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Abstract:- In the presence of a uniform horizontal magnetic field, thermal instability of a compressible 
plasma is postulated to occur in the presence of effects of finite Larmor radius (FLR) and Hall 
currents. The dispersion relation is found by using the linear stability theory, Boussinesq 
approximation and the normal mode analysis approach, respectively. In the scenario of stationary 
convection, it was discovered that the compressibility has a stabilizing effect whereas FLR and Hall 
currents have stabilizing as well as destabilizing effects. For (𝐶𝑝𝛽 𝑔⁄ ) < 1, the system is stable. The 
magnetic field, FLR and Hall currents introduce oscillatory modes in the system for (𝐶𝑝𝛽 𝑔⁄ ) > 1. In 

addition to this, it has been discovered that the system is reliable for 1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
andunder the 

condition 1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
the system goes into an unstable state. 
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1 Introduction 

The thermal instability of a fluid layer heated 

from below plays an important role in 

geophysics, oceanography, atmospheric physics 

etc., and has been investigated by many 

authors, e.g. Be'nard [1], Rayleigh [2], Jeffreys 

[3]. A detailed account of the theoretical and 

experimental results of the onset of thermal 

instability (Be'nard convection) in a fluid layer 

under varying assumptions of hydrodynamics 

and hydromagnetics has been given in a treatise 

by Chandrasekhar [4]. The use of the 

Boussinesq approximation has been made 

throughout, which states that the variations of 

density in the equations of motion can safely be 

ignored everywhere except in its association 

with the external force. The approximation is 

well justified in the case of incompressible 

fluids.  

The properties of ionized space and laboratory 

magnetic fluids (plasmas) have been 

intensively investigated theoretically and 

experimentally in the past sixty years. One of 

the key aspects studied in this context is the 

stability of plasma structures. Usually, 

instabilities can be divided into two categories: 

macro- and micro-instabilities. Macro-

instabilities occur with low frequencies 

compared to the plasma and cyclotron 

frequency and they are studied within the 
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framework of magnetohydrodynamics (MHD). 

Physicists have understood the behaviour of 

macro-instabilities and they showed how to 

avoid the most destructive of them, but small-

scale gradient driven micro-instabilities are still 

a serious obstacle for having a stable plasma for 

a large range of parameters. Micro-instabilities 

are described by models which include, e.g. 

finite Larmor radius (FLR) and collision less 

dissipative effects in plasmas. Time and length 

scales of micro-instabilities are comparable to 

the turbulent length scales and the length scales 

of transport coefficients. In general, the FLR 

effect is neglected. However, when the Larmor 

radius becomes comparable to the 

hydromagnetic length of the problem (e.g. 

wavelength) or the gyration frequency of ions 

in the magnetic field is of the same order as the 

wave frequency, finiteness of the Larmor radius 

must be taken into account. Strictly speaking, 

the space and time scale for the breakdown of 

hydromagnetics are on the respective scales of 

ion gyration about the field, and the ion Larmor 

frequency. Finite Larmor radius effect on 

plasma instabilities has been the subject of 

many investigations. In many astrophysical 

plasma situations such as in solar corona, 

interstellar and interplanetary plasmas the 

assumption of zero Larmor radius is not valid. 

The effects of finiteness of the ion Larmor 

radius, showing up in the form of a magnetic 

viscosity in the fluid equations, have been 

studied by Rosenbluth et al. [5], Roberts and 

Taylor [6], Vandakurov [7] and Jukes [8]. 

Melchior and Popowich [9] have considered the 

finite Larmor radius (FLR) effect on the 

Kelvin-Helmholtz instability of a fully ionized 

plasma, while the effect on the Rayleigh-Taylor 

instability has been studied by Singh and Hans 

[10]. Sharma [11] has studied the effect of a 

finite Larmor radius on the thermal instability 

of a plasma.Hernegger [12] investigated the 

stabilizing effect of FLR on thermal instability 

and showed that thermal criterion is changed by 

FLR for wave propagation perpendicular to the 

magnetic field. Sharma [13] investigated the 

stabilizing effect of FLR on thermal instability 

of rotating plasma. Ariel [14] discussed the 

stabilizing effect of FLR on thermal instability 

of conducting plasma layer of finite thickness 

surrounded by a non-conducting matter. 

Vaghela and Chhajlani [15] studied the 

stabilizing effect of FLR on magneto-thermal 

stability of resistive plasma through a porous 

medium with thermal conduction. Bhatia and 

Chhonkar [16] investigated the stabilizing 

effect of FLR on the instability of a rotating 

layer of self-gravitating plasma incorporating 

the effects of viscosity and Hall current. Vyas 

and Chhajlani [17] pointed out the stabilizing 

effect of FLR on the thermal instability of 

magnetized rotating plasma incorporating the 

effects of viscosity, finite electrical 

conductivity, porosity and thermal conductivity. 

Kaothekar and Chhajlani [18] investigated the 

problem of Jeans instability of self-gravitating 

rotating radiative plasma with finite Larmor 

radius corrections. The frictional effect of 

collisions of ionized with neutral atoms on 

Rayleigh-Taylor instability of a composite 

plasma in porous medium has been considered 

by Kumar and Mohan [19]. Kumar et al. [20] 

considered the Rayleigh-Taylor instability of an 

infinitely conducting plasma in porous medium 
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taking account the finiteness of ion Larmor 

radius (FLR) in the presence of a horizontal 

magnetic field. Kumar and Singh [21] 

investigated the thermal convection of a plasma 

in porous medium to include simultaneously 

the effect of rotation and the finiteness of the 

ion Larmor radius (FLR) in the presence of a 

vertical magnetic field. The effect of finite 

Larmor radius of the ions on thermal 

convection of a plasma has been studied by 

Kumar and Gupta [22]. Kumar [23] 

investigated the thermal convection of a plasma 

in porous medium in the presence of finite 

Larmor radius (FLR) and Hall effects. Thus 

FLR effect is an important factor in the 

discussion of thermal convection and other 

hydromagnetic instabilities.  

When the fluids are compressible, the equations 

governing the system become quite 

complicated. To simplify the set of equations 

governing the flow of compressible fluids, 

Spiegel and Veronis [24] made the following 

assumptions: 

(i) The depth of fluid layer is much 

smaller than the scale height as 

defined by them and  

(ii) The fluctuations in temperature, 

pressure and density, introduced 

due to motion, do not exceed their 

static variations. 

Under the above assumptions, the flow 

equations are the same as those for 

incompressible fluids except that the static 

temperature gradient is replaced by its excess 

over the adiabatic. The thermal instability in 

compressible fluids in the presence of rotation 

and magnetic field has been considered by 

Sharma [25]. Sharma [26] also studied the 

thermal instability of a compressible Hall 

plasma. Sharma and Sharma [27] considered 

the thermal instability of a partially ionized 

plasma in the presence of compressibility and 

collisional effects while the thermal instability 

of a compressible plasma with FLR has been 

studied by Sharma et al. [28]. Finite Larmor 

radius (FLR) effects are likely to be important 

in “weakly” unstable systems such as high beta 

stellarator, mirror machines, slowly rotating 

plasmas, large aspect tori etc. The Hall effects 

are likely to be important in many astrophysical 

situations as well as in flows of laboratory 

plasma. Sherman and Sutton [29] considered 

the effect of Hall currents on the efficiency of a 

magneto-fluid dynamic generator while Sato 

[30] and Tani [31] studied the incompressible 

viscous flow of an ionized gas with tensor 

conductivity in channels with consideration of 

Hall effect. Sonnerup [32] and Uberoi and 

Devanathan [33] investigated the effects of Hall 

current on the propagation of small amplitude 

waves taking compressibility into account.  

Keeping in mind the importance in the physics 

of atmosphere and astrophysics especially in 

the case of ionosphere and outer layers of the 

sun’s atmosphere, the present paper is devoted 

to the study of thermal instability of a 

compressible plasma under the effects of finite 

Larmor radius (FLR) and Hall currents in the 

presence of a uniform horizontal magnetic 

field.  
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2 Formulation of the Problem and 

    Perturbation Equations 

Consider an infinite horizontal layer of 

compressible, viscous, heat-conducting and 

finite electrically conducting fluid of thickness 

𝑑 in which a uniform temperature gradient 

𝛽(= |𝑑𝑇 𝑑𝑧⁄ |) is maintained. Consider the 

cartesian coordinates (𝑥, 𝑦, 𝑧) with origin on 

the lower boundary 𝑧 = 0 and the 𝑧-axis 

perpendicular to it along the vertical. The fluid 

is acted on by a horizontal magnetic fluid 

𝐻⃗⃗ (𝐻, 0,0) and gravity force 𝑔 (0,0,−𝑔). 

Following Spiegel and Veronis [24] and 

Sharma et al. [28], the linearized 

hydromagnetic perturbation equations 

appropriate to the problem are 

𝜕𝑞 

𝜕𝑡
= −(

1

𝜌𝑚
)∇𝛿𝑃 + 𝜈∇2𝑞 +                   

1

4𝜋
(∇ × ℎ⃗ ) × 𝐻⃗⃗ − 𝑔 𝛼𝜃 ,   (1) 

∇. 𝑞 = 0 ,                                                               (2) 

𝜕ℎ⃗ 

𝜕𝑡
= ∇ × (𝑞 × 𝐻⃗⃗ ) + 𝜂∇2ℎ⃗ − (

1

4𝜋𝑁𝑒
)∇

× [(∇ × ℎ⃗ ) × 𝐻⃗⃗ ] ,                  (3) 

∇. ℎ⃗ = 0 ,                                                               (4) 

𝜕𝜃

𝜕𝑡

= (𝛽 −
𝑔

𝐶𝑝
)𝑤 + 𝜅∇2𝜃 ,                                    (5) 

where 𝑞 (𝑢, 𝑣, 𝑤), ℎ⃗ (ℎ𝑥  , ℎ𝑦 , ℎ𝑧), 𝛿𝑝, 𝛿𝜌 and 𝜃 

denote respectively the perturbations in 

velocity, magnetic field 𝐻⃗⃗  , pressure 𝑝, density 

𝜌 and temperature 𝑇. Here 𝛿𝑃, 𝜌𝑚 , 𝜇, 𝜈(=

𝜇 𝜌𝑚⁄ ), 𝜅′, 𝜅(= 𝜅′ 𝜌𝑚𝐶𝑝⁄ ), 𝜂, 𝑔 𝐶𝑝⁄  , 𝑔, 𝛼, 𝑁 

and 𝑒 stand for stress tensor perturbation, 

constant space average of 𝜌, viscosity, 

kinematic viscosity, thermal conductivity, 

thermal diffusivity, resistivity, adiabatic 

gradient, acceleration due to gravity, coefficient 

of thermal expansion, electron number density 

and charge of an electron respectively. 

For the horizontal magnetic field 𝐻⃗⃗ (𝐻, 0,0), the 

stress tensor 𝛿𝑃, taking into account the finite 

ion gyration [Vandakurov [7]], has the 

components 

𝛿𝑃𝑥𝑥 = 𝛿𝑝 , 𝛿𝑃𝑥𝑦 = 𝛿𝑃𝑦𝑥

= −2𝜌𝜈0 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
),  

𝛿𝑃𝑥𝑧 = 𝛿𝑃𝑧𝑥 = 2𝜌𝜈0 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) , 𝛿𝑃𝑦𝑦

= 𝛿𝑝 − 𝜌𝜈0 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) , 

𝛿𝑃𝑦𝑧 = 𝛿𝑃𝑧𝑦 = 𝜌𝜈0 (
𝜕𝑣

𝜕𝑦
−

𝜕𝑤

𝜕𝑧
) , 𝛿𝑃𝑧𝑧

= 𝛿𝑝

+ 𝜌𝜈0 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
).                                             (6) 

Here 𝜌𝜈0 = 𝑁𝑇 4𝜔𝐻⁄  where 𝑁, 𝑇 and 𝜔𝐻 

denote respectively the number density, the ion 

temperature and the ion gyration frequency. 

 

 

3 Dispersion Relation 

We decompose the disturbances into normal 

modes and assume that the perturbed quantities 

are of the form 
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[𝑤, 𝜃, ℎ𝑧 , 𝜁, 𝜉]

= [𝑊(𝑧), Θ(𝑧), 𝐾(𝑧), 𝑍(𝑧), 𝑋(𝑧)]𝑒𝑥𝑝(𝑖𝑘𝑥𝑥

+ 𝑖𝑘𝑦𝑦 + 𝑛𝑡) ,                                                   (7) 

where 𝑘𝑥 , 𝑘𝑦 are the wave numbers along the 

𝑥- and 𝑦- directions respectively, 𝑘 =

(𝑘𝑥
2 + 𝑘𝑦

2)
1 2⁄  is the resultant wave number and 

n is the frequency of oscillation. 𝜁 and 𝜉 stand 

for the 𝑧-components of vorticity and current 

density respectively. 

Let 𝑎 = 𝑘𝑑, 𝜎 = 𝑛𝑑2 𝜈⁄  , 𝑝1 = 𝜈 𝜅⁄  , 𝑝2 =

𝜈 𝜂⁄  , 𝐷 = 𝑑 𝑑𝑧⁄  and 𝑥, 𝑦, 𝑧 stand for the 

coordinates in the new unit of length 𝑑. 

Equations (1) – (6), using expression (7), give 

(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜎)𝑊 − (
𝑔𝛼𝑑2

𝜈
) 𝑎2Θ

+
𝑖𝑘𝑥𝐻𝑑2

4𝜋𝜌𝑚𝜈
(𝐷2 − 𝑎2)𝐾

+ (
𝑖𝑘𝑥𝜈0𝑑

2

𝜈
)(𝐷2 − 𝑎2 + 3

𝑘𝑥
2

𝑘2
𝑎2)𝑍

= 0 ,                                                                           (8) 

(𝐷2 − 𝑎2 − 𝜎)𝑍

= (
𝑖𝑘𝑥𝜈0

𝜈
)(𝐷2 − 𝑎2 + 3

𝑘𝑥
2

𝑘2
𝑎2)𝑊

−
𝑖𝑘𝑥𝐻𝑑2

4𝜋𝜌𝑚𝜈
𝑋 ,                                                           (9) 

(𝐷2 − 𝑎2 − 𝑝2𝜎)𝑋

= −(
𝑖𝑘𝑥𝐻𝑑2

𝜂
)𝑍 − (

𝑖𝑘𝑥𝐻

4𝜋𝑁𝑒𝜂
) (𝐷2 − 𝑎2)𝐾,

                                                                              (10) 

(𝐷2 − 𝑎2 − 𝑝2𝜎)𝐾

= −(
𝑖𝑘𝑥𝐻𝑑2

𝜂
)𝑊

+ (
𝑖𝑘𝑥𝐻𝑑2

4𝜋𝑁𝑒𝜂
)𝑋,             (11) 

(𝐷2 − 𝑎2 − 𝑝1𝜎)Θ

= −
𝑑2

𝜅
(𝛽 −

𝑔

𝐶𝑝
)𝑊 .                                  (12) 

Eliminating Θ,𝐾, 𝑋 and 𝑍 between equations 

(8) – (12), we obtain 

[(𝐷2 − 𝑎2 − 𝑝2𝜎)2(𝐷2 − 𝑎2 − 𝜎)

+ 𝑄𝑘𝑥
2𝑑2(𝐷2 − 𝑎2 − 𝑝2𝜎)

− 𝑀𝑘𝑥
2𝑑2(𝐷2 − 𝑎2)(𝐷2 − 𝑎2

− 𝜎)] [𝑅𝑎2 (
𝐺 − 1

𝐺
)

+ (𝐷2 − 𝑎2)(𝐷2 − 𝑎2

− 𝜎)(𝐷2 − 𝑎2 − 𝑝1𝜎)]𝑊

+ 𝑄𝑘𝑥
2𝑑2(𝐷2 − 𝑎2)(𝐷2 − 𝑎2

− 𝑝1𝜎) [{(𝐷2 − 𝑎2 − 𝜎)(𝐷2

− 𝑎2 − 𝑝2𝜎) + 𝑄𝑘𝑥
2𝑑2}

− 𝑀1 2⁄ 𝑁1 2⁄ 𝑘𝑥
2𝑑2(𝐷2 − 𝑎2

− 𝑝2𝜎)

− 𝑀1 2⁄ 𝑁1 2⁄ 𝑘𝑥
2𝑑2 (𝐷2 − 𝑎2

+ 3
𝑘𝑥

2

𝑘2
𝑎2)]𝑊

− 𝑁𝑘𝑥
2𝑑2(𝐷2 − 𝑎2

− 𝑝1𝜎)(𝐷2 − 𝑎2

+ 3
𝑘𝑥

2

𝑘2
𝑎2)

2

[(𝐷2 − 𝑎2

− 𝑝2𝜎)2

− 𝑀𝑘𝑥
2𝑑2(𝐷2 − 𝑎2)]𝑊

= 0 ,                                       (13) 

where 𝑄 = 𝐻2𝑑2 4𝜋𝜌𝑚𝜈𝜂⁄  is the 

Chandrsekhar number, 𝑅 = 𝑔𝛼𝛽𝑑4 𝜈𝜅⁄  is the 

Rayleigh number, 𝑀 = (𝐻 4𝜋𝑁𝑒𝜂⁄ )2 is the 

non-dimensional number accounting for Hall 

currents, 𝑁 = (𝜈0 𝜈⁄ )2 is a non-dimensional 
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number accounting for FLR effect and =

𝐶𝑝𝛽 𝑔⁄  . Consider the case in which both the 

boundaries are free and the medium adjoining 

the fluid is non-conducting. The appropriate 

boundary conditions for this case are 

[Chandrasekhar [4]] 

𝑊 = 𝐷2𝑊 = 0,Θ = 0, 𝐷𝑍 = 0, 𝑋 = 0 
𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 1

𝑎𝑛𝑑 ℎ⃗  𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

}.  (14) 

The case of two free boundaries, though little 

artificial, is the most appropriate for stellar 

atmospheres [Spiegel [34]]. Using the boundary 

conditions (14), one can show that all the even 

derivatives of 𝑊 must vanish for 𝑧 = 0 and 1 

and hence the proper solution of (13) 

characterizing the lowest mode is 

𝑊 = 𝑊0 sin𝜋𝑧 ,                                            (15) 

where 𝑊0 is a constant. Substituting (15) in 

(13) and letting 𝑎2 = 𝜋2𝑥, 𝑅1 = 𝑅 𝜋4⁄ , 𝑄1 =

𝑄 𝜋2⁄ , 𝑘𝑥 = 𝑘 cos 𝜃 and 𝑖𝜎1 = 𝜎 𝜋2⁄  , we 

obtain the dispersion relation 

𝑅1

= (
𝐺

𝐺 − 1
) [(

1 + 𝑥

𝑥
) (1 + 𝑥 + 𝑖𝜎1)(1 + 𝑥

+ 𝑖𝑝1𝜎1)

+ [𝑄1𝑐𝑜𝑠
2𝜃 (1 + 𝑥)(1 + 𝑥

+ 𝑖𝑝1𝜎1){(1 + 𝑥 + 𝑖𝜎1)(1 + 𝑥 + 𝑖𝑝2𝜎1)

+ 𝑄1𝑥𝑐𝑜𝑠2𝜃}

+ 𝑁𝑐𝑜𝑠2𝜃(1 + 𝑥

+ 𝑖𝑝1𝜎1)(1 + 𝑥

− 3𝑥𝑐𝑜𝑠2𝜃)2{(1 + 𝑥 + 𝑖𝑝2𝜎1)
2

+ 𝑀𝑥(1 + 𝑥)𝑐𝑜𝑠2𝜃}

+ 𝑀1 2⁄ 𝑁1 2⁄ 𝑄1𝑥(1 + 𝑥)(1 + 𝑥

+ 𝑖𝑝1𝜎1)𝑐𝑜𝑠
4𝜃{(1 + 𝑥 + 𝑖𝑝2𝜎1)

+ (1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)}][(1 + 𝑥 − 𝑖𝑝2𝜎1)
2(1

+ 𝑥 + 𝑖𝜎1) + 𝑄1𝑥𝑐𝑜𝑠2𝜃(1 + 𝑥 + 𝑖𝑝2𝜎1)

+ 𝑀𝑥𝑐𝑜𝑠2𝜃(1 + 𝑥)(1 + 𝑥

+ 𝑖𝜎1)]
−1].                                                         (16) 

Equation (16) is the required dispersion relation 

studying the effects of FLR and Hall currents 

on thermal instability of a compressible plasma. 

In the absence of Hall currents (𝑀 → 0), 

equation (16) reduces to the dispersion relation 

(Sharma et al. [28]). 

 

 

4 Important Theorems and 

        Discussion  

Theorem 1: The system is stable for 𝐺 < 1. 

Proof: Multiplying equation (8) by 𝑊∗, the 

complex conjugate of 𝑊, integrating over the 

range of 𝑧, and making use of equations (9) – 

(12) together with the boundary conditions 

(14), we obtain 
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𝐼1 + 𝜎𝐼2 +
𝐶𝑝𝛼𝜅𝑎2

𝜈(1 − 𝐺)
(𝐼3 + 𝑝2𝜎

∗𝐼4)

+
𝜂

4𝜋𝜌𝑚𝜈
(𝐼5 + 𝑝2𝜎

∗𝐼6)

+
𝜂𝑑2

4𝜋𝜌𝑚𝜈
(𝐼7 + 𝑝2𝜎𝐼8)

+ 𝑑2(𝐼9 + 𝜎∗𝐼10) = 0 ,      (17) 

where 

𝐼1 = ∫ (|𝐷2𝑊|2 + 2𝑎2|𝐷𝑊|2
1

0

+ 𝑎4|𝑊|2)𝑑𝑧,     

𝐼2 = ∫ (|𝐷𝑊|2 + 𝑎2|𝑊|2)𝑑𝑧 ,
1

0

 

𝐼3 = ∫ (|𝐷Θ|2 + 𝑎2|Θ|2)𝑑𝑧 ,
1

0

 

𝐼4 = ∫ (|Θ|2)𝑑𝑧 ,
1

0

 

𝐼5 = ∫ (|𝐷2𝐾|2 + 2𝑎2|𝐷𝐾|2 + 𝑎4|𝐾|2)𝑑𝑧
1

0

 ,  

𝐼6 = ∫ (|𝐷𝐾|2 + 𝑎2|𝐾|2)𝑑𝑧 ,
1

0

 

𝐼7 = ∫ (|𝐷𝑋|2 + 𝑎2|𝑋|2)𝑑𝑧,      
1

0

 

𝐼8 = ∫ (|𝑋|2)𝑑𝑧  ,
1

0

 

𝐼9 = ∫ (|𝐷𝑍|2 + 𝑎2|𝑍|2)𝑑𝑧 ,      
1

0

 

𝐼10 = ∫ (|𝑍|2)𝑑𝑧  .                                        (18)
1

0

 

The integrals 𝐼1 − 𝐼10are all positive definite.  

Putting 𝜎 = 𝜎𝑟 + 𝑖𝜎𝑖 and equating the real and 

imaginary parts of equation (17), we obtain 

𝜎𝑟 [𝐼2 +
𝐶𝑝𝛼𝜅𝑎2

𝜈(1 − 𝐺)
𝑝1𝐼4 +

𝜂

4𝜋𝜌𝑚𝜈
𝑝2(𝐼6 + 𝑑2𝐼8)

+ 𝑑2𝐼10]

= − [𝐼1 +
𝐶𝑝𝛼𝜅𝑎2

𝜈(1 − 𝐺)
𝐼3 +

𝜂

4𝜋𝜌𝑚𝜈
(𝐼5 + 𝑑2𝐼7)

+ 𝑑2𝐼9],                                                                 (19) 

and 

𝜎𝑖 [𝐼2 −
𝐶𝑝𝛼𝜅𝑎2

𝜈(1 − 𝐺)
𝑝1𝐼4 −

𝜂

4𝜋𝜌𝑚𝜈
𝑝2(𝐼6 − 𝑑2𝐼8)

− 𝑑2𝐼10] = 0 .                                                   (20) 

It is evident from equation (19) that 𝜎𝑟 is 

negative if 𝐺 < 1. The system is therefore 

stable for 𝐺 < 1.  

Theorem 2: The modes may be oscillatory or 

non-oscillatory in contrast to the case of no 

magnetic field and in the absence of Hall 

currents and finite Larmor radius where modes 

are non-oscillatory, for 𝐺 > 1 . 

Proof: It is clear from equation (20) that, for 

𝐺 > 1, 𝜎𝑖 may be zero or non-zero, meaning 

that the modes may be oscillatory or non-

oscillatory. The oscillatory modes are 

introduced due to the presence of magnetic 

field (and hence the presence of Hall currents 

and FLR effects).  

In the absence of a magnetic field and hence 

absence of Hall currents and FLR effects, 

equation (20) gives 

𝜎𝑖 [𝐼2 +
𝐶𝑝𝛼𝜅𝑎2

𝜈(𝐺 − 1)
𝑝1𝐼4] = 0 ,                        (21) 
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and the terms in brackets are positive when 

𝐺 > 1. Thus 𝜎𝑖 = 0, which means that 

oscillatory modes are not allowed and the 

principle of exchange of stabilities is satisfied, 

but in the presence of Hall currents, magnetic 

field and finite Larmor radius effects, the 

oscillatory modes come into play. 

Theorem 3:  The system is stable for 

1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
and under the condition 

1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
, thesystem becomes 

unstable. 

Proof: From equation (20) it is clear that 𝜎𝑖 is 

zero when the quantity multiplying it is not 

zero and arbitrary when this quantity is zero. 

If 𝜎𝑖 ≠ 0, equation (19) upon utilizing (20) and 

the Rayleigh-Ritz inequality gives 

[
27π4

4
−

1

G − 1

Cpακ

ν
]∫|W|2dz

1

0

+
π2 + a2

a2 {d2I9

+
η

2πρmν
p2d

2σrI8

+
η

4πρmν
(d2I7 + I5) + 2σrI2}

≤ 0,                                        (22) 

since the minimum value of 
(𝜋2+𝑎2)3

𝑎2
 with 

respect to 𝑎2 is 
27𝜋4

4
. 

Now, let 𝜎𝑟 ≥ 0, we necessarily have from 

inequality (22) that 

1

𝐺 − 1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
.                                       (23) 

Hence, if 

1

𝐺 − 1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
,                                       (24) 

then 𝜎𝑟 < 0. Therefore, the system is stable. 

Thus, under the condition (24), the system is 

stable and under condition (23) the system 

becomes unstable. 

Theorem 4: For stationary convection case: 

(I) In the absence of Hall currents, 

finite Larmor radius has a 

stabilizing effect and in the 

presence of FLR and Hall currents, 

the finite Larmor radius effect may 

be both stabilizing as well as 

destabilizing effects on the system. 

(II) In the absence of FLR, Hall 

currents always has a destabilizing 

effect but in the presence of FLR 

and Hall effects, the Hall currents 

may have both destabilizing as well 

as stabilizing effects on the system. 

Proof: When the instability sets in as stationary 

convection, the marginal state will be 

characterized by 𝜎 = 0. Putting 𝜎 = 0, the 

dispersion relation (16) reduces to 
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𝑅1

= (
𝐺

𝐺 − 1
) [

(1 + 𝑥)3

𝑥

+ [𝑄1𝑐𝑜𝑠
2𝜃(1 + 𝑥){(1 + 𝑥)2 + 𝑄1𝑥𝑐𝑜𝑠2𝜃}

+ 𝑀1 2⁄ 𝑁1 2⁄ 𝑄1𝑥𝑐𝑜𝑠
4𝜃(1 + 𝑥){(1 + 𝑥)

+ (1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)}

+ 𝑁𝑐𝑜𝑠2𝜃(1 + 𝑥)(1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)2(1 + 𝑥

+ 𝑀𝑥𝑐𝑜𝑠2𝜃)][(1 + 𝑥)2 + 𝑄1𝑥𝑐𝑜𝑠2𝜃

+ 𝑀𝑥(1

+ 𝑥)𝑐𝑜𝑠2𝜃]−1] ,                                               (25) 

which expresses the modified Rayleigh number 

𝑅1 as a function of the dimensionless wave 

number 𝑥 and the parameters 𝑄1 ,𝑀 , 𝑁 and 𝐺. 

        Let 𝑅𝑐
̅̅ ̅ and 𝑅𝑐 denote respectively the 

critical Rayleigh numbers in the presence and 

in the absence of compressibility. For fixed 

values of 𝑄1 , 𝑀 and 𝑁, let the non-dimensional 

number 𝐺 accounting for the compressibility 

effects be also kept fixed, then we find that 

𝑅𝑐
̅̅ ̅ = (

𝐺

𝐺 − 1
)𝑅𝑐  .                                         (26) 

The effect of compressibility is thus to 

postpone the onset of thermal instability. 

Hence compressibility has a stabilizing 

effect. 𝐺 > 1 is relevant here. The cases 𝐺 < 1 

and 𝐺 = 0 correspond to negative and infinite 

values of critical Rayleigh numbers in the 

presence of compressibility which are not 

relevant in the present study.  

To investigate the effects of finite Larmor 

radius and Hall currents, we examine the 

natures of 

𝑑𝑅1

𝑑𝑁
  𝑎𝑛𝑑 

𝑑𝑅1

𝑑𝑀
 

analytically. 

(I) Equation (25) yields 

𝑑𝑅1

𝑑𝑁

= (
𝐺

𝐺 − 1
) [(1 + 𝑥)(1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)2(1

+ 𝑥 + 𝑀𝑥𝑐𝑜𝑠2𝜃)𝑐𝑜𝑠2𝜃

+
1

2
(
𝑀

𝑁
)
1 2⁄

𝑄1𝑥(1 + 𝑥)𝑐𝑜𝑠4𝜃{(1 + 𝑥)

+ (1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)}] [(1 + 𝑥)2

+ 𝑄1𝑥𝑐𝑜𝑠2𝜃

+ 𝑀𝑥𝑐𝑜𝑠2𝜃(1 + 𝑥)]−1 ,                                (27) 

which is positive if 2(1 + 𝑥) > 3𝑥𝑐𝑜𝑠2𝜃 i.e. 

the wave number range satisfying 

cos𝜃 < {
2(1 + 𝑥)

3𝑥
}

1 2⁄

. 

This shows that FLR has a stabilizing effect for 

the above wave-number range. In the absence 

of Hall currents (𝑀 → 0), FLR always has a 

stabilizing effect. But in the presence of FLR 

and Hall effects on thermal instability, the FLR 

effect may be both stabilizing as well as 

destabilizing but completely stabilizes the 

above wave-number range. 

(II) It is evident from equation (25) that 
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𝑑𝑅1

𝑑𝑀

= [𝑄1𝑥(1 + 𝑥)𝑐𝑜𝑠4 𝜃{(1 + 𝑥)2

+ 𝑄1𝑥𝑐𝑜𝑠2𝜃} {
1

2
(
𝑁

𝑀
)
1 2⁄

(1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)

+ (1 + 𝑥)
(𝑁1 2⁄ − 2𝑀1 2⁄ )

2𝑀
}

+ 𝑁1 2⁄ 𝑄1𝑥
2(1

+ 𝑥)𝑐𝑜𝑠6𝜃 {𝑁1 2⁄ (1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)2

−
𝑀1 2⁄

2
(1 + 𝑥)(21 + 𝑥̅̅ ̅̅ ̅̅ ̅ − 3𝑥𝑐𝑜𝑠2𝜃)} [𝑄1𝑥(1

+ 𝑥)𝑐𝑜𝑠4 𝜃]{(1 + 𝑥)2

+ 𝑄1𝑥𝑐𝑜𝑠2𝜃} {
1

2
(
𝑁

𝑀
)
1 2⁄

(1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)

+ (1 + 𝑥)
(𝑁1 2⁄ − 2𝑀1 2⁄ )

2𝑀
}

+ 𝑁1 2⁄ 𝑄1𝑥
2(1

+ 𝑥)𝑐𝑜𝑠6𝜃 {𝑁1 2⁄ (1 + 𝑥 − 3𝑥𝑐𝑜𝑠2𝜃)2

−
𝑀1 2⁄

2
(1 + 𝑥)(21 + 𝑥̅̅ ̅̅ ̅̅ ̅

− 3𝑥𝑐𝑜𝑠2𝜃)}] [(1 + 𝑥)2 + 𝑄1𝑥𝑐𝑜𝑠2𝜃

+ 𝑀𝑥𝑐𝑜𝑠2𝜃(1 + 𝑥)2]−2 ,                               (28) 

which is positive if 𝑁 > 4𝑀 and cos 𝜃 >

[2(1 + 𝑥) 3𝑥⁄ ]1 2⁄  i.e. if 

𝜈0

𝜈
>

2𝑐𝐻

4𝜋𝑁𝑒𝜂
 𝑎𝑛𝑑 cos𝜃 > {

2(1 + 𝑥)

3𝑥
}

1 2⁄

. 

In the absence of FLR, equation (28) yields that 

𝑑𝑅1 𝑑𝑀⁄  is always negative thus indicating the 

destabilizing effect of Hall currents. In the 

presence of FLR and Hall effects, the Hall 

currents may have both destabilizing as well as 

stabilizing effects and there is competition 

between the destabilizing role of Hall currents 

and stabilizing role of FLR but completely 

stabilizes the above wave-number range if 

𝜈0 𝜈⁄ > 2[𝑐𝐻 (4𝜋𝑁𝑒𝜂)⁄ ]. 

 

 

5 Conclusions 

An attempt has been made to investigate the 

effects of compressibility, FLR and Hall 

currents on the thermal instability of a plasma 

in the presence of a uniform horizontal 

magnetic field under the linear stability theory. 

It has been shown by Sato [30] and Tani [31] 

that inclusion of Hall currents gives rise to a 

cross-flow i.e. a flow at right angles to the 

primary flow in a channel in the presence of a 

transverse magnetic field. Tani [31] found that 

Hall effect produces a cross-flow of double-

swirl pattern in incompressible flow through a 

straight channel with arbitrary cross-section. 

This breakdown of the primary flow and the 

formation of a secondary flow may be 

attributed to the inherent instability of the 

primary flow in the presence of Hall current. 

Our stability analysis lends support to this 

finding. The investigation of thermal instability 

is motivated by its direct relevance to soil 

sciences, groundwater hydrology, geophysical, 

astrophysical and biometrics. The main 

conclusions from the analysis of this paper are 

as follows: 

 The system is found to be stable for 

(𝐶𝑝𝛽 𝑔⁄ ) < 1. 
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 The magnetic field, finite Larmor 

radius and Hall currents introduce 

oscillatory modes in the system for 

(𝐶𝑝𝛽 𝑔⁄ ) > 1. 

 It is observed that the system is stable 

for 
1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
 and under the 

condition 
1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
, the 

system becomes unstable. 

 FLR may have a stabilizing or 

destabilizing effect, but a completely 

stabilizing one for a certain wave-

number range cos 𝜃 < {
2(1+𝑥)

3𝑥
}
1 2⁄

. 

 In the absence of Hall currents, FLR 

always has a stabilizing effect. 

 In the absence of FLR, the Hall 

currents has a destabilizing effect. 

 In the presence of FLR and Hall 

effects, the Hall currents may have both 

destabilizing as well as stabilizing 

effects and there is competition 

between the destabilizing role of Hall 

currents and stabilizing role of FLR but 

completely stabilizes the above wave-

number range if 𝜈0 𝜈⁄ >

2[𝑐𝐻 (4𝜋𝑁𝑒𝜂)⁄ ]. 
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