
Basic Concept of the Beam Wave based Element for Mid and High 

Frequency Analysis 

 
SOUFIEN ESSAHBI  

Department of Heavy Machinery Maintenance, 

Higher Institute of Applied Sciences and Technology of Gafsa, 

Sidi Ahmed Zarrouk University Campus, 

2112 Gafsa, 

TUNISIA 

 
Abstract: - This paper describes a Hermite beam wave based element of the steady-state dynamic response of a 

1D structure system. This study focuses on the development of beam wave based elements. Compared with 

standard piecewise polynomial approximation, the wave basis is shown to give a considerable reduction in 

computational degrees of freedom. 

In practical terms, it is concluded that the degrees of freedom for which accurate results can be obtained, using 

these new techniques, can be up to half of that of the conventional finite-element method. 
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1 Introduction 
The finite element method (FEM), [1], [2], [3], is a 

numerical technique that makes it possible to solve 

approximately the differential equations or with 

linear partial derivatives whatever the imposed 

boundary conditions, especially for composite 

structures, [4]. 

However, its implementation remains difficult 

and costly in some cases. Indeed, the mesh must 

obey certain rules, in particular, the elements must 

not be crushed, to avoid the degeneration of the 

associated Jacobian. 

It is well known that the use of discrete 

numerical methods (finite element method FEM) for 

the solution of the dynamic structure equation is 

limited to problems in which the wavelength under 

consideration is not small in comparison with the 

domain size. The limitation arises because 

conventional elements, based on polynomial shape 

functions, can reliably capture only a limited portion 

of the sinusoidal waveform. In fact, an accurate 

description of the problem needs the use of about 

eight to ten degrees of freedom per full wavelength 

[5], [6]. To overcome these problems, we developed 

a beam wave based element, this method is based on 

the indirect Trefftz method, [1], [7], [8], [9], [10]. 

In this paper, we describe the basic concept of 

the beam wave based element. The idea is the 

enrichment of the conventional shape functions by 

the solution of the homogeneous equation. This 

technique makes the formation of matrices more 

complicated. To illustrate this technique two 

examples are presented. The numerical validation of 

this element is made by calculating the percentage 

of an error on the whole structure. 

 

 

2 Problem Formulation 
Consider an elastic thin beam Ω𝑠 of length 𝐿, 

thickness 𝑡, density 𝜌𝑠, Poisson's coefficient 𝜐 and 

elasticity modulus 𝐸.  

The beam makes an angle 𝛼 from the horizontal, the 

Fig.1 below shows the problem geometry. 

The problem to study is governed by the dynamic 

equation of the structure and the boundary 

conditions given by the following equation: 
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Either the virtual displacement  v M , arbitrary and 

regular in the domain s , the weighting of the 

structure dynamic equation by  v M  leads after 

integrations to:  
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The mathematical transformation by two 

integrations by parts we arrive at the following weak 

form:   
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In the case of a beam simply supported on both 

sides the displacement and the bending moment are 

zero where the second derivatives of w  are zero 

and we can take  v M  equal to zero at ' 0x   and 

'x L . 
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Fig.1: Elastic thin beam. 

 

 

3 Finite Element Approximations 
The FEM, [11], [12], is a well-known simulation 

technique to model the steady-state dynamic 

behaviour of complex structures. The technique 

determines an approximate solution to the problem 

described by the beam dynamic equation (1) and the 

imposed structural boundary conditions (4) and (5). 

The finite element used in this study is the beam 

linear finite element with two degrees of freedom 

per node. Fig.2 shows the geometry of the beam 

element and these degrees of freedom. 

 

 

 

 

 

 
Fig. 2: Finite beam element. 

 

The FEM approximates the exact solution for each 

of the structural deformation fields by a weighted 

sum of simple (polynomial) shape functions. 

The displacement of the structure is approximated 

on a finite element by:  
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With  ; 1,2,3,4m

sN m   are the shape functions of 

high precision of Hermite type given by: (9) 
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combination of the same basis functions as used in 

the deformation approximations (8)  

The equation (5) is written in the following matrix 

form: (10) 
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4 Enriched Finite Element  
The idea is to enrich the basis of the standard finite 

elements with a base derived from the homogeneous 

solution of the dynamic equation, [13], of the 

structure. 

 

The solutions of the homogeneous equation are 

given by:  
'n

bj k x

n n nw w e 
                                                 (7) 

With 𝑛 ∈ ⟦1,4⟧ 

 

We enriched the shape functions 

Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.
 on the basis of the structure mode, using some of 

the propagating modes  1 2,b bik x ik x
e e 

  . 

Therefore the new shape functions are given by: 
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With  𝚿 = 〈ψ1 ψ2〉 and 𝑙 is the element length. 

The displacement of the structure will be 

approximated on an element by: 

 

𝑤𝑒 = ℵ{𝑤𝑖}                                                          (8) 

 

With {𝑤𝑖: 𝑖 = 1,2, … ,8} are the structure waves 

amplitudes. 

The test function 𝜈 is chosen equal to the conjugated 

shape function. 

Fig. 3 shows the geometry of the beam-enriched 

element and these degrees of freedom. 

 

 

 

 

 

 

         

Fig. 3: Enriched finite beam element. 

 

 

5 Numerical Results  
A comparison between the numerical results 

obtained by the enriched finite element and the 

standard finite element is made. The example of a 

simply supported beam is presented, and two cases 

are studied. The first case is the case of a load 

distributed over the beam and the second is the case 

of a concentrated force applied in the middle of the 

beam.   

The percentage of error between numerical values 

and analytical ones in the middle of the beam is 

calculated. 

The error according to the number of degrees of 

freedom is presented.   

 

The percentage of relative error, [14], is given by: 

 

𝐸𝑟𝑟𝑜𝑟(%) = 100 ×
‖𝑤𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐−𝑤𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙‖

‖𝑤𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐‖
        (14)  

With 

𝑤𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐: The analytic displacement of the beam, 

 𝑤𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙: The numerical displacement of the 

beam. 

 

In this study we use an aluminum beam whose 

characteristics are the following: 

𝜌𝑠 = 2790 𝑚3/𝐾𝑔          : Density, 

𝐼 = 70 × 109 𝑀𝑃𝑎           : elasticity modulus, 

𝜐 = 0.3                             : Poisson's coefficient, 

𝐼 = 0.25 × 10−4 𝐾𝑔. 𝑚2   : Moment of inertia. 

 

The displacement of the beam can be decomposed 

on its modal base as follows: 

 

𝑤 = ∑ 𝜑𝑛(𝑥′)𝛿𝑛
∞
𝑛=1                                             (9) 

 

With  

𝜑𝑛 : Mode 𝑛, 

𝛿𝑛  : Modal component of displacement corresponds 

to the mode 𝑛. 

 

In the case of a simply supported beam the modes of 

the beam can be written as [15], [16]: 
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And the modal component of the displacement is 

given by: 

𝛿𝑛 =
∫ 𝑞(𝑥′)𝜑𝑛(𝑥′)𝑑𝑥′𝐿

0

(𝜔𝑛
2 −𝜔2)

                                          (11) 

 

With 

𝜔𝑛 = (𝑛𝜋)2√
𝐷

𝑚𝐿4                                                 (12) 

 

5.1 Loading Distributed on the Beam 
Fig.4 shows a simply supported beam excited by a 

distributed load 𝑞 = 1000𝑁. 

 
 

 

'( )q x  

Fig. 4: Simply supported beam with a distributed 

loading. 

 

The analytic displacement of the beam writes: 

𝑤(𝑥 ′) = ∑
−2𝑞

𝑛𝜋𝑚(𝜔𝑛
2 −𝜔2)𝑛 ((−1)𝑛 −

1) sin (
𝑛𝜋

𝐿
𝑥 ′)            (19)  

 

Subsequently, we present in Fig.5, Fig.6, Fig.7, 

Fig.8, Fig.9, Fig.10 the error according to the 

number of degrees of freedom for different 

frequencies of excitations. 
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Fig. 5: Error according to degrees of freedom for 

𝑓 = 10𝐻𝑧. 
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Fig. 6: Error according to degrees of freedom for 

𝑓 = 2 𝐾𝐻𝑧. 
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 Fig. 7: Error according to degrees of freedom for 

𝑓 = 4 𝐾𝐻𝑧. 
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Fig. 8: Error according to degrees of freedom for 

𝑓 = 8 𝐾𝐻𝑧. 
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 Fig. 9: Error according to degrees of freedom for 

𝑓 = 40 𝐾𝐻𝑧. 
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Fig. 10: Error according to degrees of freedom for 

𝑓 = 100 𝐾𝐻𝑧. 

 

According to these results, it is noted that to have 

the same error for the two elements, it is necessary 

to use more than the double degrees of freedom for 

the not enriched Hermite element. And we note that 

the enriched element converges faster than the non-

enriched Hermite element. 

 

5.2 Concentrated Force Applied in the 

Middle of the Beam 
Fig. 11 shows a simply supported beam submitted to 

a concentrated force in the middle. 
 

 

 

cF  

Fig. 11: Concentrated force. 

 
The analytical displacement of the beam writes: 

𝑤(𝑥 ′)
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𝑥 ′)    (20) 

 

Subsequently, we present in Fig.12, Fig.13, Fig.14, 

Fig.15, Fig.16, and Fig.17 the error according to the 

number of degrees of freedom for different 

frequencies of excitations. 
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Fig. 12: Error according to degrees of freedom for 

𝑓 = 1 𝐾𝐻𝑧, concentrated force case. 
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Fig. 13: Error according to degrees of freedom for 

𝑓 = 4 𝐾𝐻𝑧, concentrated force case. 
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Fig. 14: Error according to degrees of freedom for 

𝑓 = 8 𝐾𝐻𝑧, concentrated force case. 
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Fig. 15: Error according to degrees of freedom for 

𝑓 = 16 𝐾𝐻𝑧, concentrated force case. 
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Fig. 16: Error according to degrees of freedom for 

𝑓 = 40 𝐾𝐻𝑧, concentrated force case. 

 

500 1000 1500 2000 2500 3000 3500
10

-6

10
-4

10
-2

10
0

10
2

10
4

Error = f(ddl) ; freq = 100 kHz

ddl

E
rr

o
r 

(%
)

Hermite

Hermite enrichi

 

Fig. 17: Error according to degrees of freedom for 

𝑓 = 100 𝐾𝐻𝑧, concentrated force case. 

 

These results show the efficiency of the Hermite-

enriched element developed in low, medium, and 

high frequencies.  

According to these results, we note that the enriched 

element converges faster than the non-enriched 

Hermite element, in addition, the use of this element 

allows us to reduce the number of degrees of 

freedoms necessary to half. 

 

 

6 Conclusion 
This article describes the beam plane wave element. 

This paper aimed to study this enriched element 

according to the frequency so the comparison with 

the standard finite element.  

This element is of Hermite type enriched by a 

base deduced from the homogeneous solution of the 

dynamic equation of the structure. The validation 

was done by treating two examples of a simply 

supported beam. The first was the case of a 

distributed constant loading and the second was the 

case of a concentrated force. The results found 

showed the effectiveness of the developed element 

at low, medium, and high frequencies. Thus, these 

results showed that the developed enriched Hermite 

elements converged faster than those of the non-

enriched Hermite type. 

The obtained results show that, while increasing 

the frequency of excitation, the necessary number of 

degrees of freedom for the solution of problems 

with a given level of error decreases. So the results 

prove that the enriched element converges more 

quickly than the Hermite non-enriched element. 

From the perspective of the continuity of this work 

and to broaden its field of application, it would be 

interesting to develop the extension of the method to 
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cases of problems associated with 2D, 3D, and 

composite material. 
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