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Abstract: - This paper introduces a spiking neural network (SNN) model for epileptic seizure detection, 

employing non-standard finite difference (NSFD) discretization techniques to overcome stability issues 

associated with traditional methods like Euler and Runge-Kutta. Applied to a Leaky Integrate-and-Fire (LIF) 

neuron model, the NSFD approach improves accuracy and stability. The model is implemented on a high-speed, 

area-efficient, multiplier-less neuromorphic hardware architecture. Trained on EEG data from 400 patients and 

tested on 100 patients, the system utilizes weight-fused features derived from a Binary Battle Royale algorithm. 

The weights are stored in block RAM for real-time seizure classification, achieving nearly 99.47% accuracy. The 

proposed architecture is optimized for real-time, resource-constrained environments, making it ideal for wearable 

devices in continuous seizure monitoring. This invention represents a breakthrough in neuromorphic computing 

and medical signal processing, offering a scalable, accurate, and efficient solution for seizure detection in 

neurological diagnostics. 
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1 Introduction 
As we enter an era of increasingly complex 

computing demands, traditional digital computing 

approaches are becoming inadequate for applications 

that require real-time, energy-efficient, and parallel 

processing. Neuromorphic computing is emerging as 

a revolutionary solution to these challenges by 

mimicking the brain's architecture and functioning. It 

draws inspiration from biological neural systems to 

create computing architectures that are not only faster 

and more efficient but also capable of handling tasks 

such as pattern recognition, signal processing, and 

decision-making with minimal power consumption 

[1]. 

Neuromorphic computing achieves these benefits 

by leveraging Spiking Neural Networks (SNNs), 

often referred to as the third generation of neural 

networks. Unlike their predecessors—artificial 

neural networks (ANNs) and recurrent neural 

networks (RNNs)—which process information in a 

continuous, analog manner, SNNs process data using 

discrete spikes, much like the way neurons 

communicate in the human brain. This difference 

brings several advantages and makes SNNs 

particularly suitable for applications requiring real-

time, low-power computation. Neuromorphic 

computing, powered by Spiking Neural Networks, is 

paving the way for more efficient, robust, and 

biologically inspired artificial intelligence systems. 

By emulating the brain's energy-efficient and parallel 

processing capabilities, neuromorphic systems 

promise to revolutionize fields ranging from robotics 

to medical diagnostics. The unique features of SNNs, 

such as temporal dynamics, event-driven processing, 

and efficient learning, make them ideally suited for 

real-time applications, where traditional computing 

approaches fall short. Popular spiking neuron 

models, such as the LIF [2], Izhikevich [3], and AdEx 

models, provide the building blocks for designing 

neuromorphic systems that can tackle some of the 

most complex computing challenges of the future. 

 

 

2 Problem Formulation 
In the implementation of Spiking Neural 

Networks (SNNs) and other neuron models, 

accurately simulating the temporal dynamics of 

neurons is critical. This simulation is commonly 
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achieved through numerical discretization methods 

that approximate continuous-time differential 

equations governing neuron behavior. Standard 

discretization techniques like the Euler method and 

Runge-Kutta methods are widely used for this 

purpose due to their simplicity and ease of 

implementation. However, these methods have 

significant drawbacks, particularly in terms of 

stability, when applied to neuron models over large 

time steps. 
 

2.1 Drawbacks of Standard Discretization 

Methods 
 

2.1.1 Euler Method [4] 

The Euler method is a first-order numerical 

technique for solving ordinary differential equations 

(ODEs) by stepping forward in time using a constant 

step size. While it is simple to implement, it 

introduces numerical instability when larger step 

sizes are used: 

Stability Issues: The Euler method's stability is highly 

dependent on the chosen step size. For large step 

sizes, this method tends to overestimate or 

underestimate the rate of change of the neuron’s 

membrane potential, leading to inaccurate results or 

even divergence from the true solution. In the context 

of SNNs, this can result in the neuron firing at 

incorrect times or failing to fire altogether, which 

degrades the model's accuracy in spike timing and 

overall system performance. 

Error Accumulation: The Euler method is prone to 

error accumulation, which worsens with larger step 

sizes. This cumulative error causes the simulation to 

drift away from the true trajectory of the neuron’s 

membrane potential, compromising both the 

accuracy and stability of the long-term. 

 

2.1.2 Runge-Kutta Methods [5] 

The Runge-Kutta methods (especially the 

popular fourth-order version, RK4) are more accurate 

than the Euler method for solving ODEs by using 

intermediate steps within a single time step. These 

methods reduce the error per step but are still not 

ideal for large step sizes: 

Computational Complexity: While Runge-Kutta 

methods provide higher accuracy for small step sizes, 

they are computationally more intensive. When 

simulating large networks of spiking neurons, the 

increased computation time can be a bottleneck, 

especially in real-time applications such as 

neuromorphic hardware implementations. 

Instability for Large Step Sizes: Like the Euler 

method, Runge-Kutta methods also suffer from 

stability issues at large step sizes. Although they are 

more robust, the stability region of these methods is 

still limited. For large time steps, the neuron’s 

membrane potential may exhibit non-physical 

oscillations or overshooting, causing unreliable 

spiking behavior. This instability can result in 

incorrect firing patterns, which are critical for SNN 

applications that rely on precise spike timing for 

accurate event detection or classification. 

 

 

3 Problem Solution 
Both the Euler and Runge-Kutta methods 

face significant challenges when applied to neuron 

models with large step sizes. They suffer from 

numerical instability, leading to inaccurate or 

untrustworthy results, and do not effectively capture 

the precise temporal dynamics required for spiking 

neuron models. In SNN simulations, maintaining 

accuracy over larger time steps is crucial for real-time 

processing and hardware implementation. Therefore, 

these standard methods are not well-suited for large-

scale SNN simulations or real-time neuromorphic 

hardware implementations, prompting the need for 

more stable and efficient discretization techniques 

such as Non-Standard Finite Difference (NSFD) 

schemes. These methods ensure greater stability and 

accuracy, even for larger step sizes, making them 

more appropriate for neuron models in practical, 

large-scale applications. 

 

3.1 Modifying the Leaky Integrate-and-

Fire (LIF) Neuron Model using Different 

Discretization Methods 
The Leaky Integrate-and-Fire (LIF) neuron 

model describes the membrane potential 𝑉(𝑡) of a 

neuron over time-based on an ordinary differential 

equation (ODE) [6] : 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
=  −𝑉(𝑡) + 𝑅𝐼(𝑡)                   (1) 

where: 

𝜏 is the membrane time constant, 

𝑉(𝑡) is the membrane potential, 

𝐼(𝑡) is the input current, and 

𝑅 is the membrane resistance. 

This equation can be discretized using 

different methods: Euler, Runge-Kutta (RK4), and 

Non-Standard Finite Difference (NSFD) methods  

 

3.1.1 Euler Method (First-Order 

Discretization) 
The Euler method approximates the 

derivative by using a first-order difference: 
𝑑𝑉(𝑡)

𝑑𝑡
≈  

V(t+Δt)−V(t)

∆𝑡
     (2) 

Substituting this into the LIF equation: 
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𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡) +  
∆𝑡

𝜏
(−𝑉(𝑡) + 𝑅𝐼(𝑡))  (3) 

This is a simple iterative update for 𝑉(𝑡), but 

it suffers from instability when using large step sizes 

Δ𝑡, potentially leading to inaccurate neuron 

dynamics.  

 

 

3.1.2 Runge-Kutta (RK4) Method (Fourth-

Order Discretization) 
The Runge-Kutta 4th-order (RK4) method 

uses intermediate steps to calculate a more accurate 

update. For the LIF model, we calculate: 

𝑘1 =  
1

𝜏
(−𝑉(𝑡) + 𝑅𝐼(𝑡))   (4) 

𝑘2 =  
1

𝜏
(−(𝑉(𝑡) +

∆𝑡

2
𝑘1) + 𝑅𝐼 (𝑡 +

∆𝑡

2
))  (5) 

𝑘3 =  
1

𝜏
(−(𝑉(𝑡) +

∆𝑡

2
𝑘2) + 𝑅𝐼 (𝑡 +

∆𝑡

2
))  (6) 

𝑘4 =  
1

𝜏
(−(𝑉(𝑡) + ∆𝑡𝑘3) + 𝑅𝐼(𝑡 + ∆𝑡))  (7) 

The membrane potential update is then given by: 

𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡) +  
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  (8) 

RK4 provides greater accuracy than Euler, 

but at the cost of computational complexity, and still 

faces stability issues for large Δ𝑡 

 

3.1.3 Non-Standard Finite Difference (NSFD) 

Method [7] 
The Non-Standard Finite Difference (NSFD) 

method aims to improve stability by using a modified 

discretization that is tailored to the system dynamics. 

For the LIF model, the discretization is often 

modified as follows: 
𝑑𝑉(𝑡)

𝑑𝑡
≈  

V(t+Δt)−V(t)

∅(∆𝑡)
    (9) 

where  

𝜙(Δ𝑡) is a nonlinear function of Δ𝑡 that can be 

designed to ensure stability, unlike the linear Δ𝑡 used 

in Euler and RK4 methods. A typical choice is: 

∅(∆𝑡) =  
1−𝑒

−
∆𝑡
𝜏

∆𝑡

𝜏

               (10) 

Using this in the LIF equation: 

𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡) +
𝑅𝐼(𝑡)+∅(∆𝑡)

1+∅(∆𝑡)
)              (11) 

The NSFD method is designed to ensure 

stability even for larger step sizes Δ𝑡, which is a key 

advantage in real-time applications or hardware 

implementations. 

 

 

4 Methodology 

 

 
 

Fig. 1: Block diagram showing the methodology 

followed for the implementation 

 The block diagram provided outlines the stepwise 

process of designing a Spiking Neural Network 

(SNN) architecture, with specific application in 

epileptic seizure detection using EEG signal 

classification. Here's a detailed description of each 

stage as represented in the diagram: 

Leaky Integrate-and-Fire (LIF) Neuron: 

 This block represents the starting point of the 

design, where the fundamental spiking neuron model, 

a Leaky Integrate-and-Fire (LIF) neuron, is chosen. 

The LIF neuron is one of the simplest spiking neuron 

models and is known for its efficiency in simulating 

biological neurons. This model integrates incoming 

signals until a threshold is reached, after which a 

spike (output signal) is generated and the membrane 

potential is reset. This mechanism is crucial in 

modeling the neural dynamics for seizure detection 

using EEG signals. 

Discretization using Non-Standard Finite Difference 

Scheme (NSFD): 

 In this stage, the continuous-time dynamics of the 

LIF neuron model are converted into discrete-time 

models using a Non-Standard Finite Difference 

(NSFD) scheme. Traditional discretization methods, 

such as Euler and Runge-Kutta, often suffer from 

stability issues when used with larger step sizes, 

making them unsuitable for hardware 

implementation. The NSFD technique overcomes 

this limitation by providing stable spiking patterns 

over larger step sizes, ensuring more accurate 

simulation of neural activities in real-time systems. 

Hardware Implementation using Area-Efficient 

Multiplier-less Design [8]: 

 After the NSFD-based LIF neuron model is 

designed, it is implemented on neuromorphic 

hardware as shown in Fig. 2. This block emphasizes 

the use of an area-efficient and high-speed hardware 

architecture as shown in Fig. 3 that avoids the need 

for multipliers. The absence of multipliers reduces 

the overall complexity and power consumption of the 

design, making it suitable for resource-constrained 

environments like wearable devices or embedded 

systems for real-time seizure monitoring. 
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Proposed Low-Cost, High-Speed SNN Architecture 

with High Accuracy: 

 This block illustrates the design and development 

of a complete spiking neural network (SNN) 

architecture (shown in Fig. 4(a), (b)) using the 

previously discretized LIF neuron and multiplier-less 

hardware. The network is designed to achieve high 

speed and accuracy while maintaining low cost and 

resource efficiency. This architecture forms the core 

of the epileptic seizure detection system, optimized 

for real-time classification tasks based on EEG 

signals. 

Training using Software: 

 The SNN is trained using software to classify 

seizure and non-seizure events. In this case, the 

Binary Battle Royale algorithm [10] was employed 

for training. EEG data [9] from 400 patients was used 

to train the network, and the model was tested on data 

from 100 patients. During the training phase, the 

network learns to adjust the synaptic weights for 

accurate classification. These weights, after training, 

are stored in block RAM for hardware testing and 

inference. 

Inference for Testing: 

 This block describes the stage where the trained 

network, along with the stored weights, is used for 

inference on the hardware. The trained weights are 

applied to the proposed neuromorphic architecture to 

classify EEG signals in real-time, distinguishing 

between seizure and non-seizure states. This step is 

crucial for evaluating the performance of the 

hardware model in practical applications. 

Validation of Results: 

 The final block signifies the validation phase, 

where the proposed architecture’s performance is 

analyzed by comparing the results from the hardware 

inference stage to the ground truth. In this case, the 

system achieved almost 99.47% accuracy in 

classifying seizure and non-seizure EEG signals. 

This high accuracy demonstrates the efficacy of the 

NSFD discretization and the efficiency of the 

multiplier-less hardware design, validating the 

overall system's potential for medical diagnostics 

applications. 

 

 
 

Fig. 2: Implementation of neuromorphic hardware 

based on Nonstandard Finite difference technique of 

discretization (inspired from [8]) 

  

The hardware in Fig. 2 operates by continuously 

updating the membrane potential V[𝑛] through a 

series of subtraction, shifting, and addition 

operations. The NSFD technique ensures that the 

membrane potential evolution remains stable, even 

for larger time step sizes, unlike traditional 

discretization methods. After each update, the 

comparator checks for spike generation, and the 

MUX handles potential resetting. 
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Fig. 3: Proposed area efficient multiplier less design 

used for the implementation of NSFD_LIF neuron 

model 

  

 Fig. 3 illustrates a hardware-efficient approach to 

performing arithmetic operations, specifically 

focused on multiplication and division using shift 

operations. In this method, arithmetic shifters are 

utilized to approximate complex multiplications or 

divisions by decomposing the operand into powers of 

2 and fractions like 0.5. This description outlines the 

steps involved in implementing this approach: 

 The process starts with an input value 𝐴, 

represented as a K-bit binary number, and an 

additional input 𝐵, which serves as the operand by 

which 𝐴 will be multiplied or divided. Rather than 

directly using traditional multiplication or division 

operations—which require more hardware 

resources—this method approximates these 

operations by rewriting 𝐵 as a combination of powers 

of 2 and 0.5. This transformation is essential, as 

shifting left or right by a certain number of bits 

corresponds to multiplying or dividing by powers of 

2, while including 0.5 enables fractional scaling. 

 Once 𝐵 is decomposed, arithmetic shifters are 

employed to execute the shift operations on 𝐴. 

Shifting the bits of 𝐴 to the left results in 

multiplication by powers of 2, while shifting to the 

right performs division by powers of 2. This process 

is resource-efficient, as it avoids the need for 

complex multipliers or dividers, relying instead on 

simple shift operations that are both faster and require 

less hardware. 

 After applying the shift operations, the output is 

obtained as an approximation of the desired 

multiplication or division. The final result is achieved 

through a series of efficient shift operations, which 

are particularly advantageous in hardware 

implementations where speed, power consumption, 

and area are critical factors. The process concludes 

once the arithmetic shift operations are complete, 

yielding a result that closely approximates the 

intended arithmetic operation with minimal hardware 

overhead. 

 

Fig. 4: (a) SNN architecture proposed for the purpose of Epileptic Seizure detection (b) layered diagram of 

SNN architecture
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 The diagrams represent two views of a Spiking 

Neural Network (SNN) architecture. Each sub-

diagram conveys different components and 

functionalities involved in the training and inference 

process of the SNN model, specifically for tasks like 

classification, which can be extended to epileptic 

seizure detection using EEG signals as a potential 

application. Below is a detailed description of both 

diagrams:  

Fig. 4(a) - SNN Training and Inference Process 

 This diagram outlines the architecture and flow of 

the Spiking Neural Network during the training and 

inference phases. It breaks down the components 

involved in processing the input data, training the 

model, and obtaining results: 

Raw Input EEG Data: 

 The raw patient EEG data is preprocessed and fed 

into the SNN as input. The system prepares this input 

by normalizing or transforming the data to match the 

required format for spiking neuron inputs. 

Binary Discretization: 

 Before being processed by the SNN, the input data 

undergoes a binary encoding process. This step is 

crucial for spiking neuron models since they operate 

based on binary-like spike events, representing a 

firing neuron as a spike or no spike. 

Post-Synaptic Potentials (PSP) Calculation: 

 The binary inputs generate post-synaptic 

potentials, which are transmitted through the 

synapses of the network. These PSP values determine 

how the neurons in the network accumulate potential 

and decide whether to fire spikes. 

Spiking Neural Network (SNN): 

 The core computational block is the Spiking 

Neural Network itself. It consists of layers of spiking 

neurons that process input data, propagate signals 

through the network, and compute the output. The 

spiking neuron model could be based on LIF (Leaky 

Integrate-and-Fire) neurons, as represented by the 

NSFD discretization techniques applied in hardware. 

STDP Learning (Spike-Timing-Dependent Plasticity) 

[11]: 

 The SNN is trained using biologically inspired 

learning rules, such as STDP. STDP adjusts the 

weights between neurons based on the timing of 

spikes, allowing the network to learn patterns from 

the input data (e.g., EEG signal patterns associated 

with seizure activity). This weight adjustment 

optimizes the model's performance and accuracy 

over time. 

The pseudo-code of the STDP weight 

updating algorithm is shown as follows. 

            

  Algorithm: STDP(𝑊𝑖𝑗𝑜𝑙𝑑
, 𝑡𝑝𝑟𝑒 , 𝑡𝑝𝑜𝑠𝑡): Spike-Time 

Dependent Plasticity weights updating 

----------------------------------------------------------- 

1 // Presynaptic neuron i 

2 // Post synaptic neuron j 

3 Inputs: 𝑊𝑖𝑗𝑜𝑙𝑑
, 𝑡𝑝𝑟𝑒 , 𝑡𝑝𝑜𝑠𝑡 

4 𝑑𝑡 =  𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒  

5 if (𝑑𝑡 > 0) 

6 { 

7    𝑊𝑖𝑗𝑛𝑒𝑤
(𝑡) =  𝑊𝑖𝑗𝑜𝑙𝑑

(𝑡) +  𝐴𝑝𝑟𝑒𝑒
−𝑑𝑡

𝜏𝑝𝑟𝑒⁄
 

8   } 

9 else 

10 { 

11   𝑊𝑖𝑗𝑛𝑒𝑤
(𝑡) =  𝑊𝑖𝑗𝑜𝑙𝑑

(𝑡) +  𝐴𝑝𝑜𝑠𝑡𝑒
𝑑𝑡

𝜏𝑝𝑜𝑠𝑡⁄
 

12  } 

13 Output: 𝑊𝑖𝑗𝑛𝑒𝑤
 

---------------------------------------------------------   

Here, t is time, W is weight, and A and τ are 

constants provided as examples ([2], [6]).   

Weight Updates and Optimizations: 

 During the training phase, weight optimization 

algorithms refine the synaptic weights that control 

the strength of connections between neurons. The 

weights are crucial for accurate classification and are 

stored for later use in hardware implementation. 

Table. 1 shows the list of hyperparameters are used 

for optimization. 

Table. 1 Parameters used. 

S. No Type of Parameters Value 

1 τ 10 ms 

2 Δt 0.001 ms 

3 R 1  

4 I 1 

5 𝐴𝑝𝑟𝑒 0.01 

6 𝐴𝑝𝑜𝑠𝑡 -0.0105 

7 𝜏𝑝𝑟𝑒 20 ms 

8 𝜏𝑝𝑜𝑠𝑡 20 ms 

9 𝑣𝑡ℎ 0.99 

 

 

 

Target Data (Training Labels): 

 For training, the system uses target data, such as 

labels that categorize seizure vs. non-seizure activity 

in the EEG signals. This data is essential for 

supervised learning, guiding the SNN to adjust its 

weights and improve accuracy during training. 

Inference Mode: 

 Once the model is trained, it can switch to 

inference mode, where it uses the optimized weights 

and learned spiking patterns to classify new EEG data 

in real time. The output is used for applications like 

detecting seizures. 

Fig. 4(b) - SNN Layered Architecture 
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 This diagram illustrates the detailed structure of 

the SNN, showing how the input, hidden, and output 

layers are connected. The architecture presented here 

follows a feed-forward structure, where spiking 

neurons communicate across different layers. Here's 

a breakdown of each section: 

Input Layer: 

 The nodes in the input layer represent individual 

features or components from the preprocessed EEG 

signals. Each input node corresponds to a specific 

input channel or data point. For instance, inputs 

numbered 1 to 9 might represent various temporal or 

frequency-based features of the EEG data. 

Hidden Layer (Middle Layer): 

 The middle layer consists of spiking neurons, 

typically modeled as Leaky Integrate-and-Fire (LIF) 

neurons, as indicated in the diagram. These neurons 

accumulate input potential and fire spikes when they 

reach a threshold. The connections between the input 

and hidden layers are synaptic connections, which 

carry post-synaptic potentials. 

 The weight of each connection is adjusted during 

training based on the input spikes and the STDP 

learning rule. Each hidden neuron aggregates inputs 

from several input nodes and processes them to 

generate spikes. These middle neurons are 

responsible for capturing complex patterns in the 

input data. 

Output Layer: 

 The output layer consists of neurons that make the 

final decision regarding the classification task. In this 

case, it could represent whether the EEG data 

indicates seizure activity or not. The final spike 

output from this layer determines the classification 

result. 

 The neurons in the output layer receive inputs 

from the hidden layer neurons, which have processed 

and filtered the original EEG signal features. 

Connections: 

 The connections between layers represent the 

flow of information. Synaptic weights determine the 

strength of these connections, and through the 

learning process, these weights are optimized to 

perform accurate classifications. 

 

 

5 Hardware implementation 
     Verilog HDL is used for coding the hardware 

designs. The simulation is carried out in Modelsim 

environment and synthesis is carried out on a Xilinx 

Vivado 2020 platform targeting the XA Zynq-7000 

series device XA7Z030FBG484-1Q. The simulation 

waveform shown in Fig. 5 illustrates the training and 

testing accuracy results for the Spiking Neural 

Network (SNN) model applied to epileptic seizure 

detection using EEG signals. 

Training Accuracy: 

The waveform captures the training accuracy 

over the course of the training phase. As the network 

learns from the input EEG data and adjusts its 

synaptic weights through the STDP (Spike-Timing-

Dependent Plasticity) learning rule, the training 

accuracy gradually improves. 

 

Fig. 5: Simulation waveform showing the training accuracy and testing accuracy results of the Epileptic Seizure 

detection using EEG signals 

The waveform shows a rise in accuracy as 

the model becomes better at distinguishing between 

seizure and non-seizure events based on the training 

data. This phase involves 400 patients' EEG data, 

where the model refines its ability to classify the 

input patterns correctly. 

Testing Accuracy: 

The testing accuracy waveform corresponds 

to the model's performance when applied to unseen 

data. After training, the model is evaluated on a 

separate test set (100 patients' EEG data) to assess its 

generalization ability. 

The testing accuracy waveform shows how 

well the SNN can classify seizure and non-seizure 
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events on the test data, reaching a stable and high 

level of accuracy. 

The simulation results indicate that the SNN 

achieves almost 99.47% accuracy in classifying 

seizure vs. non-seizure events, validating the model’s 

robustness and effectiveness in real-time epileptic 

seizure detection. Table. 2 gives the implementation 

results for the LIF neuron with various discretization 

methods. Table. 3 gives the implementation results 

for the proposed SNN architecture for Epileptic 

Seizure detection with various numerical 

discretization methods. Device used is 

XA7Z030FBG484-1Q. (XA Zynq-7000 series)   

 

Table. 2 Implementation results for the LIF neuron with various numerical discretization methods. 

 

Discretization method Slice LUTs Flipflops Delay (ns) Power (mW) 

Euler 95 85 80 0.25 

RK4 196 297 300 0.48 

NSFD 159 132 120 0.29 

 

 

 

 

 

 

Table. 3 Implementation results for the proposed SNN architecture  

 

Technique used Discretization 

method 

Slice 

LUTs 

DSP 

slices 

Flip-

flops 

Delay 

(ms) 

Power 

(W) 

Training 

accuracy 

Testing 

accuracy 

DSP based 

multiplication 

Euler 11758 23 135 23.47 24.38 95.67% 95.67% 

RK4 13362 23 289 69.73 128.36 97.78% 97.78% 

NSFD 12539 23 193 33.65 99.321 99.65% 99.47% 

Approximate 

multiplier (with 

shift-add 

approach) 

Euler 2186 0 89 0.776 0.052 94.67% 93.34% 

RK4 6164 0 205 1.971 0.190 95.67% 94.67% 

NSFD 4861 0 143 0.986 0.165 97.78% 96.67% 

 

 

6 Conclusion 
     In conclusion, the proposed Spiking Neural 

Network (SNN) model, discretized using the Non-

Standard Finite Difference (NSFD) method and 

implemented on area-efficient, multiplier-less 

neuromorphic hardware, demonstrated exceptional 

performance in epileptic seizure detection using EEG 

signals. The system achieved nearly 99.47% 

accuracy in both training and testing, validated across 

a dataset of 400 patients for training and 100 patients 

for testing. The NSFD method provided improved 

stability for larger time steps, ensuring accurate 

neuron dynamics and real-time processing. The high 

accuracy, combined with the hardware's efficiency, 

shows the potential of this approach for medical 

diagnostic applications. 
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