
Information Processing, 12 (2013), 1781-
1785. https://doi.org/10.1007/s11128-
012-0490-8
[8]. A. Lucas, Ising formulations of many NP
problems. Frontiers in Physics, 2 Article
5 (2014). DOI:10.3389/fphy.2014.00005
[9]. R. H. Warren, A benchmark for quantum
optimization: the traveling salesman
problem, Quantum Information and
Computation, 21 (2021), 557-562.
https://doi.org/10.26421/QIC21.7-8-2
[10]. R. H. Warren, Are symmetric
traveling salesman problems well suited
to benchmark some quantum
optimization problems? Academia
Letters, Article 4635 (2022).
https://doi.org/10.20935/AL4635
[11]. R. H. Warren, Quantum solutions of
6-city traveling salesman problems,
International Journal of Mathematics,
Game Theory, and Algebra, 29 (2020),
171-178.
[12]. C. C. McGeoch, Theory versus
practice in annealing-based quantum
computing, Theoretical Computer
Science, 816 (2020), 169-183.
https://doi.org/10.1016/j.tcs.2020.01.024
[13]. S. Karimi and P. Ronagh, Practical
integer-to-binary mapping for quantum
computers, Quantum Information
Processing, 18 (2019), 1-24.
[14]. C. H. Papadimitriou and M.
Yannakakis, The traveling salesman
problem with distances one and two,
Mathematics of Operations Research, 18
(1993), 1-11.
[15]. Concorde TSP Solver. URL:
http://www.math.uwaterloo.ca/tsp/conco
rde/index.html
[16]. L. P. Yulianti and K. Surendro,
Implementation of quantum annealing: A
systematic review, IEEE Access, 10
(2022), 73156-73177. doi:
10.1109/ACCESS.2022.3188117
[17]. Y. Dong and Z. Huang, An improved
noise quantum annealing method for
TSP, Int. J. Theor. Phys., 59 (2020),
3737–3755.
[18]. Ö. Salehi, A. Glos and J. A.
Miszczak, Unconstrained binary models
of the travelling salesman problem
variants for quantum optimization,
arXiv:2106.09056 (2021).
[19]. C. Silva, A. et al., Mapping a logical
representation of TSP to quantum
annealing, Quantum Inf. Process, 20
(2021), 386.
https://doi.org/10.1007/s11128-021-
03321-8
[20]. E. Stogiannos et al., Experimental
analysis of quantum annealers and hybrid
solvers using benchmark optimization
problems, Mathematics, 10 (2022), 1294.
https://doi.org/10.3390/math10081294
[21]. M. T. Khumalo, H. A. Chieza, K.
Prag and M. Woolway, An investigation
of IBM quantum computing device
performance on combinatorial
optimisation problems, Special Issue of
Neural Computing and Applications
(2022). https://doi.org/10.1007/s00521-
022-07438-4
[22]. H. A. Chieza, M. T. Khumalo, K.
Prag and M. Woolway, On the
computational performance of IBM
quantum devices applied to
combinatorial optimisation problems, 7th
International Conference on Soft
Computing & Machine Intelligence
(2020), 260-264, doi:
10.1109/ISCMI51676.2020.9311605.
[23]. M. Sharma and D. Ghosh, An
empirical investigation into randomly
generated Euclidean symmetric traveling
salesman problems, IIMA Working
Papers WP2006-06-03, Indian Institute of
Management Ahmedabad, (June 2006).
[24]. M. Ohzeki, Breaking limitation of
quantum annealer in solving optimization
International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.7