
[4] J. Fu, Y.-H. Ding, L. Li, S. Sheng, T. Wen, L.-
J. Yu, W. Chen, S.-Q. An, H.-L. Zhu,
Polycyclic aromatic hydrocarbons and
ecotoxicological characterization of
sediments from the Huaihe River, China,
Journal of Environmental Monitoring and
Assessment, Vol.13, 2011b, pp. 597–604.
[5] D.R. Banjoo, P.K. Nelson, Improved ultrasonic
extraction procedure for the determination of
polycyclic aromatic hydrocarbons in
sediments, Journal of Chromatography A,
Vol.1066, 2005, pp. 9-18.
[6] D.T. Sponza, R. Oztekin, Effect of sonication
assisted by titanium dioxide and ferrous ions
on Poly aromatic hydrocarbons (PAHs) and
toxicity removals from a petrochemical
industry wastewater in Turkey, Journal of
Chemical Technology and Biotechnology,
Vol.85, 2010, pp. 913–925
[7] I. Quesada-Peñate, C. Julcour-Lebigue, U.-J.
Jáuregui-Haza, A.-M. Wilhelm, D.H. Darie,
Sonolysis of levodopa and paracetamol in
aqueous solutions, Ultrasonics
Sonochemistry, Vol.16, 2009, pp. 610-616.
[8] M.R. Hoffmann, S.T. Martin, W. Choi, D.W.
Bahnemann, Environmental applications of
semiconductor photocatalysis, Chemical
Reviews, Vol.95, 1995, pp. 69–96.
[9] F. Sannino, P. Pernice, C. Imparato, A.
Aronne, G. D'Errico, L. Minieri, M. Perfetti,
D. Pirozzi, Hybrid TiO2-acetylacetonate
amorphous gel-derived material with stably
adsorbed superoxide radical active in
oxidative degradation of organic pollutants,
RSC Advances, Vol.5, 2015, pp. 93831–
93839.
[10] P. Zeng, Q. Zhang, X. Zhang, T. Peng,
Graphite oxide–TiO2 nanocomposite and its
efficient visible-light-driven photocatalytic
hydrogen production, Journal of Alloys and
Compounds, Vol.516, 2012, pp. 85–90.
[11] A. Di Paola, E. Garcia-López, S. Ikeda, G.
Marcı, B. Ohtani, L. Palmisano,
Photocatalytic degradation of organic
compounds in aqueous systems by transition
metal doped polycrystalline TiO2, Catalysis
Today, Vol.75, 2002, pp. 87–93.
[12] K. Zhao, S.L. Zhao, J. Qi, H.J. Yin, C. Gao,
A.M. Khattak, Y.J. Wu, A. Iqbal, L. Wu, Y.
Gao, R.B. Yu, Z.Y. Tang, Cu2O clusters
grown on TiO2 nanoplates as efficient
photocatalysts for hydrogen generation,
Inorganic Chemistry Frontiers, Vol.3, 2016,
pp. 488–493.
[13] L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-
doped graphene as efficient metal-free
electrocatalyst for oxygen reduction in fuel
cells, ACS Nano, Vol.4, 2010, pp. 1321–1326.
[14] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang,
T. Regier, H. Dai, Co3O4 nanocrystals on
graphene as a synergistic catalyst for oxygen
reduction reaction, Nature Materials, Vol.10,
2011, pp. 780–786.
[15] J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu,
J. Li, C. Feng, D. Zhang, Sonochemical
synthesis of TiO2 nanoparticles on graphene
for use as photocatalyst, Ultrasonics
Sonochemistry, Vol.18, 2011, pp. 1082–1090.
[16] V. Stengl, J. Henych, P. Vomáčka, M. Slušná,
Doping of TiO2-GO and TiO2-rGO with
noble metals: synthesis, characterization and
photocatalytic performance for azo dye
discoloration, Photochemistry and
Photobiology, Vol.89, 2013, pp. 1038–1046.
[17] K.K. Turekian, K.H. Wedepohl, Distribution
of the elements in some major units of the
Earth's crust, Geological Society of America
Bulletin, Vol.72, 1961, pp. 175.
[18] R. Yousefi, F. Jamali-Sheini, M. Cheraghizade,
S. Khosravi-Gandomani, A. Sáaedi, N.M.
Huang, J.B. Wan, M. Azarang, Enhanced
visible-light photocatalytic activity of
strontium-doped zinc oxide nanoparticles,
Materials Science in Semiconductor
Processing, Vol.32, 2015, pp. 152.
[19] L. Song, S. Zhang, B. Chen, A novel visible-
light-sensitive strontium carbonate
photocatalyst with high photocatalytic
activity, Catalysis Communications, Vol.10,
2009, pp. 1565–1568.
[20] H.R. Momenian, S. Gholamrezaei, M.
Salavati-Niasari, B. Pedram, F. Mozaffar, D.
Ghanbari, Sonochemical synthesis and
photocatalytic properties of metal hydroxide
and carbonate (M: Mg, Ca, Sr or Ba)
nanoparticles, Journal of Cluster Science,
Vol.24, 2013, pp. 1031–1042.
[21] A. Márquezherrera, V. Ovandomedina, B.
Castilloreyes, M. Zapatatorres, M.
Meléndezlira, J. Gonzálezcastañeda, Facile
synthesis of SrCO3-Sr(OH)2/PPy
nanocomposite with enhanced photocatalytic
activity under visible light, Materials, Vol.9,
2016, pp. 30.
[22] P. Pichat, A brief overview of photocatalytic
mechanisms and pathways in water, Water
Science and Technology, Vol.55, 2007, pp.
167-173.
International Journal on Applied Physics and Engineering
DOI: 10.37394/232030.2022.1.8
Ruki
ye Özteki
n, Deli
a Teresa Sponza