850 0.1520 0.1911 0.1998 

𝑅̃ 0.4450 0.5063 0.4312 0.5002 0.3798 0.4453 0.3490 0.4118 0.3224 0.3406 0.3061 0.3255 0.2802 0.3021 0.2670 0.1754 

150 

𝜃 0.3456 0.3941 0.2579 0.3276 0.2629 0.2792 0.3202 0.1917 0.3372 0.2515 0.2071 0.1773 0.2521 0.1724 0.1593 0.1324 

𝛽̂ 0.2380 0.2811 0.1161 0.0992 0.1819 0.2057 0.1717 0.1807 0.1419 0.1499 0.1501 0.1586 0.1267 0.1325 0.1227 0.1008 

𝑅̃ 0.2951 0.3357 0.2859 0.3316 0.2518 0.2952 0.2314 0.2730 0.2137 0.2258 0.2030 0.2158 0.1858 0.2003 0.1770 0.1163 

200 

𝜃 0.2076 0.2367 0.1549 0.1968 0.2025 0.1510 0.1579 0.1677 0.1244 0.1065 0.1923 0.1151 0.0957 0.0795 0.1514 0.1035 

𝛽̂ 0.1429 0.1688 0.0697 0.0596 0.1093 0.1235 0.1031 0.1085 0.0901 0.0953 0.0852 0.0900 0.0761 0.0796 0.0737 0.0605 

𝑅̃ 0.1772 0.2016 0.1717 0.1992 0.1390 0.1640 0.1512 0.1773 0.1219 0.1296 0.1284 0.1356 0.1116 0.1203 0.1063 0.0698 
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Table A.4 

Bias and RMSE values of the parameters and reliability for 𝜃 = 2 and 𝛽 = 2.5 

𝒏 Estimate 
ML MPS MM PWM OLS WLS CVM FB 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

50 

𝜃 0.6267 0.7146 0.4571 0.3126 0.4768 0.5063 0.4676 0.5940 0.5806 0.3476 0.6113 0.4559 0.3755 0.3214 0.2888 0.2449 

𝛽̂ 0.4315 0.5096 0.2572 0.2717 0.3629 0.4298 0.3112 0.3276 0.3299 0.3730 0.2721 0.2875 0.2224 0.1977 0.2105 0.1799 

𝑅̃ 0.5350 0.6086 0.4195 0.4951 0.4565 0.5353 0.5184 0.6013 0.3368 0.3631 0.3875 0.4094 0.3680 0.3913 0.3210 0.2709 

75 

𝜃 0.4320 0.4926 0.1991 0.1688 0.3286 0.3490 0.4214 0.3143 0.3223 0.4094 0.2589 0.2215 0.4002 0.2396 0.3151 0.2155 

𝛽̂ 0.2274 0.2571 0.1773 0.1873 0.2974 0.3513 0.2501 0.2963 0.1876 0.1982 0.2145 0.2258 0.1533 0.1363 0.1451 0.1240 

𝑅̃ 0.3688 0.4195 0.2322 0.2503 0.3573 0.4145 0.2892 0.3413 0.3147 0.3690 0.2537 0.2697 0.2671 0.2822 0.2213 0.1867 

100 

𝜃 0.2978 0.3396 0.1784 0.1527 0.2692 0.2822 0.2265 0.2406 0.2759 0.1652 0.2905 0.2166 0.2172 0.1485 0.1372 0.1164 

𝛽̂ 0.2050 0.2421 0.1222 0.1291 0.1724 0.2042 0.1567 0.1772 0.1479 0.1557 0.1293 0.1366 0.1057 0.0939 0.1062 0.0855 

𝑅̃ 0.2542 0.2892 0.1600 0.1725 0.2169 0.2543 0.1993 0.2352 0.2463 0.2857 0.1749 0.1859 0.1841 0.1945 0.1525 0.1287 

150 

𝜃 0.2053 0.2341 0.1497 0.1024 0.1562 0.1658 0.1531 0.1945 0.1902 0.1139 0.2002 0.1493 0.1230 0.1053 0.0946 0.0802 

𝛽̂ 0.1413 0.1669 0.0690 0.0589 0.1189 0.1408 0.1019 0.1073 0.0891 0.0942 0.1080 0.1222 0.0843 0.0890 0.0729 0.0648 

𝑅̃ 0.1495 0.1753 0.1205 0.1282 0.1752 0.1994 0.1698 0.1969 0.1269 0.1341 0.1374 0.1622 0.1103 0.1189 0.1051 0.0887 

200 

𝜃 0.1415 0.1613 0.1032 0.0706 0.1076 0.1143 0.1380 0.1029 0.1056 0.1341 0.0848 0.0726 0.1311 0.0785 0.0652 0.0553 

𝛽̂ 0.0819 0.0970 0.0581 0.0613 0.0974 0.1151 0.0745 0.0842 0.0703 0.0740 0.0614 0.0649 0.0502 0.0446 0.0475 0.0406 

𝑅̃ 0.1208 0.1374 0.0760 0.0820 0.1031 0.1209 0.1170 0.1358 0.0875 0.0924 0.0947 0.1118 0.0831 0.0883 0.0725 0.0612 
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Table A.5 

 Bias and RMSE values of the parameters and reliability for 𝜃 = 3 and 𝛽 = 3.5 

𝒏 Estimate 
ML MPS MM PWM OLS WLS CVM FB 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

50 

𝜃 0.8140 0.9283 0.4878 0.4175 0.6193 0.6576 0.6073 0.7715 0.7940 0.5922 0.7542 0.4515 0.5938 0.4060 0.3752 0.3181 

𝛽̂ 0.4285 0.4844 0.3341 0.3529 0.5605 0.6619 0.4714 0.5583 0.4043 0.4255 0.3535 0.3735 0.2889 0.2568 0.2734 0.2337 

𝑅̃ 0.6949 0.7906 0.4375 0.4717 0.6733 0.7810 0.5449 0.6431 0.5930 0.6953 0.5034 0.5318 0.4780 0.5082 0.4169 0.3518 

75 

𝜃 0.6020 0.6865 0.3608 0.3088 0.4492 0.5706 0.4580 0.4864 0.5578 0.3339 0.5873 0.4380 0.2775 0.2353 0.4392 0.3003 

𝛽̂ 0.3169 0.3583 0.2137 0.1899 0.4145 0.4896 0.3486 0.4129 0.2614 0.2762 0.2990 0.3147 0.2471 0.2610 0.2022 0.1729 

𝑅̃ 0.4030 0.4756 0.3535 0.3759 0.4980 0.5777 0.5139 0.5847 0.4386 0.5142 0.3723 0.3933 0.3236 0.3488 0.3084 0.2602 

100 

𝜃 0.3851 0.4391 0.2308 0.1975 0.2929 0.3111 0.2873 0.3650 0.3756 0.2801 0.3568 0.2136 0.2809 0.1921 0.1775 0.1505 

𝛽̂ 0.2651 0.3131 0.1912 0.2013 0.2027 0.2292 0.1672 0.1767 0.2230 0.2641 0.1581 0.1670 0.1294 0.1106 0.1367 0.1215 

𝑅̃ 0.2805 0.3289 0.2070 0.2231 0.3287 0.3740 0.3185 0.3695 0.2381 0.2516 0.2578 0.3042 0.2261 0.2404 0.1972 0.1664 

150 

𝜃 0.1941 0.2213 0.1163 0.0995 0.1448 0.1839 0.1476 0.1568 0.1893 0.1412 0.1798 0.1076 0.1416 0.0968 0.0894 0.0758 

𝛽̂ 0.0964 0.1014 0.0843 0.0890 0.1022 0.1155 0.1336 0.1578 0.1124 0.1331 0.0797 0.0841 0.0689 0.0612 0.0652 0.0557 

𝑅̃ 0.1657 0.1885 0.1043 0.1124 0.1605 0.1862 0.1299 0.1533 0.1414 0.1658 0.1206 0.1268 0.1140 0.1212 0.0994 0.0839 

200 

𝜃 0.1062 0.1211 0.0775 0.0530 0.0808 0.0858 0.1036 0.0773 0.0793 0.1007 0.0637 0.0545 0.0984 0.0589 0.0490 0.0415 

𝛽̂ 0.0731 0.0864 0.0436 0.0461 0.0615 0.0729 0.0528 0.0555 0.0461 0.0487 0.0559 0.0632 0.0357 0.0305 0.0377 0.0335 

𝑅̃ 0.0774 0.0907 0.0571 0.0615 0.0907 0.1032 0.0711 0.0839 0.0879 0.1019 0.0624 0.0663 0.0657 0.0694 0.0544 0.0459 
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Appendix B: R-Codes 

###################################

Parameters Kumaraswamy Distribution    

################################### 

# theta > 0 

# beta > 0 

# 0 < x < 1 

################################### 

## clean up everything 

remove(list=objects()) 

options(warn = -1) 

### Packages ### 

library("stats4")  

library("MASS")  

library("bbmle")  

library("maxLik") 

### PDF ### 

dkuma <- Vectorize(function(x, 

theta , beta,log = FALSE){ 

logden <-  log(theta ) + log(beta) 

+(theta -1)*log(x) + (beta-

1)*log(1-x^ theta ) 

val<- ifelse(log, logden, 

exp(logden))  

return(val) 

}) 

### CDF ### 

pkuma <-  

Vectorize(function(q,theta , 

beta,log.p = FALSE){ 

  cdf <-  1 - (1-q^theta)^beta 

  val <- ifelse(log.p, log(cdf), 

cdf) 

  return(val) 

}) 

### Quantile function ### 

qkuma <- Vectorize(function(u,theta 

,Beta){ 

 val <-  ( 1 - (1-u)^(1/beta))^(1/ 

theta ) 

  return(val) 

}) 

### Moments of order n of the 

Kumaraswamy(theta,beta) 

Distribution ### 

mn <- function(theta,beta,n){ 

  log.num <- log(beta) + lgamma(1 + 

n/ theta) + lgamma(beta) 

  log.den <- lgamma(1 + beta + n/ 

theta) 

  return(exp(log.num-log.den)) 

} 

### NR-Algorithm ### 

rm(list=ls(all=TRUE)) 

library("rootSolve")  

n=100; theta<-1.5; beta<-3;y<-c() 

a<-c();b<-c();w<-c();u<-c();H<-c() 

y<- rkuma(n,theta,beta) 

betahat<-c();thetahat<-c() 

for(it in 1:10000){ 

for(i in 1:n){ 

a[i]=runif(1,y[i]-1,y[i]) 

b[i]=runif(1,y[i],y[i]+1) 

w[i]<-runif(1) 

u[i]<-runif(1,0,1-w[i]) 

H[i]<-(1+w[i]-u[i])/2} 

f<-function(t,theta,beta){ 

f<-pkuma(t,shape=theta,beta)} 

mu<-function(t,i){ 

if(t>=a[i] & t<=y[i]) 

return(H[i]*(t-a[i])/(y[i]-a[i])) 

if(t>y[i] & t<=b[i]) 

return(H[i]*(b[i]-t)/(b[i]-y[i])) 

else 

return(0)} 

h1<-function(t,i,theta,beta){ 

h1<-mu(t,i)*f(t,theta,beta)} 

I<-function(z){ 

theta<-z[1] 

beta<-z[2] 

i<-z[3] 

I<-log(integrate(h1,max(0,a[i]), 

b[i],i,theta,beta)$value)} 

logl<-function(z){ 

theta <-z[1] 

beta <-z[2] 

ss<-0 

for(j in 1:n){ 

c<-c(theta,beta,j) 

ss<-ss+I(c)} 

logl<--ss} 

c<-c(theta,beta) 

out<-

suppressWarnings(nlminb(c,logl)) 

thetahat[it]<-out$par[1] 

betahat[it]<-out$par[2]} 

mean(thetahat);mean(betahat) 

mean(thetahat)-theta; 

mean(betahat)- beta 

mean((thetahat-theta)ˆ2) 

mean((betahat-beta)ˆ2) 

x<-5 

R<-exp(-((x/theta)ˆbeta)) 

print(R) 

RR<-exp(-((x/thetahat)ˆbetahat)) 

print(mean(RR)) 

print(mean(RR-R)) 

print(mean((RR-R)ˆ2)) 

### FB-Estimation #### 

rm(list=ls(all=TRUE)) 

library("numDeriv") 
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betahat<-c();thetahat<-c() 

n=50;theta<-5;beta<-10;y<-c() 

a<-c();b<-c();w<-c();u<-c();H<-c() 

thet.<-c();bet.<-c() 

for(it in 1:10000){ 

d1<- rkuma(50,theta,beta) 

l.prim<-function(z){ 

theta<-z[1] 

beta<-z[2] 

l.prim<--sum(log(pkuma(d1,theta, 

beta)))} 

c<-c(theta,beta) 

out.<-

suppressWarnings(nlm(l.prim,c)) 

thet.[it]<-out.$estimate[1]; 

bet.[it]<-out.$estimate[2]} 

V1<-mean((thet.-theta)ˆ2) 

V2<-mean((bet.-beta)ˆ2) 

b1<-mean(thet.)/(V1) 

a1<-mean(thet.)*b1/2 

a2<-(mean(bet.))ˆ2/(12*V2) 

b2<-(mean(bet.))*(a2-1)/12 

for(it in 1:10000){ 

y<- rkumar(n,theta,beta) 
for(i in 1:n){ 

a[i]=runif(1,y[i]-1,y[i]) 

b[i]=runif(1,y[i],y[i]+1) 

w[i]<-runif(1) 

u[i]<-runif(1,0,1-w[i]) 

H[i]<-(1+w[i]-u[i])/2} 

f<-function(t,theta,beta){ 

f<-pkuma(t,shape=theta,beta)} 

mu<-function(t,i){ 

if(t>=a[i] & t<=y[i]) 

return(H[i]*(t-a[i])/(y[i]-a[i])) 

if(t>y[i] & t<=b[i]) 

return(H[i]*(b[i]-t)/(b[i]-y[i])) 

function(t,i){ 

if(t>=a[i] & t<=y[i]) 

return(H[i]*(t-a[i])/(y[i]-a[i])) 

if(t>y[i] & t<=b[i]) 

return(H[i]*(b[i]-t)/(b[i]-y[i])) 

else 

return(0)} 

h1<-function(t,i,theta,beta){ 

mu(t,i)*f(t,theta,beta)} 

I1<-function(theta,beta,i){ 

I1<-integrate(h1,max(0,a[i]), 

b[i],i,theta,beta)$value} 

I.1<-function(theta,beta){ 

ss<-0 

for(j in 1:n){ 

ss<-ss+log(I1(theta,beta,j))} 

I.1<-ss} 

HH<-function(z){ 

theta<-z[1] 

beta<-z[2] 

HH<--((1/n)*((n+a1-1)*log(theta)- 

b1*theta-(n+a2+1)*log(beta)- 

b1/beta+I.1(theta,beta)))} 

c<-c(theta,beta) 

out<-suppressWarnings(nlminb(c,HH)) 

c1<-c(out$par[1],out$par[2]) 

hess1<-suppressWarnings(hessian( 

func=HH, x=c1)) 

sigma1<--solve(hess1) 

Hstar1<-function(z){ 

theta<-z[1] 

beta<-z[2] 

cstar<-c(theta,beta) 

Hstar1<-(-

(1/n)*log(theta)+(HH(cstar)))} 

c<-c(theta,beta) 

out.star1<-

suppressWarnings(nlminb(c,Hstar1)) 

c2<-

c(out.star1$par[1],out.star1$par[2) 

hess2<-suppressWarnings(hessian( 

func=Hstar1, x=c2)) 

sigma2<--solve(hess2) 

Hstar2<-function(z){ 

theta <-z[1] 

beta <-z[2] 

cstar<-c(theta,beta) 

Hstar2<-(-

(1/n)*log(beta)+(HH(cstar)))} 

c<-c(theta,beta) 

out.star2<-suppressWarnings(nlminb( 

c,Hstar2)) 

c3<-

c(out.star2$par[1],out.star2$par[2) 

hess3<-suppressWarnings(hessian( 

func=Hstar2, x=c3)) 

sigma3<--solve(hess3) 

thetahat[it]<-

suppressWarnings(((det(sigma2) 

)/(det(sigma1)))ˆ(1/2)*exp(-n*( 

Hstar1(c2)-HH(c1)))) 

mean(thetahat);mean(betahat) 

mean(thetahat)-theta; 

mean(betahat)-beta 

mean((thetahat-theta)ˆ2) 

mean((betahat-beta)ˆ2) 

x<-5 

R<-exp(-((x/theta)ˆbeta)) 

print(R) 

RR<-exp(-((x/betahat)ˆthetahat)) 

print(mean(RR)) 

print(mean(RR-R)) 

print(mean((RR-R)ˆ2)  
 

### END Codes ### 
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