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Abstract.  This paper recommends symmetric traveling salesman problems (TSPs) be used to 
benchmark quantum capability to find optimal solutions for combinatorial optimization problems.  
We add four features to the existing list of reasons supporting this recommendation.  We discuss 
benchmark measures and how to overcome the lack of small TSP examples for standards.  
Significate open questions are identified.  We comment about published articles related to the 
benchmark theme. 
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1   Introduction 
Rapid solution of combinatorial optimization 
problems is a major technical application of 
quantum computing.  These problems are usually 
NP-hard which means that classical optimal 
solution methods are limited to special cases.  
There is growing interest in rating and comparing 
quantum algorithms and quantum hardware to 
optimally solve combinatorial optimization 
problems. 

For example, [25] contains benchmarks for 
four software algorithms that solve the symmetric 
traveling salesman problem on a quantum 
annealer.  The analysis uses a uniform standard to 
analyze the four quantum programs.  Three of the 
programs are hybrid, classical quantum routines 
that find approximate solutions.  The fourth 
program is not hybrid and is designed to find an 
optimal solution. 

This paper extends and amplifies [27] where 
symmetric TSPs are recommended as the best 
benchmark for combinatorial optimization 
algorithms on all quantum hardware.  The 
recommendation is based on the following 
reasons. The symmetric TSP is a renowned, 
recognized problem. There is a library [19] of 
symmetric TSP examples that are solved 

optimally. The TSP is well established in 
quantum annealing.  The computational 
complexity of the TSP is NP-complete. There is 
an outstanding classical solution algorithm [2] for 
the symmetric TSP.  There are many real-world 
applications of symmetric TSPs.   

Optimal solutions were found for symmetric 
TSPs processed on the D-Wave chip [26].  The 
TSP variables were embedded in the qubits so 
that every pair of variables was connected and the 
TSPs were solved by the nonhybrid procedure in 
[24, 13]. 

However, the 14 city, symmetric TSP 
Burma14 in the TSP Library [19] cannot be 
embedded by the D-Wave embedding software in 
the D-Wave solver Advantage _system1.1 that 
has more than 5,000 qubits.  Section II.A.1 in [7] 
contains a full explanation of embedding the 
variables of a problem in D-Wave qubits so that 
every pair of variables is connected. 

A 48-city TSP was investigated [5] on the D-
Wave quantum solver DW_2000Q_6.  A large 
TSP on an IBM quantum processor had 7 cities 
[10].  The IBM processor has 65 qubits.  In both 
cases the algorithm was a hybrid, classical 
quantum routine.  Performance analysis is needed 
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to compare outcomes with each other and with an 
optimal solution.  

The major restrictions on quantum 
computing are insufficient connections between 
qubits on D-Wave processors, a small number of 
qubits, and noise, particularly on gate machines 
[1].  Quantum computers are analogue devices 
which means they are imprecise and have 
difficulty distinguishing between integers whose 
difference is small, which can affect the accuracy 
of computations.  The quantum algorithms for 
TSPs that have N cities require O(N2) variables 
which translates into nearly N2 qubits.  The qubits 
for cities are in addition to the qubits for chains 
that build connections between qubits. 

The layout of this paper:  In Section 2 we 
point out new features that boost the role of 
symmetric TSPs to benchmark optimization 
problems.  In Section 3 we discuss ways to 
augment the insufficient number of small, 
symmetric TSPs in the TSPLIB [19].  Section 4 
contains a discussion about benchmark 
measurements.  Future work is described in 
Section 5.  We close with a summary and 
conclusion in Section 6.  An Appendix contains 
an annotated bibliography of relevant papers that 
we did not know about when [27] was published. 

2   Additional features that enhance 

symmetric TSPs to be 

benchmarks  
Paper [27] identifies seven features that make 
symmetric TSPs the best candidates to serve as 
benchmarks for combinatorial optimization 
problems on a quantum processor.  We add four 
more features in this section. 

2.1   The TSP is Easy to Describe 

A TSP is described by a list of cities, including 
the salesman’s home city, and the distance 
between each pair of cities. The distances are 
undirected. The TSP asks for a shortest route for 
the salesman to visit each city once and return to 
the home city.  A TSP with this description is 
called symmetric.  If the distances are directed so 
that the distance from city A to city B may be 

different than the distance from city B to city A, 
then the TSP is called asymmetric. The length of 
a shortest route is usually part of the solution.  A 
shortest route is called an optimal route. 

2.2   The TSP is Easy to Formulate for 

Quantum Processing 

The TSP formulation for quantum computing 
[24, 13] is simple and straight-forward.  Let n be 
the number of cities.  A tour is a route for the 
salesman through all the cities once and returns to 
the starting city.  Thus, a tour is a cyclic 
permutation of the n cities.  Let Vit represent city 
i in position t of a tour.  The double subscript on 
V means that an n-city TSP has O(n2) variables.  
Let dij be the distance from city i to city j.   The 
objective function to be minimized is (1). 
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𝑛

𝑗=2

 + ∑ ∑ 𝑑𝑖𝑗
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𝑉𝑖𝑡 𝑉𝑗,𝑡+1 
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For each 𝑡 ∈ {2, 3, … , 𝑛} ∑ 𝑉𝑖𝑡

𝑛
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For each 𝑖 ∈ {2, 3, … , 𝑛} ∑ 𝑉𝑖𝑡

𝑛

𝑡=2

= 1                                             (3) 

We want the quantum processor to assign 0, 1 to 
the variables 𝑉𝑖𝑡  so that the sum of the distances 
in (1) is minimized, and the variables are subject 
to constraints (2) and (3). Constraint (2) ensures 
that each position 𝑡 in an outcome has exactly 
one city.  Constraint (3) ensures that each city 𝑖 
occurs exactly once in an outcome.  To balance 
the objective function (1) and the constraints (2) 
and (3), we insert a multiplier in the constraints. 

The first and last summations in (1) are a 
result of the redundancy for expressing tours that 
allows us to always have city 1 in position 1 of a 
tour.  The redundancy also allows i = 1 and t = 1 
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to be omitted from (2) and (3).  Thus, the number 
of variables is O((n-1)2). 

2.3   The TSP is Easy to Encode for 

Quantum Computing 

The objective function (1) can be encoded in 
Python after the double subscript on V is 
converted to a single subscript by means of a 
dictionary.  The constraints (2) and (3) can be 
encoded after the equations are converted to 
penalty functions.  This is done by adding -1 to 
both sides of the equation, deleting ‘= 0’ and 
squaring the expression. 

The D-Wave 48-city TSP [5] illustrated this 
coding. 

2.4   Problem Size of a TSP is Easily 

Noted and Varied 

The number of cities in a TSP is widely accepted 
as the problem size.  The number of cities is part 
of the description of a TSP.  Both classical and 
quantum software for the TSP depend on the 
number of cities to the extent that a routine for N 
cities will only process N cities.  However, a 
routine can be adjusted without difficulty to a 
new value for N. 

3   Insufficient number of small, 

symmetric TSPs in the libraries 
The development work on numeric quantum 
algorithms is in the beginning stages with small 
problems.  There is a shortage of small, standard 
TSPs to support this work. 

nThe TSPLIB [19] contains only 10 
symmetric TSPs with less than 42 cities, and one 
with less than 14 cities.  Based on the author’s 
experience, the maximum number of cities in a 
TSP that can be processed with a nonhybrid, 
quantum algorithm on D-Wave’s 5,000 qubit 
device is less than 14.  On IBM’s 65 qubit device, 
it is less than 8 [10]. 

Since the TSPLIB has a shortage of examples 
with a small number of cities, we recommend 
augmenting tests with examples from the 
Capacitated Vehicle Routing Problem Library 
(CVRPLIB) [4].  This was done in [16] by 

treating the depot and customers in a CVRP as 
cities for a TSP.  The CVRP distances are used 
for the TSP.  The CVRPLIB has many examples 
with less than 42 cities but only one with less than 
14 cities.  It has 13 cities. 

Reference [3] compliments the TSPLIB with 
27 symmetric TSP examples that range in size 
from 29 cities to 71,009 cities.   

The gap of no TSPs with less than 13 cities 
was filled in [26] with four, illustrative 6-city 
TSPs that have different numbers of optimal 
tours.  The gap was filled in [10] with a 
symmetric TSP on N cities for N = 4, 5, …, 11. 

We conclude that representative, symmetric 
TSP examples are needed for 7-cities to 12-cities.  
We suggest that the representation for each 
number of cities include a symmetric TSP with 
exactly two optimal tours, a symmetric TSP with 
many optimal tours, and a third symmetric TSP 
where the difference D in length between an 
optimal tour and the next shortest length of a tour 
satisfies 0 < D < 5.  The test of the first TSP finds 
‘a needle in a haystack’, the second tests a generic 
case, and the third tests precision. 

4   Benchmark measurements 
Benchmark measurements are numeric values 
about results that can facilitate comparisons of 
performance, fidelity, quality, effectiveness, and 
timing.  We present several measurements. 

Expression (4) is a performance benchmark 
that measures closeness of a solution to optimal. 
It depends on a TSP, a script, and a quantum 
processor.  It was used in [28]. 

           Error Percent = [(Best Solution – Optimal 
Solution) / Optimal Solution] x 100               (4)      

Error Percent is the percent of relative distance 
from an optimal tour. Best Solution is the shortest 
tour length found by experimentation. Optimal 
Solution is the length of an optimal tour.  Success 
Rate is called Observed Probably of Success in 
[7]. 

Success Rate (SR) is a metric used in [10, 1] 
to evaluate solution quality.  It measures the 
percentage of experiments achieving a solution 
within 95% and 99% of the known optimal value.  
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These are designated SR95 and SR99.  We 
assume that an optimal value is the length of an 
optimal tour for the TSP and an experimental 
value is the length of a computed tour. 

Reference [8] describes an infinite family of 
Euclidean TSPs that are difficult to solve with 
Concorde [2] which is widely acclaimed to be the 
best software for finding an optimal tour for a 
symmetric TSP.  The authors of [8] recommend 
their family of TSPs as benchmarks for TSPs. 

The ratio of the shortest length found for a 
tour divided by the optimal length may be a 
measure of the degree of difficulty of the 
combination of a TSP and an algorithm.  Ratios 
between 1 and 2 measure the degree of difficulty, 
with 1 being easiest and 2 is very hard. 

The computational performance metric [10. 
1] is the average time for the central processing 
unit (CPU) across all trials for a fixed TSP, 
designated script, and specific processor.  The 
computational performance of classical 
optimization techniques can be compared to 
hybrid techniques and to nonhybrid, quantum 
techniques. 

Timing has difficulties and is complex in the 
quantum world.  Apparently, consensus has not 
been reached about what to time, how to measure 
it, and how to do it effectively in quantum 
optimization or for other types of quantum 
algorithms. 

Energy gap analysis and circuit depth 
efficiency are appropriate measurements for 
some quantum processors and can be used as 
benchmarks. 

5   Future work  
In this section we ask major questions to 
stimulate studies.  How well do results for the 
TSP on a specific quantum processor predict the 
degree of difficulty to solve combinatorial 
optimization problems on this processor?  Does 
successful solution for several TSPs of the same 
size on a quantum processor imply success for 
solving optimization problems of the same size 
on this processor?  

The following questions pertain to the 
TSPLIB [19] and the CVRPLIB [4] adapted to 
TSPs.  Are the problems in the library suitable for 

the emerging technology about quantum 
computing [22]?  Are the problems in the library 
too artificial, i.e., not related to real applications 
[22]?  Are the problems in the library too 
homogenous, i.e., not covering the wide range of 
characteristics found in real applications and 
varying degrees of difficulty to solve [22]?   

The outcome of the work in the previous 
paragraph should include a family of small TSPs 
that the quantum organizations find suitable for 
benchmarking. 

An important investigation is to determine 
how well performance metrics hold as 
problem sizes scale. This includes analyzing 
how adding cities to a TSP impacts quantum 
computational time and solution quality. 

 Controlled noise tests can be used to 
benchmark the robustness of algorithms under 
varied hardware noise conditions in some 
quantum processors. 

Questions have been raised if the 
methodology in this paper can be combined with 
modern machine learning and deep learning?  Or 
can it be combined with methods from Artificial 
Intelligence and/or Computational Intelligence? 

There is interest in hybrid quantum-
classical algorithms.  Benchmarks for their 
scalability and effectiveness will be needed. 

6 Summary and conclusion 
We have added four features to the list of reasons 
why symmetric TSPs are an excellent choice for 
benchmarking quantum combinatorial 
optimization problems.  We have discussed ways 
to overcome a lack of small, standard TSPs.  We 
have pointed out benchmark measures and 
identified several that are being used.  We have 
identified significant open questions to 
investigate.   

In conclusion, we continue to recommend 
symmetric TSPs to be benchmarks for 
combinatorial optimization problems on all types 
of quantum hardware. 
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Appendix:  Summaries of literature 

about TSPs related to 

benchmarking 

This section contains an annotated bibliography 
of high-quality, published papers about quantum 
benchmarking that were not known to us when 
we wrote [27]. 

Article [1] is an outstanding investigation of 
IBM’s hybrid algorithm Variational Quantum 
Eigensolver (VQE) to solve TSPs with size n = 3, 
4, 5, and 6 cities on IBM quantum devices with 
20, 27, and 53 qubits. The quantum formulation 
of an n-city TSP requires at least n2 qubits.  This 
means the larger TSPs cannot be processed on the 
smaller quantum machines. 

Paper [10] is an expansion of [2] by the same 
authors. A second hybrid algorithm, Quantum 
Approximate Optimisation Algorithm (QAOA), 
is investigated.  An additional IBM quantum 
device with 65 qubits was used.  The standards 
were generated by BNB and SA on classical 
processors.  The results are similar to those by [1] 
in the previous paragraph.  IBM hybrid 
algorithms VQE and QAOA on IBM quantum 
processors failed standards for success rate and 
computational performance for TSPs whose sizes 
are n = 4, 5, 6, and 7 cities. 

Reference [14] uses a symmetric 1,002-city 
TSP from the TSPLIB [19] as a benchmark to 
show that 2-opt quantum annealing is superior to 
standard thermal simulated annealing.  
Investigations in [15] point out statistical features 
of the distances that make TSP instances easy or 
hard to solve optimally by 2-opt. 

Reference [7] has excellent insights about 
values for controls for the D-Wave 2000Q 
processor for portfolio problems.  This processor 
has about 2000 qubits and limited connections 
between qubits.  Portfolio problems and traveling 
salesman problems are both fully connected, 
optimization problems.  Thus, we suggest a 
similar study for the TSP on the D-Wave 
Advantage processor which has 5000 qubits and 
more connections between qubits. 

The authors of [16] present a new algorithm 
called hybrid Quantum Computing - Tabu Search 

Algorithm (QTA) to solve partition problems on 
D-Wave processors.  Results on seven symmetric 
TSPs were compared with those from D-Wave’s 
algorithm GBSolv, which is also a hybrid that 
uses tabu search.   Each TSP was executed by 
each algorithm 20 times to find the length of an 
optimal tour.  The averages of the results in Table 
1 of [16] show there are negligible differences 
between the two algorithms.  Testing was done on 
a classical computer that simulated the quantum 
calls.  Therefore, it is recommended that testing 
of QTA and GBSolv be repeated in a hybrid 
arrangement that uses a quantum device. 

Paper [17] is a follow-on to [16] by the same 
authors.  In [17] they report about testing six 
asymmetric TSPs from the TSPLIB [19].  Table 
1 in [17] contains results for shortest length of a 
tour from QTA and GBSolv, each run in a 
classical only mode.  The results show that the 
differences are negligible, as in [16].  
Recommend that testing of QTA and GBSolv be 
repeated in a hybrid arrangement that uses a 
quantum device. 

The authors of [11] have written an extensive 
paper.  They introduce a suite of application-
oriented performance benchmarks for gate model 
quantum processors.  The benchmarks include 
quality and timing and are designed to apply to a 
wide range of applications.  The benchmark 
measurements are based on performance related 
to the volumetric features of gate model 
algorithms which are the width and depth of a 
circuit.  The paper contains results from 
executing some of the benchmarks on quantum 
simulators and quantum hardware. 

Some of the panelists in reference [12] are 
authors of [11].  Since [12] is not available, we 
quote from its Abstract.  “… Recently, there has 
been increased interest in using quantum 
applications to determine how well quantum 
computers can execute real workloads, both 
simple and complex. Familiar algorithms or 
applications, structured to collect performance 
metrics can provide a useful mechanism for new 
users to understand just what a quantum machine 
is capable of. However, the use of applications as 
benchmarks is sometimes considered a ’blunt 
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tool’ for characterizing hardware performance. 
This panel will address the challenges, as well as 
the merits and weaknesses of this application-
oriented approach to benchmarking the 
performance of quantum computers.” 

The main result in [21] is that the average 
execution time to find the first optimal solution to 
a TSP by the D-Wave Advantage processor is 
26% (n = 7 cities) and 47% (n = 6 cities) better 
than classical C according to Table 5.  The 
authors show that a specific TSP with n = 8 to 14 
cities can be embedded in the D-Wave Advantage 
processor.  Therefore, it is recommended that the 
study in [21] about execution times and finding 
optimal tours be repeated for TSPs with n = 8 to 
14 cities.  The study could be enhanced by having 
more than one TSP for each n since there are 
TSPs that are easy to solve and hard to solve 
optimally. 

The authors of [18] propose a benchmark 
(QOPTLib) for quantum computing of 
combinatorial optimization problems.  Their goal 
is to create “a number of instances able to 
evaluate any quantum solver in any quantum 
processing unit” Section 3 paragraph 3. Their 
benchmark library is composed of four problem 
types, one of which is the TSP. The 10 TSP 
instances in the QOPT Library include one for 
each number of cities 4-10, 15, 22, 25.  D-Wave 
was used for this study since it accepts larger 
problem sizes than other quantum processors. 

The focus of [23] is a study of two 
Hamiltonian formulations for combinatorial 
optimization problems to access a D-Wave 
quantum processor. The work is benchmarked by 
one symmetric TSP that has 7 nodes and is a 
subset of Burma14 [19] with normalized 
distances.  Data is also shown for one similarly 
formed TSP for the cases when the number of 
nodes is 5, 6, 12, 13 and 14.  The last three TSPs 
are too large to embed in the D-Wave processor 
available to the authors.  A hybrid quantum 
classical method was used for them. 

The Benchmarks subsection of Section III in 
[20] contains an excellent description of the use 
of standardized benchmarks in the quantum 
environment.  References cited in the 
Benchmarks subsection of [20] have relevant 
titles.  Apparently, D-Wave and its quantum 
processors are not mentioned in [20]. 

Authors [9] present an unusual metric to 
overcome two obstacles in D-Wave’s quantum  
 
annealing.  Since there is a complete equivalence 
in principle between the gate method for quantum 
computing and the quantum annealing method, 
this metric should also apply to quantum 
computing on gate hardware. 

In paper [6] the reader is asked to contribute 
“new techniques, tools, software and hardware 
capabilities to identify how best to utilize 
quantum technologies”.  The question in the title 
of [6] does not seem to be addressed. 
 

International Journal on Applied Physics and Engineering 
DOI: 10.37394/232030.2024.3.14 Richard H. Warren 

E-ISSN: 2945-0489 109 Volume 3, 2024




