
Area-Efficient Multiplier-less Neuromorphic Hardware for Epileptic

Seizure Detection Using NSFD-Discretized Spiking Neural Networks

VENKATESWARA REDDY KUNDURU1,2, BALAJI NARAYANAM1
1Department of Electronics and Communications Engineering

University College of Engineering, Kakinada, JNTU,

Kakinada,

INDIA

2Department of Electronics and Communications Engineering

M.B.T.S. Government polytechnic, Guntur

Andhra Pradesh

INDIA

Abstract: - This paper introduces a spiking neural network (SNN) model for epileptic seizure detection,

employing non-standard finite difference (NSFD) discretization techniques to overcome stability issues

associated with traditional methods like Euler and Runge-Kutta. Applied to a Leaky Integrate-and-Fire (LIF)

neuron model, the NSFD approach improves accuracy and stability. The model is implemented on a high-speed,

area-efficient, multiplier-less neuromorphic hardware architecture. Trained on EEG data from 400 patients and

tested on 100 patients, the system utilizes weight-fused features derived from a Binary Battle Royale algorithm.

The weights are stored in block RAM for real-time seizure classification, achieving nearly 99.47% accuracy. The

proposed architecture is optimized for real-time, resource-constrained environments, making it ideal for wearable

devices in continuous seizure monitoring. This invention represents a breakthrough in neuromorphic computing

and medical signal processing, offering a scalable, accurate, and efficient solution for seizure detection in

neurological diagnostics.

Key-Words: - Leaky Integrate and Fire neuron, Neuromorphic Hardware, Spiking Neural Networks, Non-

Standard Finite Difference scheme, Electroencephalography, Epileptic Seizure detection.

Received: April 19, 2023. Revised: November 7, 2024. Accepted: December 4, 2024. Published: December 27, 2024.

1 Introduction
As we enter an era of increasingly complex

computing demands, traditional digital computing

approaches are becoming inadequate for applications

that require real-time, energy-efficient, and parallel

processing. Neuromorphic computing is emerging as

a revolutionary solution to these challenges by

mimicking the brain's architecture and functioning. It

draws inspiration from biological neural systems to

create computing architectures that are not only faster

and more efficient but also capable of handling tasks

such as pattern recognition, signal processing, and

decision-making with minimal power consumption

[1].

Neuromorphic computing achieves these benefits

by leveraging Spiking Neural Networks (SNNs),

often referred to as the third generation of neural

networks. Unlike their predecessors—artificial

neural networks (ANNs) and recurrent neural

networks (RNNs)—which process information in a

continuous, analog manner, SNNs process data using

discrete spikes, much like the way neurons

communicate in the human brain. This difference

brings several advantages and makes SNNs

particularly suitable for applications requiring real-

time, low-power computation. Neuromorphic

computing, powered by Spiking Neural Networks, is

paving the way for more efficient, robust, and

biologically inspired artificial intelligence systems.

By emulating the brain's energy-efficient and parallel

processing capabilities, neuromorphic systems

promise to revolutionize fields ranging from robotics

to medical diagnostics. The unique features of SNNs,

such as temporal dynamics, event-driven processing,

and efficient learning, make them ideally suited for

real-time applications, where traditional computing

approaches fall short. Popular spiking neuron

models, such as the LIF [2], Izhikevich [3], and AdEx

models, provide the building blocks for designing

neuromorphic systems that can tackle some of the

most complex computing challenges of the future.

2 Problem Formulation
In the implementation of Spiking Neural

Networks (SNNs) and other neuron models,

accurately simulating the temporal dynamics of

neurons is critical. This simulation is commonly

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 93 Volume 3, 2024

achieved through numerical discretization methods

that approximate continuous-time differential

equations governing neuron behavior. Standard

discretization techniques like the Euler method and

Runge-Kutta methods are widely used for this

purpose due to their simplicity and ease of

implementation. However, these methods have

significant drawbacks, particularly in terms of

stability, when applied to neuron models over large

time steps.

2.1 Drawbacks of Standard Discretization

Methods

2.1.1 Euler Method [4]

The Euler method is a first-order numerical

technique for solving ordinary differential equations

(ODEs) by stepping forward in time using a constant

step size. While it is simple to implement, it

introduces numerical instability when larger step

sizes are used:

Stability Issues: The Euler method's stability is highly

dependent on the chosen step size. For large step

sizes, this method tends to overestimate or

underestimate the rate of change of the neuron’s

membrane potential, leading to inaccurate results or

even divergence from the true solution. In the context

of SNNs, this can result in the neuron firing at

incorrect times or failing to fire altogether, which

degrades the model's accuracy in spike timing and

overall system performance.

Error Accumulation: The Euler method is prone to

error accumulation, which worsens with larger step

sizes. This cumulative error causes the simulation to

drift away from the true trajectory of the neuron’s

membrane potential, compromising both the

accuracy and stability of the long-term.

2.1.2 Runge-Kutta Methods [5]

The Runge-Kutta methods (especially the

popular fourth-order version, RK4) are more accurate

than the Euler method for solving ODEs by using

intermediate steps within a single time step. These

methods reduce the error per step but are still not

ideal for large step sizes:

Computational Complexity: While Runge-Kutta

methods provide higher accuracy for small step sizes,

they are computationally more intensive. When

simulating large networks of spiking neurons, the

increased computation time can be a bottleneck,

especially in real-time applications such as

neuromorphic hardware implementations.

Instability for Large Step Sizes: Like the Euler

method, Runge-Kutta methods also suffer from

stability issues at large step sizes. Although they are

more robust, the stability region of these methods is

still limited. For large time steps, the neuron’s

membrane potential may exhibit non-physical

oscillations or overshooting, causing unreliable

spiking behavior. This instability can result in

incorrect firing patterns, which are critical for SNN

applications that rely on precise spike timing for

accurate event detection or classification.

3 Problem Solution
Both the Euler and Runge-Kutta methods

face significant challenges when applied to neuron

models with large step sizes. They suffer from

numerical instability, leading to inaccurate or

untrustworthy results, and do not effectively capture

the precise temporal dynamics required for spiking

neuron models. In SNN simulations, maintaining

accuracy over larger time steps is crucial for real-time

processing and hardware implementation. Therefore,

these standard methods are not well-suited for large-

scale SNN simulations or real-time neuromorphic

hardware implementations, prompting the need for

more stable and efficient discretization techniques

such as Non-Standard Finite Difference (NSFD)

schemes. These methods ensure greater stability and

accuracy, even for larger step sizes, making them

more appropriate for neuron models in practical,

large-scale applications.

3.1 Modifying the Leaky Integrate-and-

Fire (LIF) Neuron Model using Different

Discretization Methods
The Leaky Integrate-and-Fire (LIF) neuron

model describes the membrane potential 𝑉(𝑡) of a

neuron over time-based on an ordinary differential

equation (ODE) [6] :

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −𝑉(𝑡) + 𝑅𝐼(𝑡) (1)

where:

𝜏 is the membrane time constant,

𝑉(𝑡) is the membrane potential,

𝐼(𝑡) is the input current, and

𝑅 is the membrane resistance.

This equation can be discretized using

different methods: Euler, Runge-Kutta (RK4), and

Non-Standard Finite Difference (NSFD) methods

3.1.1 Euler Method (First-Order

Discretization)
The Euler method approximates the

derivative by using a first-order difference:
𝑑𝑉(𝑡)

𝑑𝑡
≈

V(t+Δt)−V(t)

∆𝑡
 (2)

Substituting this into the LIF equation:

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 94 Volume 3, 2024

𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡) +
∆𝑡

𝜏
(−𝑉(𝑡) + 𝑅𝐼(𝑡)) (3)

This is a simple iterative update for 𝑉(𝑡), but

it suffers from instability when using large step sizes

Δ𝑡, potentially leading to inaccurate neuron

dynamics.

3.1.2 Runge-Kutta (RK4) Method (Fourth-

Order Discretization)
The Runge-Kutta 4th-order (RK4) method

uses intermediate steps to calculate a more accurate

update. For the LIF model, we calculate:

𝑘1 =
1

𝜏
(−𝑉(𝑡) + 𝑅𝐼(𝑡)) (4)

𝑘2 =
1

𝜏
(−(𝑉(𝑡) +

∆𝑡

2
𝑘1) + 𝑅𝐼 (𝑡 +

∆𝑡

2
)) (5)

𝑘3 =
1

𝜏
(−(𝑉(𝑡) +

∆𝑡

2
𝑘2) + 𝑅𝐼 (𝑡 +

∆𝑡

2
)) (6)

𝑘4 =
1

𝜏
(−(𝑉(𝑡) + ∆𝑡𝑘3) + 𝑅𝐼(𝑡 + ∆𝑡)) (7)

The membrane potential update is then given by:

𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡) +
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (8)

RK4 provides greater accuracy than Euler,

but at the cost of computational complexity, and still

faces stability issues for large Δ𝑡

3.1.3 Non-Standard Finite Difference (NSFD)

Method [7]
The Non-Standard Finite Difference (NSFD)

method aims to improve stability by using a modified

discretization that is tailored to the system dynamics.

For the LIF model, the discretization is often

modified as follows:
𝑑𝑉(𝑡)

𝑑𝑡
≈

V(t+Δt)−V(t)

∅(∆𝑡)
 (9)

where

𝜙(Δ𝑡) is a nonlinear function of Δ𝑡 that can be

designed to ensure stability, unlike the linear Δ𝑡 used

in Euler and RK4 methods. A typical choice is:

∅(∆𝑡) =
1−𝑒

−
∆𝑡
𝜏

∆𝑡

𝜏

 (10)

Using this in the LIF equation:

𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡) +
𝑅𝐼(𝑡)+∅(∆𝑡)

1+∅(∆𝑡)
) (11)

The NSFD method is designed to ensure

stability even for larger step sizes Δ𝑡, which is a key

advantage in real-time applications or hardware

implementations.

4 Methodology

Fig. 1: Block diagram showing the methodology

followed for the implementation

 The block diagram provided outlines the stepwise

process of designing a Spiking Neural Network

(SNN) architecture, with specific application in

epileptic seizure detection using EEG signal

classification. Here's a detailed description of each

stage as represented in the diagram:

Leaky Integrate-and-Fire (LIF) Neuron:

 This block represents the starting point of the

design, where the fundamental spiking neuron model,

a Leaky Integrate-and-Fire (LIF) neuron, is chosen.

The LIF neuron is one of the simplest spiking neuron

models and is known for its efficiency in simulating

biological neurons. This model integrates incoming

signals until a threshold is reached, after which a

spike (output signal) is generated and the membrane

potential is reset. This mechanism is crucial in

modeling the neural dynamics for seizure detection

using EEG signals.

Discretization using Non-Standard Finite Difference

Scheme (NSFD):

 In this stage, the continuous-time dynamics of the

LIF neuron model are converted into discrete-time

models using a Non-Standard Finite Difference

(NSFD) scheme. Traditional discretization methods,

such as Euler and Runge-Kutta, often suffer from

stability issues when used with larger step sizes,

making them unsuitable for hardware

implementation. The NSFD technique overcomes

this limitation by providing stable spiking patterns

over larger step sizes, ensuring more accurate

simulation of neural activities in real-time systems.

Hardware Implementation using Area-Efficient

Multiplier-less Design [8]:

 After the NSFD-based LIF neuron model is

designed, it is implemented on neuromorphic

hardware as shown in Fig. 2. This block emphasizes

the use of an area-efficient and high-speed hardware

architecture as shown in Fig. 3 that avoids the need

for multipliers. The absence of multipliers reduces

the overall complexity and power consumption of the

design, making it suitable for resource-constrained

environments like wearable devices or embedded

systems for real-time seizure monitoring.

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 95 Volume 3, 2024

Proposed Low-Cost, High-Speed SNN Architecture

with High Accuracy:

 This block illustrates the design and development

of a complete spiking neural network (SNN)

architecture (shown in Fig. 4(a), (b)) using the

previously discretized LIF neuron and multiplier-less

hardware. The network is designed to achieve high

speed and accuracy while maintaining low cost and

resource efficiency. This architecture forms the core

of the epileptic seizure detection system, optimized

for real-time classification tasks based on EEG

signals.

Training using Software:

 The SNN is trained using software to classify

seizure and non-seizure events. In this case, the

Binary Battle Royale algorithm [10] was employed

for training. EEG data [9] from 400 patients was used

to train the network, and the model was tested on data

from 100 patients. During the training phase, the

network learns to adjust the synaptic weights for

accurate classification. These weights, after training,

are stored in block RAM for hardware testing and

inference.

Inference for Testing:

 This block describes the stage where the trained

network, along with the stored weights, is used for

inference on the hardware. The trained weights are

applied to the proposed neuromorphic architecture to

classify EEG signals in real-time, distinguishing

between seizure and non-seizure states. This step is

crucial for evaluating the performance of the

hardware model in practical applications.

Validation of Results:

 The final block signifies the validation phase,

where the proposed architecture’s performance is

analyzed by comparing the results from the hardware

inference stage to the ground truth. In this case, the

system achieved almost 99.47% accuracy in

classifying seizure and non-seizure EEG signals.

This high accuracy demonstrates the efficacy of the

NSFD discretization and the efficiency of the

multiplier-less hardware design, validating the

overall system's potential for medical diagnostics

applications.

Fig. 2: Implementation of neuromorphic hardware

based on Nonstandard Finite difference technique of

discretization (inspired from [8])

The hardware in Fig. 2 operates by continuously

updating the membrane potential V[𝑛] through a

series of subtraction, shifting, and addition

operations. The NSFD technique ensures that the

membrane potential evolution remains stable, even

for larger time step sizes, unlike traditional

discretization methods. After each update, the

comparator checks for spike generation, and the

MUX handles potential resetting.

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 96 Volume 3, 2024

Fig. 3: Proposed area efficient multiplier less design

used for the implementation of NSFD_LIF neuron

model

 Fig. 3 illustrates a hardware-efficient approach to

performing arithmetic operations, specifically

focused on multiplication and division using shift

operations. In this method, arithmetic shifters are

utilized to approximate complex multiplications or

divisions by decomposing the operand into powers of

2 and fractions like 0.5. This description outlines the

steps involved in implementing this approach:

 The process starts with an input value 𝐴,

represented as a K-bit binary number, and an

additional input 𝐵, which serves as the operand by

which 𝐴 will be multiplied or divided. Rather than

directly using traditional multiplication or division

operations—which require more hardware

resources—this method approximates these

operations by rewriting 𝐵 as a combination of powers

of 2 and 0.5. This transformation is essential, as

shifting left or right by a certain number of bits

corresponds to multiplying or dividing by powers of

2, while including 0.5 enables fractional scaling.

 Once 𝐵 is decomposed, arithmetic shifters are

employed to execute the shift operations on 𝐴.

Shifting the bits of 𝐴 to the left results in

multiplication by powers of 2, while shifting to the

right performs division by powers of 2. This process

is resource-efficient, as it avoids the need for

complex multipliers or dividers, relying instead on

simple shift operations that are both faster and require

less hardware.

 After applying the shift operations, the output is

obtained as an approximation of the desired

multiplication or division. The final result is achieved

through a series of efficient shift operations, which

are particularly advantageous in hardware

implementations where speed, power consumption,

and area are critical factors. The process concludes

once the arithmetic shift operations are complete,

yielding a result that closely approximates the

intended arithmetic operation with minimal hardware

overhead.

Fig. 4: (a) SNN architecture proposed for the purpose of Epileptic Seizure detection (b) layered diagram of

SNN architecture

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 97 Volume 3, 2024

 The diagrams represent two views of a Spiking

Neural Network (SNN) architecture. Each sub-

diagram conveys different components and

functionalities involved in the training and inference

process of the SNN model, specifically for tasks like

classification, which can be extended to epileptic

seizure detection using EEG signals as a potential

application. Below is a detailed description of both

diagrams:

Fig. 4(a) - SNN Training and Inference Process

 This diagram outlines the architecture and flow of

the Spiking Neural Network during the training and

inference phases. It breaks down the components

involved in processing the input data, training the

model, and obtaining results:

Raw Input EEG Data:

 The raw patient EEG data is preprocessed and fed

into the SNN as input. The system prepares this input

by normalizing or transforming the data to match the

required format for spiking neuron inputs.

Binary Discretization:

 Before being processed by the SNN, the input data

undergoes a binary encoding process. This step is

crucial for spiking neuron models since they operate

based on binary-like spike events, representing a

firing neuron as a spike or no spike.

Post-Synaptic Potentials (PSP) Calculation:

 The binary inputs generate post-synaptic

potentials, which are transmitted through the

synapses of the network. These PSP values determine

how the neurons in the network accumulate potential

and decide whether to fire spikes.

Spiking Neural Network (SNN):

 The core computational block is the Spiking

Neural Network itself. It consists of layers of spiking

neurons that process input data, propagate signals

through the network, and compute the output. The

spiking neuron model could be based on LIF (Leaky

Integrate-and-Fire) neurons, as represented by the

NSFD discretization techniques applied in hardware.

STDP Learning (Spike-Timing-Dependent Plasticity)

[11]:

 The SNN is trained using biologically inspired

learning rules, such as STDP. STDP adjusts the

weights between neurons based on the timing of

spikes, allowing the network to learn patterns from

the input data (e.g., EEG signal patterns associated

with seizure activity). This weight adjustment

optimizes the model's performance and accuracy

over time.

The pseudo-code of the STDP weight

updating algorithm is shown as follows.

 Algorithm: STDP(𝑊𝑖𝑗𝑜𝑙𝑑
, 𝑡𝑝𝑟𝑒 , 𝑡𝑝𝑜𝑠𝑡): Spike-Time

Dependent Plasticity weights updating

1 // Presynaptic neuron i

2 // Post synaptic neuron j

3 Inputs: 𝑊𝑖𝑗𝑜𝑙𝑑
, 𝑡𝑝𝑟𝑒 , 𝑡𝑝𝑜𝑠𝑡

4 𝑑𝑡 = 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒

5 if (𝑑𝑡 > 0)

6 {

7 𝑊𝑖𝑗𝑛𝑒𝑤
(𝑡) = 𝑊𝑖𝑗𝑜𝑙𝑑

(𝑡) + 𝐴𝑝𝑟𝑒𝑒
−𝑑𝑡

𝜏𝑝𝑟𝑒⁄

8 }

9 else

10 {

11 𝑊𝑖𝑗𝑛𝑒𝑤
(𝑡) = 𝑊𝑖𝑗𝑜𝑙𝑑

(𝑡) + 𝐴𝑝𝑜𝑠𝑡𝑒
𝑑𝑡

𝜏𝑝𝑜𝑠𝑡⁄

12 }

13 Output: 𝑊𝑖𝑗𝑛𝑒𝑤

Here, t is time, W is weight, and A and τ are

constants provided as examples ([2], [6]).

Weight Updates and Optimizations:

 During the training phase, weight optimization

algorithms refine the synaptic weights that control

the strength of connections between neurons. The

weights are crucial for accurate classification and are

stored for later use in hardware implementation.

Table. 1 shows the list of hyperparameters are used

for optimization.

Table. 1 Parameters used.

S. No Type of Parameters Value

1 τ 10 ms

2 Δt 0.001 ms

3 R 1

4 I 1

5 𝐴𝑝𝑟𝑒 0.01

6 𝐴𝑝𝑜𝑠𝑡 -0.0105

7 𝜏𝑝𝑟𝑒 20 ms

8 𝜏𝑝𝑜𝑠𝑡 20 ms

9 𝑣𝑡ℎ 0.99

Target Data (Training Labels):

 For training, the system uses target data, such as

labels that categorize seizure vs. non-seizure activity

in the EEG signals. This data is essential for

supervised learning, guiding the SNN to adjust its

weights and improve accuracy during training.

Inference Mode:

 Once the model is trained, it can switch to

inference mode, where it uses the optimized weights

and learned spiking patterns to classify new EEG data

in real time. The output is used for applications like

detecting seizures.

Fig. 4(b) - SNN Layered Architecture

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 98 Volume 3, 2024

 This diagram illustrates the detailed structure of

the SNN, showing how the input, hidden, and output

layers are connected. The architecture presented here

follows a feed-forward structure, where spiking

neurons communicate across different layers. Here's

a breakdown of each section:

Input Layer:

 The nodes in the input layer represent individual

features or components from the preprocessed EEG

signals. Each input node corresponds to a specific

input channel or data point. For instance, inputs

numbered 1 to 9 might represent various temporal or

frequency-based features of the EEG data.

Hidden Layer (Middle Layer):

 The middle layer consists of spiking neurons,

typically modeled as Leaky Integrate-and-Fire (LIF)

neurons, as indicated in the diagram. These neurons

accumulate input potential and fire spikes when they

reach a threshold. The connections between the input

and hidden layers are synaptic connections, which

carry post-synaptic potentials.

 The weight of each connection is adjusted during

training based on the input spikes and the STDP

learning rule. Each hidden neuron aggregates inputs

from several input nodes and processes them to

generate spikes. These middle neurons are

responsible for capturing complex patterns in the

input data.

Output Layer:

 The output layer consists of neurons that make the

final decision regarding the classification task. In this

case, it could represent whether the EEG data

indicates seizure activity or not. The final spike

output from this layer determines the classification

result.

 The neurons in the output layer receive inputs

from the hidden layer neurons, which have processed

and filtered the original EEG signal features.

Connections:

 The connections between layers represent the

flow of information. Synaptic weights determine the

strength of these connections, and through the

learning process, these weights are optimized to

perform accurate classifications.

5 Hardware implementation
 Verilog HDL is used for coding the hardware

designs. The simulation is carried out in Modelsim

environment and synthesis is carried out on a Xilinx

Vivado 2020 platform targeting the XA Zynq-7000

series device XA7Z030FBG484-1Q. The simulation

waveform shown in Fig. 5 illustrates the training and

testing accuracy results for the Spiking Neural

Network (SNN) model applied to epileptic seizure

detection using EEG signals.

Training Accuracy:

The waveform captures the training accuracy

over the course of the training phase. As the network

learns from the input EEG data and adjusts its

synaptic weights through the STDP (Spike-Timing-

Dependent Plasticity) learning rule, the training

accuracy gradually improves.

Fig. 5: Simulation waveform showing the training accuracy and testing accuracy results of the Epileptic Seizure

detection using EEG signals

The waveform shows a rise in accuracy as

the model becomes better at distinguishing between

seizure and non-seizure events based on the training

data. This phase involves 400 patients' EEG data,

where the model refines its ability to classify the

input patterns correctly.

Testing Accuracy:

The testing accuracy waveform corresponds

to the model's performance when applied to unseen

data. After training, the model is evaluated on a

separate test set (100 patients' EEG data) to assess its

generalization ability.

The testing accuracy waveform shows how

well the SNN can classify seizure and non-seizure

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 99 Volume 3, 2024

events on the test data, reaching a stable and high

level of accuracy.

The simulation results indicate that the SNN

achieves almost 99.47% accuracy in classifying

seizure vs. non-seizure events, validating the model’s

robustness and effectiveness in real-time epileptic

seizure detection. Table. 2 gives the implementation

results for the LIF neuron with various discretization

methods. Table. 3 gives the implementation results

for the proposed SNN architecture for Epileptic

Seizure detection with various numerical

discretization methods. Device used is

XA7Z030FBG484-1Q. (XA Zynq-7000 series)

Table. 2 Implementation results for the LIF neuron with various numerical discretization methods.

Discretization method Slice LUTs Flipflops Delay (ns) Power (mW)

Euler 95 85 80 0.25

RK4 196 297 300 0.48

NSFD 159 132 120 0.29

Table. 3 Implementation results for the proposed SNN architecture

Technique used Discretization

method

Slice

LUTs

DSP

slices

Flip-

flops

Delay

(ms)

Power

(W)

Training

accuracy

Testing

accuracy

DSP based

multiplication

Euler 11758 23 135 23.47 24.38 95.67% 95.67%

RK4 13362 23 289 69.73 128.36 97.78% 97.78%

NSFD 12539 23 193 33.65 99.321 99.65% 99.47%

Approximate

multiplier (with

shift-add

approach)

Euler 2186 0 89 0.776 0.052 94.67% 93.34%

RK4 6164 0 205 1.971 0.190 95.67% 94.67%

NSFD 4861 0 143 0.986 0.165 97.78% 96.67%

6 Conclusion
 In conclusion, the proposed Spiking Neural

Network (SNN) model, discretized using the Non-

Standard Finite Difference (NSFD) method and

implemented on area-efficient, multiplier-less

neuromorphic hardware, demonstrated exceptional

performance in epileptic seizure detection using EEG

signals. The system achieved nearly 99.47%

accuracy in both training and testing, validated across

a dataset of 400 patients for training and 100 patients

for testing. The NSFD method provided improved

stability for larger time steps, ensuring accurate

neuron dynamics and real-time processing. The high

accuracy, combined with the hardware's efficiency,

shows the potential of this approach for medical

diagnostic applications.

References:

[1] Schuman, Catherine D., et al. A survey on

neuromorphic computing and neural networks

in hardware, arXiv preprint arXiv:1705.06963

(2017).

[2] E. Z. Farsa, A. Ahmadi, M.A. Maleki, M.

Gholami and H. N. Rad, A Low-Cost High-speed

Neuromorphic Hardware Based on Spiking

Neural Networks, in IEEE transactions on

circuits and systems II:Express bries, vol. 66,

no. 9, pp. 1582-1586, sept.2019.

[3] E. M. Izhikevich, simple model of spiking

neurons, in IEEE transactions on neural

Networks, vol. 14, no.6, pp.1569-1572,

Nov.2003.

[4] Biswas, B.N., et al. A discussion on Euler

method: A review., Electronic Journal of

mathematical analysis and Applications 1.2

(2013): 2090-2972.

[5] Cartwright, Julyan HE, and Oreste Piro., The

dynamics of Runge-Kutta methods, International

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 100 Volume 3, 2024

Journal of Bifurcation and chaos 2.03 (1992):

427-449.

[6] Gernster, Wulfram, and Werner M. Kistler,

Spiking neuron models: Single neurons,

populations, plasticity., Cambridge university

press, 2002

[7] Mickens, Ronald E., Nonstandard finite

difference schemes: methodology and

applications., World Scientific, 2020

[8] Venkateswara reddy, K., and N. Balaji. Efficient

Hardware Implementation of Spiking Neural

Networks Using Non-standard Finite Difference

Scheme for Leaky Integrate and Fire Neuron

Model. Journal of Circuits, Systems and

Computers (2024).

[9] Begleiter, H. (1995). EEG database [Dataset].,

UCI Machine Learning Repository.

[10] Akan, Taymaz, Saeid Agahian, and Rahim

Dehkharghani., Binbro: Binary battle royale

optimizer algorithm, Expert systems with

applications 195 (2022): 116599

[11] Iakymchuk, Taras, et al. Simplified spiking

neural network architecture and STDP learning

algorithm applied to image classification.,

EURASIP Journal on Image and Video

Processing 2015 (2015): 1-11

Venkateswara Reddy Kunduru carried out the

hardware design, simulation and validation of results.

Balaji Narayanam has developed problem statement

and methodology for the implementation.

International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2024.3.13 Venkateswara Reddy Kunduru, Balaji Narayanam

E-ISSN: 2945-0489 101 Volume 3, 2024

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

