
The Convergence Properties of Conjugate Gradient Method Using 

AMRI Parameter with Exact Line Search 
 

LAILY DWI RETNO WAHYUNINGTIAS1, SALMAH1* 
1Department of Mathematics, Universitas Gadjah Mada 

Yogyakarta 55281, INDONESIA 

 

 
 

Abstract: The conjugate gradient method is a simple way to get a solution of optimization problems without 

constraints. In this work, we offer a conjugate gradient method algorithm using AMRI parameter where the step 

of length is decided by an exact line search. The proposed algorithm accomplishes the condition of sufficiently 

descent and globally convergence with several assumptions. Computation results prove that the modified 

method is effective. 
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1 Introduction 
Solving various optimization problems is often an 

important topic for engineers and scientists. One 
easy-to-use optimization technique is the conjugate 
gradient method. For example, at Yuan et al. [1] 

discuss the image processing problem which can be 

formulated into an optimization problem. Abubakar 

et al. [2] discuss the signal improvement problems 

that can be solved by constructing optimization 

problem and Helmig et al. [3], create an 

optimization problem to  estimate the distance and 

the number of sensors in the inverse calculation of 

temperature boundary conditions, and others (see 

[4], [5], [6], [7] and [8]). Its application include 

optimization problems, with and without 

constraints. 

The method that we discuss in this paper is the 

conjugate gradient method. This method is a helpful 

and convenient way to get solution of unconstrained 

optimization problems because it takes less memory 

and is easier to compute. This method determines 

the iteration solution direction through the objective 

function’s gradient, the conjugate parameter, and the 

search direction of the previous iteration. The 

development of conjugate gradient methods is very 

diverse, especially in modifying conjugate gradient 

parameters. 

The first conjugate gradient parameter 

introduced is FR parameter [9]. Powell [10] further 

investigated FR parameter and found that this 

parameter with exact line search can generate small 

step length without giving significant results to the 

optimal solution. Then, Polak and Ribiere in [11] 

introduce PR parameters. Numerically, the 

conjugate gradient method with PR parameter has 

better performance than FR parameter. Polak and 

Ribiere [11] showed that the PR parameter under 

exact line search for convex objective functions 

yield global convergent properties. Nevertheless, 

Powell [12] has also shown that this is not 

necessarily the case for non-convex function. In 

addition, Powell [12] found that PR parameter by 

exact line search, can rotate indefinitely and do not 

approach the solution point. This behavior can occur 

when the conjugate gradient parameter is negative 

so Powell [12] suggests that the conjugate gradient 

parameter non-negative. Therefore, Gilbert and 

Nocedal [13] modified the PR parameter to the 

maximum value between the number zero and the 

PR parameter and obtained global convergence 

results with inexact line search. 

Rivaie et. al. [14] modified the PR parameter by 

changing the numerator from the norm of gradient 

of the objective function to the norm of search 

direction. These are called RMIL parameters 

hereafter. In general, RMIL parameter is better than 

PR parameter because RMIL parameter can solves 

more test functions in optimization problems. 

However, the RMIL parameter is not necessarily 

negative, so Dai [15] modified the parameter so that 

if the RMIL parameter is negative, the RMIL 

parameter value is set to zero. With this 

modification, a globally convergent method is 

obtained. 

Another parameter that is a modification of 

RMIL is the AMRI parameter [16]. This parameter 

always has a positive or zero value and it is clear 
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that this parameter accomplishes the condition of 

sufficiently descent with inexact line search. Based 

on the paper's numerical results, the AMRI 

parameter is better than the RMIL parameters. 

In this work, the AMRI parameter with exact line 

search are also proved to satisfy sufficient descent 

conditions. Moreover, this AMRI parameter-based 

conjugate gradient method meets  the property of 

global convergence with an exact line search step 

length. Several numerical computations and 

comparisons between methods are also presented in 

this paper. 

The systematics of writing this work is given as 

follows: Some definitions and assumptions related 

to this study are given in section 2. AMRI parameter 

and its algorithm are described in section 3. We will 

provide a convergence analysis in section 4. It 

includes condition of sufficiently descent and 

globally convergent. Numerical results and 

comparisons 1between methods with AMRI 

parameter and existing parameters are showed in 

section 5. As a finale, given the conclusions 

presented in section 6. 

 

2 Preliminaries 
We consider optimization problem without 

constraints below: 

 min
x∈ℝ𝑛

𝑓(x) ( 1 ) 

 

with 𝑓: ℝ𝑛 → ℝ is continuous and differentiable 

function and ℝ is real numbers. The method 

discussed here is the modified conjugate gradient 

where this method is an algorithm for numerical 

solutions that is often implemented as an iterative 

algorithm of the form 

 x𝑘+1 = x𝑘 + 𝛼𝑘d𝑘 , 𝑘 = 0,1,2, … ( 2 ) 

 

where x𝑘 is the solution point for the kth iteration, 

𝛼𝑘 > 0 is length of step and notation d𝑘 is the 

search direction. Length of step is determined by a 

one-dimensional search called a line search. The 

most commonly used is  the exact line search, or 

 𝑓(x𝑘 + 𝛼𝑘d𝑘) = min
𝛼≥0

𝑓(x𝑘 + 𝛼d𝑘) ( 3 ) 

 

The most frequently used length of step is the 

exact line search. This is due to its ability to produce 

optimal step length [17]. In 2015, research showed 

that modern technology with faster processors and 

better tools solves the speed issues often 

encountered by equation (3), as indicated in Rivaie 

et al. [18]. 

The formulae for search direction d𝑘 is  

 d𝑘 = {
−𝑔𝑘 ,                      𝑘 = 0
−𝑔𝑘 + 𝛽𝑘d𝑘−1,   𝑘 ≥ 1,

 ( 4 ) 

 

where 𝑔𝑘 is the gradient of the function 𝑓 at x𝑘 and 

𝛽𝑘 is the parameter of the conjugate gradient. As 

mentioned in section 1, there are several well-

known conjugation parameter formulas such as FR 

parameter, PR parameter and RMIL parameter 

below. 

 𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇𝑔𝑘

‖𝑔𝑘−1‖2
 ( 5 ) 

 

 𝛽𝑘
𝑃𝑅 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖2
 ( 6 ) 

 

 𝛽𝑘
𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖d𝑘−1‖2
 ( 7 ) 

 

where ‖. ‖ is the norm of euclid. The equation 

Σφάλμα! Το αρχείο προέλευσης της αναφοράς 

δεν βρέθηκε.-Σφάλμα! Το αρχείο προέλευσης της 

αναφοράς δεν βρέθηκε. became known as Fletcher 

and Reeves (FR) in [9], Polak and Ribiere (PR) in 

[11], and Rivaie, Mustafa, Ismail and Leong 

(RMIL) in [14] respectively. There are two 

important properties for analyzing the convergence 

properties of the conjugate gradient method, namely 

sufficiently descend and globally convergent [19]. 

Definition 1: An algorithm is said to sufficiently 

descent if there is  𝐶 > 0 for any d𝑘 

 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶‖𝑔𝑘‖2, ∀𝑘 ≥ 0.  ( 8 ) 

 

Definition 2: An algorithm of conjugate gradient 

method is globally convergent if  

 lim
𝑘→∞

inf ‖𝑔𝑘‖ = 0. ( 9 ) 

 

The following assumptions are required to get 

the prove of equation (9) of this method. 

Assumption  1: Function 𝑓  on the level set ℝ𝑛 is 

bounded below and is continuous and differentiable 

at the starting point in the neighborhood ℬ of the 

level set Ω = {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≤ 𝑓(𝑥0)}.  

Assumption 2: The gradient 𝑔 is a Lipschitz 

continuous function in ℬ, in other words there exist 

𝐾 > 0, such that ‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐾‖𝑥 − 𝑦‖ for 

any 𝑥, 𝑦 ∈ ℬ. 
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A lemma is obtained by Assumption 1 and 

Assumption 2, hereinafter referred to as the 

Zoutendijk condition. The lemma also applies when 

the step length is specified with inexact line search. 

Lemma 1: For any conjugate gradient method 

with (2)-(4), where 𝛼𝑘 as formulated by exact line 

search (3). Under Assumption 1 and Assumption 2 

holds will satisfy 

 ∑
(𝑔𝑘

𝑇d𝑘)
2

‖d𝑘‖2

∞

𝑘=0

< ∞. ( 10 ) 

 

Zoutendijk has proved this lemma in [20]. 

 

3 Conjugate Gradient Method With 

AMRI Parameter 
In this section, the conjugate gradient method 

algorithm is formed with the AMRI parameter and 

equation (3). The AMRI parameter used is the 

conjugation parameter proposed by Abashar, 

Mamat, Rivaie, Ismail, and Omer in the form 

 𝛽𝑘
𝐴𝑀𝑅𝐼 =

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−1)

‖d𝑘−1‖2
. 

( 11 ) 

 

The algorithm is given as follows based on (2), (3), 

(4), and (11). 

1) Initialization. Given x0 ∈ ℝ𝑛, 𝜀 > 0 and set 

𝑘 = 0. 
2) Calculate ‖𝑔𝑘‖, if ‖𝑔𝑘‖ ≤ 𝜀, then x𝑘 is 

solution point. If ‖𝑔𝑘‖ > 𝜀, go to step (3). 

3) Calculate 𝛽𝑘 based on (11). 

4) Calculate d𝑘 based on (4). 

5) Calculate step length 𝛼𝑘 by equation (3). 

6) Set 𝑘 = 𝑘 + 1 and calculate next step by 

equation (2) and move to step (2). 

 

4 Convergent Analysis 
In this section, we will prove that the conjugate 

gradient method with the AMRI conjugation 

parameter accomplishes condition of sufficiently 

descent and global convergence.  To discuss these 

two matters, we give a property that shows that the 

AMRI parameter is always non-negative. 

Lemma 2 : Given the conjugate gradient method 

algorithm with the AMRI parameter. For every 𝑘 ≥
0 applies 𝛽𝑘

𝐴𝑀𝑅𝐼 ≥ 0 

Proof : Based on the conjugation gradient 

method algorithm with the AMRI parameter, if 𝑘 =
0, then 𝛽𝑘

𝐴𝑀𝑅𝐼 = 0 ≥ 0 applies. If 𝑘 ≥ 0, then using 

the Cauchy-Schwartz inequality, we have  

𝛽𝑘
𝐴𝑀𝑅𝐼 =    

𝑔𝑘+1 (𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘)

‖𝑑𝑘‖2
. 

 =    
‖𝑔𝑘+1‖2 −

‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘+1

𝑇 𝑔𝑘

‖𝑑𝑘‖2
 

 ≥    
‖𝑔𝑘+1‖2 −

‖𝑔𝑘+1‖

‖𝑔𝑘‖
‖𝑔𝑘+1‖‖𝑔𝑘‖

‖𝑑𝑘‖2
 

 =   0 ( 12 ) 

 

∎ 
Theorem 1 below will show that the method with 

the AMRI parameter accomplishes the condition of 

sufficiently descent. 

Theorem 1: For a conjugate gradient method 

with d𝑘 formulated by (4) and parameter 𝛽𝑘
𝐴𝑀𝑅𝐼 

formulated by (11), then 

 𝑔𝑘
𝑇d𝑘 ≤ −𝐶‖𝑔𝑘‖2, ( 13 ) 

 

where 𝐶 > 0. 
Proof : We prove that the conjugate gradient 

method with the AMRI parameter accomplishes 

(13). Note that 

 d𝑘 = {
−𝑔𝑘 ,                            𝑘 = 0

−𝑔𝑘 + 𝛽𝑘
𝐴𝑀𝑅𝐼d𝑘−1,   𝑘 ≥ 1,

. ( 14 ) 

 

If 𝑘 = 0, then we get  

 𝑔𝑜
𝑇d0 = −𝑔0

𝑇𝑔0 = −‖𝑔0‖2. ( 15 ) 

 

In other words, the inequality (13) is satisfied for 

𝑘 = 0. Furthermore, if 𝑘 ≥ 1, then multiply (14) 

with 𝑔𝑘
𝑇 ,  we get 

𝑔𝑘
𝑇d𝑘 =   −𝑔𝑘

𝑇(−𝑔𝑘 + 𝛽𝑘
𝐴𝑀𝑅𝐼d𝑘−1) 

 =  −‖𝑔𝑘‖2 + 𝛽𝑘
𝐴𝑀𝑅𝐼𝑔𝑘

𝑇d𝑘−1 

Apply exact line search method, we get 𝑔𝑘
𝑇𝑑𝑘−1 =

0. Consequently,  

 𝑔𝑘
𝑇d𝑘 = −‖𝑔𝑘‖2. 

This means that d𝑘+1 is sufficiently descen. 

Therefore inequation (13) applies. We have finished 

the proof.∎ 
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Next, we will prove that the conjugate gradient 

method with AMRI parameter accomplishes the 

global convergence properties, in other words it is 

proved to satisfy equation (9). To analyze the global 

convergence of this modified method, it is necessary 

to use the Assumption 1, Assumption 2, and Lemma 

1. 

Theorem 2 : Assume that Assumption 1, 

Assumption 2, and Theorem 1 satisfied. Let the 

conjugate gradient method with equation (2)-(4), 

where 𝛽𝑘 is computed by (11) and 𝛼𝑘 is formulated 

by equation (3). If ‖𝛼𝑘d𝑘‖ → 0 for 𝑘 → ∞, then 

 lim
𝑘→∞

inf‖𝑔𝑘‖ = 0. ( 16 ) 

 

Proof : Suppose 𝜃𝑘 be the angle between −𝑔𝑘 

and d𝑘 with cos 𝜃𝑘 =
−𝑔𝑘

𝑇d𝑘

‖𝑔𝑘‖‖d𝑘‖
. With equation (3) 

and equation (4), we have 

 ‖d𝑘‖ = sec 𝜃𝑘‖𝑔𝑘‖. ( 17 ) 

 

Using the fact that 𝑔𝑘
𝑇d𝑘−1 = 0, we get 

 𝛽𝑘+1‖d𝑘‖ = tan 𝜃𝑘+1‖𝑔𝑘+1‖. ( 18 ) 

 

Furthermore, by combining (17) and (18), we get 

tan 𝜃𝑘+1 =   𝛽𝑘+1
𝐴𝑀𝑅𝐼 sec

‖𝑔𝑘‖

‖𝑔𝑘+1‖
 

 = sec 𝜃𝑘

‖𝑔𝑘‖

‖𝑔𝑘+1‖
(

𝑔𝑘+1 (𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘)

‖𝑑𝑘‖2
) 

 
≤ sec 𝜃𝑘

‖𝑔𝑘‖

‖𝑔𝑘+1‖

‖𝑔𝑘+1‖ ‖𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘‖

‖𝑑𝑘‖2
 

 
= sec 𝜃𝑘

‖𝑔𝑘‖ ‖𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘‖

‖𝑑𝑘‖2
 

With exact line search and (4), we get 

tan 𝜃𝑘+1 ≤ sec 𝜃𝑘

‖𝑔𝑘‖ ‖𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘‖

‖𝑔𝑘‖2 + 𝛽𝑘
𝐴𝑀𝑅𝐼‖d𝑘−1‖2

. 

 

Based on Lemma 2, we have 

tan 𝜃𝑘+1 ≤  sec 𝜃𝑘

‖𝑔𝑘‖ ‖𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘‖

‖𝑔𝑘‖2
 

 
=  sec 𝜃𝑘

‖𝑔𝑘+1 − 𝑔𝑘 + 𝑔𝑘
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘‖

‖𝑔𝑘‖
 

 ≤  sec 𝜃𝑘

‖𝑔(𝑘+1) − 𝑔𝑘‖ + |‖𝑔𝑘‖ − ‖𝑔𝑘+1‖|

‖𝑔𝑘‖
 

  ≤ sec 𝜃𝑘

2‖𝑔𝑘+1 − 𝑔𝑘‖

‖𝑔𝑘‖
 

( 19 ) 

If (16) does not hold, then for every 𝑘 ≥ 0 there is 

𝛾 > 0 such that  

 ‖𝑔𝑘‖ ≥ 𝛾. ( 20 ) 

 

Because ‖𝛼𝑘d𝑘‖ → 0 and from Assumption (2) 𝑔 is 

a Lipschitz function, there exist a non-negative 

integer 𝑀 such that for every 𝑘 ≥ 𝑀, holds 

 ‖𝑔𝑘+1 − 𝑔𝑘‖ ≤
1

4
𝛾. ( 21 ) 

 

By (19)-(21) we have 

 tan 𝜃𝑘+1 ≤
1

2
sec 𝜃𝑘. ( 22 ) 

 

Note that for every 𝜃 ∈ [0, 𝜋
2⁄ ), the following 

inequation holds 

 sec 𝜃 ≤ 1 + tan 𝜃. ( 23 ) 

 

 Inequation (22) and (23), induce 

tan 𝜃𝑘+1 ≤    
1

2
+

1

4
+

1

8
+ ⋯ + (

1

2
)

𝑘+1−𝑚

(1 + tan 𝜃𝑚) 

 ≤ 1 + tan 𝜃𝑚 ( 24 ) 

 

This show that the angle 𝜃𝑘 is always less than 

angle fixed �̅� which is less than 𝜋 2⁄ . By Lemma 1, 

we get  

∑
(𝑔𝑘

𝑇d𝑘)
2

‖d𝑘‖2

∞

𝑘=0

= ∑‖𝑔𝑘‖2(cos 𝜃𝑘)2

∞

𝑘=0

< ∞. ( 25 ) 

 

This implicitly means that lim
𝑘→∞

inf‖𝑔𝑘‖ = 0, which 

contradicts (20). We have finished the proof. ∎ 

 

 

5 Numerical Implementation and 

Discussions 
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In this section, we provide numerical 

implementation of the conjugate gradient method 

using FR, PR, RMIL, and AMRI parameters to 

show each method's efficiency. Some of the test 

functions used are taken from Andrei [21] starting 

from low, medium, to high dimensions as in Rivaie 

et al. [14], namely 2, 4, 10, 50, 100, 500. Criteria for 

stopping iteration based on ‖𝑔𝑘‖ ≤ 𝜀 where 𝜀 =
10−6. From the starting point that is closest to the 

optimal point to the starting point that is farthest 

from the optimal point, each test function utilizes a 

different set of starting points. Table 1 give the list 

of test functions and starting points.  

 

Table 1. Test function’s list. 
No. Function 𝒏 Starting point 

1 Six-hump 2 (8,8), (−8, −8), (10,10) 
2 Three-hump 2 (−1,1), (1, −1), (−2,2) 
3 Booth 2 (4,4), (8,8), (16,16) 
4 Goldstein-

Price 
2 (2, −2), (9,9), (15,15) 

6 Zettl 2 (3,3), (5,5), (7,7) 
7 Cube 2 (5,5), (10,10), (20,20) 
8 Rosenbrock 2 (−2, −2), (2,2), (11,11) 
9 Quartic 4 (2, . . . ,2), (5, … ,5), (10, … ,10) 

10 Ext. Maratos 2,4 (8, … ,8), (22, … ,22), (44, … ,44) 
11 Ext. White 

and Holst 
4,10 (2, … ,2), (3, … ,3), (−2, … , −2) 

12 Ext. 

Frudenstein 
and Roth 

4,100 (3, … ,3), (5, … ,5), (10, … ,10) 

13 Beale 2,4,10 (2, … ,2), (4, … ,4), (6, … ,6) 
14 Raydan1 2,4,10 (−1, … , −1), (1, … ,1), (2, … ,2) 
15 Liarwhd 2,4,10 (3, … ,3), (5, … ,5), (7, … ,7) 
16 Fletcher 2,4,10 (5, … ,5), (10, … ,10), (40, … ,40) 
17 Edencsch 2,4,10 (3, … ,3), (23, … ,23), (43, … ,43) 
18 Gen.Quartic 2,4,100 (1, … ,1), (10, … ,10), (20, … ,20) 
19 Ext. 

Denschnf 
2,4,100 (2, … ,2), (13, … ,13), (50, … ,50) 

20 Ext. 
Denschnb 

2,4,100 (4, … ,4), (8, … ,8), (15, … ,15) 

21 Himmelblau 2,10,100 (15, … ,15), (25, … ,25), (35, … ,35) 
22 Ext. Penalty 2,10,100 (2, … ,2), (5, … ,5), (10, … ,10) 
23 Tridiagonal1 2,10,500 (5, … ,5), (7, … ,7), (15, … ,15) 

 

Table 2. Numerical experiments’s summary. 

Method Total of 

NI 

Total of 

CPU time 

Successful 

FR 14,344 2944.653350 98% 

PRP 1,647 1396.406475 93% 

RMIL 2,720 1710.859500 98% 

AMRI 2,182 1461.500225 100% 

 

The test functions that is given in Table 1 are 

completed by Matlab R2020a and done on a laptop 

with specifications; Intel(R) Celeron(R) processor, 

4.00 GB RAM, 64-bit Windows 10 Operating 

System Home Single Language. If the test function 

solved by a method produces a negative step length, 

then that method's function is included in the failed 

category. Iteration number (NI) and the time taken 

by the CPU are compared. Table 2 will give 

summary of numerical results. From these 

numerical results, a performance representation is 

obtained based on NI and CPU time shown 

respectively in Fig. 1 and Fig. 2. The result is a 

performance representation curve established by 

Dolan and More [22]. 

 

 
Fig. 1. Performance representation dependent on 

iteration count. 

 
Fig. 2. Performance representation dependent on the 

time taken by CPU 

 

Dolan and More [22] established how evaluation 

and comparation of the performance of each method 

with various test functions. Let 𝑆 is a collection of 

𝑛𝑆 solver and 𝑃 is a collection of 𝑛𝑃 test functions. 

For each 𝑠 ∈ 𝑆 solver and 𝑝 ∈ 𝑃, is defined 𝑟𝑝,𝑠, 

which is the iteration’s number or time the CPU 

needs to complete function 𝑝 with solver 𝑠. 
Performance solver 𝑠 in the test function 𝑝 is 

compared with the best performance of the existing 

method with the same test function, or it can be 

written as follows 

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min{𝑡𝑝,𝑠: 𝑠 ∈ 𝑆}
. 
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Then 𝑟𝑝,𝑠 is called performance rate. Choose a 

constant 𝑟𝑀 with 𝑟𝑀 ≥ 𝑟𝑝,𝑠 for each 𝑝 ∈ 𝑃 and 𝑠 ∈ 𝑆 

and 𝑟𝑝,𝑠 = 𝑟𝑀 if and only if solver 𝑠 failed to solve 

function 𝑝. 
It is interesting to compare the performance of 

each solver against a test function, but the author 

wants to obtain an overall comparison. If defined 

𝜌𝑠(𝜏) =
1

𝑛𝑝
size{𝑝 ∈ 𝑃 ∶ 𝑟𝑝,𝑠 ≤ 𝜏}, 

then 𝜌𝑠(𝜏) is the probability of the solver 𝑠 ∈ 𝑆  

where the performance rate 𝑟𝑝,𝑠 is in the 𝜏 ∈ ℝ 

factor of the best possible rate. In general, the 

method with a high 𝜌𝑠(𝜏) score or the curve position 

on the top right is the best solver. 

Fig. 1 and Fig. 2 respectively represent the 

execution of method with FR, PR, RMIL and AMRI 

parameter based on the iteration number and the 

entire time spent by the CPU in solving each test 

function. The curve of the method with the AMRI 

parameter is at the top left to right compared to 

other parameters. Although the PRP method 

previously achieved a higher probability value than 

the AMRI method, there are several functions that 

the PRP method has been unable to complete. The 

AMRI method can complete the entire test function, 

the RMIL method can complete the 98% test 

function, and the PRP method can complete the 

93% test function. The FR method can solve the 

98% test function, but the iteration is high enough, 

so its performance is not better than the other 

methods. Because of these results, we can say that 

the method with AMRI parameter is a method 

capable of achieving better performance than FR, 

PR and RMIL parameter. 

 

 

6 Conclusion 

This paper aims to initiate an algorithm of conjugate 

gradient method with AMRI parameter using exact 

line search step length. The AMRI method 

accomplishes two important properties, namely 

sufficiently descent and globally convergence with 

exact line search. Based on numerical experiments 

on the test functions, it has shown that the conjugate 

gradient method with AMRI parameters is an 

efficient method. 
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