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Abstract: - The population surge and geographical mass transit for survival and healthcare is increasing
exponentially since the 1900 and climate change has made it inevitable. These geographical dynamics have
mandated the requirement of contactless or non-invasive scalable and smart healthcare methods and techniques
across the globe. The recent pandemic has obliged contactless sensing technologies in all the bio-sensing
domains. In this work, the contactless bio-capacitive electrode for cardiological condition assessment has been
addressed for researchers, technologists, scientists, and clinical professionals to understand the gradual
innovation and enrichment in contactless bio-sensing techniques, methods, and materials, devices, and systems
is exponentially increasing over the last seven decades. This work is a comprehension of major contributions in
contactless capacitive bio-sensors and systems developed from 1950 to 2020. An overall of 500 articles in
contactless capacitive bio-sensors and systems domain from top journals were selected for study; out of which
100 have been referred in this work. Starting from bio-capacitive electrodes to IoT-based indigenous contactless
smart nodes have been introduced in this article.
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1 Introduction In this work, we will exclusively discuss bio-

The term "biosensor" refers to a bio-electronic or capacitive sensing. Different names are used to
electro-chemical instrument that can sense and realize the unique types of EEG capacitive electrodes
measure life activities through some biological and contactless bio-capacitive systems. This practice
sensing element and may have a variety of other leads to transparency and resolution of conceptual
applications covered in that body of knowledge in [1, complexities in recognizing the similarities and

2] by M. Cremer et al (1906) and Soren Peder Lauritz differences between contactless capacitive sensing
Sorensen (1909) and onwards by Griffin and Nelson systems and the contributions of new techniques. The
(1909-4922) in [3]. In 1962, the first biosensor contributions of this paper are chrono-logically

system was invented by Clark and Lyons to measure comprehending:

glucose in biological samples that utilized the 1. A scientific coherence to clarify and classify
strategy of electrochemical detection of oxygen or contactless  capacitive  electrodes,  their
hydrogen peroxide [3] and a sequence of experiments fabrication, and assemblies.

documented by Clarke et al [4] and Joseph et al in [5] 2. A guideline for CCEB generations based on their
and a comprehensive chronological verdict [6]. The signal conditioning and data acquisition.
ubiquity of impedance is mainly leveraged to realize 3. A detailed survey of past work and
the bio-transducers eloquent from the works [7, 8]. recommendations for EEG/ECG system design.
Formally, contactless impedance sensors being 4. EEG health platforms utilizing bio-capacitive
passive requires an external field excitation source to sensors. The overall study carried out in this
inject some energy into the observation specimen [9] research is presented in figure 1.

explained by Birgette et al (1950). The feedback of
this energy can have many numerical relationships
with the induced signal termed a working response
(capacitive coupling) [10]. For decades, capacitive
impedance sensors have been well consolidated in
the industry; thanks to their versatility and two key
properties: they are (1) noninvasive and (2)
contactless [11-15].
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Fig 1. A Chronological Walkthrough of Capacitive Bio-Sensors and
Systems [1-100]

2 Origin to Application of Capacitive

Sensing Electrodes

Ditferent types of capacitive electrodes or terminals
can be used to assess the physical properties [16] such
as touch capacitive [17-19], proximity capacitive
[18], or shape variation by measuring the capacitive
impedance between two or more conductors [19].
These conductors, which are termed as electrodes,
are solid metal parts as a material [20, 21], but they
can also be made from other conductive materials
including foils, wvarious transparent films (e.g.,
indium tin oxide, InTO) [22, 23], plastics, rubber,
textiles, inks, and paints. In other cases, electrodes
include the human body or objects in the environment
[24, 25] by Chan et al and Elif et al. The first a
foremost fundamental model of capacitive sensing is
presented in figure 2.
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Fig 2. Capacitor Plates and Capacitive Electrodes Sensing

Figure 2 (a) presents the working principle of a
generic parallel plate capacitor and figure 2b realizes
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a capacitive electrode concept for sensing
applications based on a transmit electrode, a receive
electrode [26-28]. The dielectric variation leads to a
change in capacitance C due to displacement current
I during some time interval At. The capacitive
electrodes sensing mechanism is entirely electrical,
low power, and requires low-cost electronics with
static parts or mechanical intermediaries [26-31].

3 Capacitive  Electrodes Sensing
Approaches and Operating Modes

Fundamentally, there are only two capacitive

electrode sensing approaches; a) active sensing:
active sensing systems mandatorily generate an
electric field [34-145] and b) passive sensing: passive
sensing systems depend on the existing electric field
[33-51]. Furthermore, there are four operative modes
for each approach; a) Isometric, b) receive, c)
transmit, and d) loading [33-124].
Comprehensive research by Zimmerman et al in
active capacitive sensing realized that there is a
specific signal generated from the transmit electrode
to receive electrode and in between exists dielectric
or human body dielectric to vary the signal strength
[38-55]. The majority of research in the past has been
conducted in touch sensing [7-54]. An emerging area
in capacitive sensing is passive capacitive sensing in
which there are opportunist existing or external
electric fields sensing [39, 40]. In simpler words,
active sensing is about generating or transmitting
clectric flux, whereas passive is capturing or
receiving the flux inference [42, 45]. Let us briefly
discuss operating modes for capacitive sensing
approaches.

3.1 Isometric Mode (Mutual Coupling)
Identical or isometric coupling by 1:1 TX/RX is a
combination of transmitting and receive mode
occurs. In this case, a variable dielectric is introduced
like the human body as exhibited in the figure below
[34-37].

Electrode

X

P b
Fig 3. Human body active is bi-directional flow field conductor [35, 36]

3.2 Receive Mode

The receive mode is made possible by making the
body as an extension of the receiver electrode to
access surrounding electric fields. In this case, a
human body acts as a multi-channel receiver for
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multi-variable sensing as exhibited in the figure
below [41-43].

Receive

Transmit
b. Active Receiver

a. Passive Receiver
Fig 3. Human body acting as a collaborative flux receiver [41, 43]

3.3 Transmit Mode

The transmit mode is made possible by making the
body an extension of the transmit electrode to
improvise the nearest transmitter created electric
fields.

Transmit
% %"

Receive
a. Passive transmitter

Receive
b. Active transmitter
Fig 3. Human body acting as a collaborative flux transmitter [44]

Transmit

In this case, the human body acts as a multi-
impedance transmitter for multi-variable sensing
receivers as exhibited in the figure below [44].

3.1 Loading Mode

In loading mode, an offset current flow through the
body to the ground through the capacitively-loaded
electrode. A single electrode is utilized as a
transmitter and receiver of flux as exhibited in the

figure below [45-49].
.

Transmit & Receive
Self-Capacitance Sensing

Fig 3. Single capacitive electrode being used as TX/RX [43-47]

Different types of capacitive electrodes or terminals
can be used to assess the physical properties [50, 51]
such as touch capacitive.

2 Contactless Capacitive Electrode
Biosensors (CCEBs)

In 1907, the first bio-sensors were registered by
Cremer, i.e. a string electrometer to approximate the
epithelial movement in heart of a frog [5, 18, 62]. The
heart of the frog was placed between the plates of a
capacitor, and as it vibrated with each beat a change
in capacitance was observed. Later, in 1920, Leon
Theremin demonstrated a  gesture-controlled
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electronic ‘musical instrument known as the
Theremin [18, 19], consisting of bi-capacitive tuned
resonant circuits controlling pitch and volume [53].
While capacitive sensing grew to be an important tool
for many engineering applications, such as sensing
distance, acceleration, force, pressure, etc. [54-59].
Since the invention of the glucometer in 1962 as the
first commercially available biosensor by Clark and
Lyons [61-63], several techniques and strategies
became ambient. The major types of biosensors that
emerged and made their ground in different
measurement conditions were [65-75]:

1. Electrochemical biosensors (by Clark and Lyons
(1962) [4, 5], Wang et al. (2014) [63], Erden and
Kilic (2013) [64] and Kim et al. (2015) [65],
Pundir and Chauhan (2012), and Marrazza
(2014)).

2. Optical/visual biosensors by Schneider and Clark
(2013) [64, 66], Khimji et al. (2013), Peng et al.
(2014) and Shen et al. (2014) [64, 65, 67].

3. Silica, quartz/crystal and glass biosensors (by
Ogi (2013)) [64, 66-68].

4. Nanomaterials-based biosensors (by Ko et al.
(2013), Senveli and Tigli (2013), Valentini et al.
(2013), Li et al. (2011), Kwon and Bard (2012),
Zhou et al. (2012), Guo (2013), Hutter and
Maysinger (2013), Lamprecht et al. (2014) and
Sang et al. (2015)) [64, 66-72].

5. Genetically encoded or synthetic fluorescent
biosensors (by Kunzelmann et al. (2014),
Randriamampita and Lellouch (2014), Oldach
and Zhang (2014), and Wang et al. (2015)) [66,
68-71].

6. Microbial biosensors through synthetic biology
and genetic/protein engineering (by Sun et al.
(2015) and Gutierrez et al. (2015)) [72-74].

This discussion will follow one type of capacitive
bio-sensors (the first type of bio-sensors), further
trimmed down to branch contactless capacitive
electrodes based bio-sensors [75].

2.1 Unified Structure and Topologies of
CCEBs

The basic architecture or structure of a contactless
capacitive electrode bio-sensor (CCEB) and its
evolution or optimization is comprehended in figure
11 given below [75-78].

Figure 4 shows four generations of CCEBs [75-
88]. The blue rectangle presents the earliest vision
and breed of CCEBs dedicated to EEG and ECG [75,
76].
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Structural
Optimization

Fig 4. Unified Structure and Chronological Evolution of Contactless
Bio-Sensor [75-78]

The orange rectangle is a realization of a single
sensor for EMG and ECG [18, 77-80] [18, 78-81] and
the green one is a single structure [81] put forth to be
worked at and improved for all future designs and
bio-instrumentation practices. Further improvement
created huge gaps in filter design and guard or
shielding optimization for CCEBs [82].

2.2 Key Performance Indicators in CCEBs
The key performance indicators (KPIs) in
contactless capacitive bio-sensors are [7, 84-101]:

1. Electrostatic transients of electrode shape on the
signal measured (discovered by Bri-to-Neto et al
in coupled contactless conductivity study (2005)
[83], da Silva et al in oscillometric detector
design (1998) [78], Francisco et al in the design
of compact and high-resolution version of a
capacitively coupled contactless conductivity
detector (2009)[86], Opekar et al in formulating
a simple contactless conductivity detector em-
ploying a medium wave radio integrated circuit
for the signal treatment (2010) [87], Tuma et al
in work of contactless conductometric detector
with exchangeable capillary (2001) [88],
Novotny et al in the study of effects of the
electrode system geometry on the properties of
contactless conductivity detectors for capillary
(2005) [84], Ziemann et al for contactless
conductivity detection for capillary
electrophoresis (1998) [77, 88], Pumera et al
used contactless conductivity detector for
microchip capillary (2002) [89].

2. Field-effect of the width of the electrode
(researched by Wang et al in contactless chip-
based capillary conductivity microsystem for fast
measurements  of  low-explosive  ionic
components (2002) [90], hardware improvement
and optimization of input signal amplitude and
frequency study by da Silva et al (2002) [91],
like-wise Mayrhofer et al (1999) [92], Tuma et al
(2002), and Kuban et al (2005) discovered

E-ISSN: 2224-2902

94

Hasan Tariq, Shafaq Sultan

contactless conductivity detection of ions in
narrow inner diameter capillaries [93].

3. Displacement or offset between electrodes in
research by Novotny et al for the effects of the
electrode system geometry on the properties of
contactless conductivity detectors (2005) [94].

4. Volume and chemistry of dielectric worked in
different ways by 96.Jos¢ Geraldo et al [95]and
Zahiyoa et al [96] for high-voltage capacitively
coupled contactless conductivity detection for
microchip capillary (2002), Mika et al and Opika
et al inflow study using thin-layer contactless
conductivity cell (2009) [90, 97], Mark et al for
comparison of the performance characteristics of
two tubular contactless conductivity detectors
with different dimensions and application in
conjunction with HPLC (2009) [98, 99].

5. Transition in input voltage in conductivity
detection and assessment studies by Tan-
yanyiwa et al (2002) [100], Hohercakova et al
(2005) [99], and Pavlicek et al (2011) [101].

6. Detector noise and signal deformation were
inferred by high-voltage studies by Tanyanyiwa
et al (2003), Hohercakova et al (2005), and
Emaminejad (2012) [102].

7. Signal conditioners input scaling and reference
voltage offset for detection [101-105]. The basic
architecture or structure of a contactless
capacitive electrode bio-sensor (CCEB) and its
evolution or optimization is comprehended in
figure 11 [75-78]

3 ECG/EEG Systems Architectures
and Topologies Implemented using
CCEBs

During the first 100 years of EEG CCEBs, a plethora
of working models emerged and hold a foundation
stone for future developments in this domain. In this
section, major contributions will be reviewed and
discussed. The improvement from the basic
architecture or structure of a CCEB node to the
Internet of Everything (IoE) will be revisited in the
following sections:

3.1 Wireless Implementations of ECG/EEG
Systems using CCEBs

Research niche in wireless CCEBs in ECG/EEG
systems resulted in two major and notice-able
topologies: a) multiple Wearable EEG/ECG
electrode section nodes telemetry segregated at radio
interface [144, 150-152]; b) multiple patch electrodes
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decision edges for EEG/ECGs [121, 122, 144]. Both
topologies are presented in fig 16. The common
architecture or structure of a contactless capacitive
electrode bio-sensor (CCEB) and its evolution or
optimization is comprehended in the figure below. Tt
is commonly used by the key contributors Crippa et
al (2002) [150], Wang et al (2012) [144], Northdrop
el al (2003) [151], and Michael et al (2018) [152]
using microcontrollers and SoC interfacing modules
with AFEs at the input.

Body
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Fig 5. CCEBs Systems Wireless Architectures and Topologies from
2006 to 2007 [36, 121-127, 144, 150-152]

™

In fig 5, the parallel EEG/ECG CCEBs topology
“Eco” for wearable EEG application by Chulsung
Park et al (2006) [121] is presented in the pink color
block, i.e. three unique EEG node architectures are
pooling data to the radio transmitters that are sending
it to the edge collector base-station. Eco used Nordic
VLSI's nRF24E1 (2.4 GHz RF transceiver) inter-
faced to DW8051. The base stations employed a
GFSK modulation scheme with 125 frequency
channels that were 1 MHz apart. The transmission
output power is also soft-ware-configurable for four
different levels using RainSun chip antenna
(AN9520). This topology is significant in handling
critically redundant situations. An improved version
of CCEBs EEG node can be observed in the blue
block in fig 16 by Sumit Majumder et al (2018) [122]
with power consumption (19 pW) by subthreshold
DSP and RF transmission power of 397 uW.

3.2 Future ECG/EEG Systems

The research in CCEBs is harnessing towards the
remote calibration and optimization of the existing
EEG/ECG systems though serial on the go (OTG)
interfaces using smartphones and update on the air
(OTA) using web interface [144-162]. Five key areas
in this effort were found in the literature as:

1. Remote Gain wusing  Trans-conductance
operational amplifiers, Filter Tuning, and Im-
proved Signal Conditioners for CCEBs with
OTA Parameterization (fig 17) [36, 123-128].
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2. Patient State CCEBs CMOS ICs for Sensor
Calibration OTG for EEG Systems (fig 18).

3. Single Board Computer Stand-Alone (with
Multi-parametric System-on-Chip (SoC)
EEG/ECG Nodes) Systems (fig 19).

4. Networked Adaptive Neuro-Fuzzy Inference
Engine (ANFIE) EEG/ECG Decision Support
Systems (fig 20).

In 1969, the shift-registers technique was first used
by Lopez et al [36] by interfacing the core CCEBs
block by the current mode single-frequency
modulation channel of an IRIG instrumentation tape
recorder. In 2007, a gel-free, non-contact EEG/ECG
sensor with an onboard electrode that capacitively
coupled to the skin was proposed by Thomson J.
Sullivan et al [124] with configurable and
programmable CCEBs interfaces in a 1-inch diameter
enclosure. The measured input-referred noise, over
the 1-100Hz-frequency range, is 2pVrms at 0.2mm
sensor distance, and 17uVrms at 3.2mm distance
using active shield-ing of the high-impedance input
significantly that reducing noise pickup, and reduced
variations in gain as a function of gap distance. In
2009, Jin Tao Li et al proposed a cur-rent-mode
instrumentation amplifier (CMIA) topology using the
CMOS 0.35 pm technology. The CMIA consumed
20.22 pW for a 3 V DC power supply and had a
continuous adjustable gain-bandwidth product
(GBW)-independent voltage gain via the single
resistor. [ts CMRR was higher than 120dB up to 1 Hz
and more than 80 dB up to 100 Hz as plus to [125].
In 2014, Mahmoud, S. A. et al [126] proposed a six
order cascaded power line notch filter for ECG
detection systems with noise shaping based on 0.25
pm technology operating under +0.8 V voltage
supply 6th order notch filter provided a notch depth
of 65 dB (43 dB for 4th order), input-referred voltage
noise spectral density with noise shaping of 9
uVrmsNHz at the pass-band frequencies and 9
mVrms/VHz at the notch (zero) frequency and
demonstrated the ability of the filter to be used for
EEG/ECG signals filtering within the bandwidth of
150 Hz.
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Fig 6. A journey from Parametric EEGs modules to Programmable and
Dedicated DAE ICs [36, 124-132, 134-138, 148]

The contributions in two niches by [36, 124-128,
130] work segregated into a partially con-figurable
and programmable CMOS IC with addressable
AFEs, switchable amplifications multiplexed to SAR
with a static R as presented in fig 6 (a) by T. Denison
etal [131] and evolved into the next generation active
electrode CCEBs based on dedicated EEG/ECG
DAE ICs proposed by Jiawei Xu et in 2015 [132]. In
Jiawei Xu et al work, an IC was de-signed and
developed that performed real-time EEG signal
processing using 12-bit ADC with 15 electrodes
interfaces, achieving state-of-the-art performance: 60
nV/sqrt (Hz) at input-referred noise (IRN), an
improved CMRR of an AE pair from 40 dB to 102
dB and eclectrode-offset tolerance 350 mV for the
block diagram exhibited in fig 6 (b).
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a) Accumulation of Contributions [36, 124-131] with programmability
leading to CMOS in EEGs
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Fig 7. A journey from Parametric EEGs modules to Programmable and
Dedicated DAE ICs [36, 124-132, 134-138, 148]
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The 200 uW 8-channel EEG acquisition ASIC for
ambulatory EEG systems [148] by Refet Firat et al
(2008) is considered a masterpiece of ULSI in mobile
EEGs presented in fig 7(a).

The major contribution [148] was the novel AC
coupled chopper-stabilized instrumentation amplifier
(ACCIA) implementation with coarse-fine servo-
loop achieving 120 dB CMRR at 2.3 muA, noise-
efficiency factor (NEF) of 4.3 for an ASIC
implemented in 0.5 mum CMOS process, and the
total current consumption 66 muA from 3 V power

supply.

The dawn of networked or body area network (BAN)
of EEG CCEBs was observed since 2010 including
SBCs, loT-edge, and endpoint servers [134-138, 153-
162]. In 2010, the WBAN pioneered by Yu M. Chi et
al [134] contributed as a novel system with 46 dB of
gain over a .7-100Hz bandwidth with a noise level of
3.8uV RMS for high quality nervous (brain) and
heart (cardio) measurements, stored and processed
remotely presented in fig 7 (b).
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c¢) Ubiquitous WBAN EEG/ECG [136]
Fig 8. A journey from Parametric EEGs modules to Programmable and
Dedicated DAE ICs [36, 124-132, 134-138, 148]

The Aachen SmartChair [135] by A. Aleksandrowicz
et al (2017) was a landmark (fig 8 b) in body area
networks with mobility and real-time validation of a
classical ECG with conductive electrodes and an
oxygen saturation signal (SpO2) were obtained
simultaneously as presented in fig 9(a) in the green
block. The mentioned work opened the floor for
many to come.
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Fig 9. Machine Learning-based SoCs/ASICs for EEG based on CCEBs

b) EEG-NIRS Multimodal SoC [138]
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In 2013, Jerald Yoo pioneered the scalability in EEG
SoC (fig 9 (b)) dedicated to seizure classification and
recording processor [138]. An 8-channel AFE with
Chopper-Stabilized Capacitive Coupled
Instrumentation Amplifier (CCC-IA) to show NEF of
5.1 and noise RTI of 0.91 for 0.5-100 Hz bandwidth
scalable EEG acquisition SoC with a ma-chine-
learning seizure classification processor and a 64 KB
SRAM. The EEG-SoC employed the Distributed
Quad-LUT filter architecture to minimize the area
while sup-port-vector machine as a classifier, with a
GBW controller that gave real-time gain and
bandwidth feedback to AFE to maintain accuracy.
The CCC-IA SoC for EEGs was implemented in 0.18
1P6M CMOS process with an accuracy of 84.4% in
eye blink classification test, at 2.03 /classification
energy efficiency. The 64 KB on-chip memory had
stored up to 120 seconds of raw EEG data. Recently,
a successful clinical trial was demonstrated by a
multimodal EEG-NIRS proposed by Unsoo Ha et al
(2019) [153]. The multimodal EEG and near-infrared
spectroscopy (NIRS) canceled out the +£300-mV
electrode-dc offset for dried gel condition with 3.59
noise-efficiency factor by achieving a dynamic range
of 60-dB crafted on a chip 16-mm2 (4 mm x 4 mm)
SoC fabricated (65-nm) CMOS presented in fig 20
(b) and incorporated into a 3.5 cm x 26 cm head
patch. Later a comprehensive contribution in EEG
was documented by Jachyuk Lee et al (2019) for an
in-ear brain-computer interface (BCI) controller
[154] implemented with a dedicated system-on-chip
(SoC) for electroencephalography (EEG) readout and
body channel communication (BCC) transceiver
(TRX). The 8-mm2 chip fabricated with 65-nm
CMOS packaged with a current reusing low-noise
amplifier (CRLNA), bootstrapping dc servo loop
(BDSL) and dual-mode programmable gain amplifier
(DMPGA) that reduced TRX power consumption by
the  Chopper-Stabilized  Capacitive  Coupled
Instrumentation Amplifier to show NEF of 5.1 and
noise RTI of 0.91 for 0.5-100 Hz bandwidth and IC
consumed 82.9 uW.
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Fig 10. State of the Art WBAN EEG IloT Platforms with ML
capabilities [156-161] [164-169]

In fig 10(a), Shanshan Jiang et al documented
CareNet [161] as an integrated WBAN platform and
WSN environment to facilitate remote care in EEG
applications using TinyOS and NesC presented in fig
22 (a). Various SDN techniques were demonstrated
along with the reliable and privacy-aware patient data
collection using SSL, transmission, and access over
the cloud using IPV4. The most comprehensive EEG
WBAN implementation and contribution were
registered by Bert Gyselinckx et al as HUMAN++
project (fig 10(b)) utilizing the full spectrum of
capabilities in achieving highly miniaturized and
autonomous transducer systems by employing 3D
System-in-a-Package (SIP), wireless ultra-low-
power communications with ball-grid-array (BGA),
3D integration technologies, MEMS energy
scavenging techniques using TEGs with 200
cm2K/W per cm? and low-power design techniques.

4 Conclusion

The key contributions in the study of contactless bio-
capacitive  electrodes used for bio-sensors
measurement, assessment, sensors, systems, and their
life-cycle were chronologically elaborated in this
work in a systematic portrait with state-of-the-art
contributions by re-searchers around the world. This
research served its purpose in key factors and
criterion in contactless bio-capacitive sensors a) the
effective impedance assessment techniques at skin,
scalp and cloth level defined the credibility and
accuracy of bio-metrics status; b) the electrodes
selection and optimizable signal processing
components contributed to achieve the desired
measurements; c¢) the tactical and strategic
orientation of capacitive plates assemblies and arrays
were used to meet critical application challenges; d)
the state-of-the-art sensors on chip options assisted in
meeting the cutting edge market needs; e) the
fabrication technologies and methods streamlined the
properties, specifications and capabilities of bio-
capacitive plates; f) the gradual improvement in
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testing methods of bio-capacitive plates harnessed
enhanced calibration methods using ICs, ASICs and
SoCs; g) the multi-parametric and dedicated sensor
testing and calibration systems gave better in-sights
of operational, measurement, and transient anomalies
using programmable signal conditioners, ADCs,
trans-impedance operational amplifiers,
programmable gain amplifiers, analog front end; h)
the application of machine learning based signal
processing techniques and approaches was state-of-
the-art evaluation method that served as a horizon in
accuracy and credibility of bio-metric measurements;
i) the selection of appropriate key performance
indicators assisted in the quality of WBAN EEG
topologies.
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