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Abstract: Necessary and sufficient conditions for isochrony of oscillatory motions introduced in the paper
”Physica Scripta vol 94, N 12” are discussed. Thanks to the WKB perturbation method expressions are
derived for the corrections to the equally spaced valid for analytic isochronous potentials.
In this paper, we bring some improvements and we suggest another quantization of the quantum spectrum.
These results will be illustrated by several examples
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1 Introduction

Consider the Schrodinger equation

HΨ = EΨ

Ψ being the wave function associated with the
state of the particle and

H =
p2

m
+G

the Hamiltonian operator who describes this evo-
lution.

In the sequel we are interested in the case of
isochronous potentials. This means the frequency
of the classical motion in such potentials is energy-
independent, it is natural to expect their quan-
tum spectra to be equally spaced. However, as it
has already been shown in some specific examples,
this property is not always true.

This second order partial differential equation
is linear and homogeneous. This is not trivial
to solve in the case of complex potentials, apart
from numerical resolution. There is however an
approximate method of resolution, the WKB ap-
proximation, named after the physicists Wentzel,
Kramers and Brillouin. This approximation
is based on the fact that the solutions of the
Schrodinger equation can be approximated
by a function comprising usually conventional
quantities, provided that the potential does not
vary strongly over distances of the order of the

length of wave.

These is a connection between classical and
quantum transformations. This fact has been
established by Eleonskii and al. [2]. They
show that the classical limit of the isospectral
transformation for the Schrodinger equation
is precisely the isochronicity preserving the
energy dependence of the oscillation frequency.
In quantum mechanics, the energy levels of a
parabolic well are regularly spaced by a certain
quantity. Moreover, it is possible to construct
potentials, essentially different from the parabolic
well, whose spectrum is exactly harmonic.

The semiclassical WKB method is one of
powerful approximations for computing the
energy eigenvalues of the Schrodinger equation.
The field of its applicability is larger than
standard perturbation theory which is restricted
to perturbing potentials with small coupling
constants. In particular, it permits to write the
quantization condition as a power series in h̄
(such series are generally non convergent). The
solvable potentials are those whose series can be
explicitly summed. This problem has motivated
a lot of authors who highlight some exactly
solvable, in a sense that the exact eigenenergies
and eigenfunctions can be obtained explicitly, see
[3] for example. Our method described below
permits also another approach of two-dimensional
superintegrability, see [4].
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Consider the scalar equation with a center at
the origin 0

ẍ+ g(x) = 0 (1)

or its planar equivalent system

ẋ = y, ẏ = −g(x) (2)

where ẋ = dx
dt , ẍ = d2x

dt2
and g(x) = dG(x)

dx
is analytic on R where G(x) is the potential of (1).

Suppose system (2) admits a periodic orbit
in the phase plane with energy E and g(x) has
bounded period for real energies E. Given G(x),
Let T (E) denotes the minimal period of this pe-
riodic orbit. Its expression is

T (E) = 2

∫ b

a

dx√
2E − 2G(x)

. (3)

T (E) is well defined and there is a neighborhood
of the real axis for which T (E) is analytic.

We suppose that the potential G(x) has one
minimum value which, for convenience locate

at the origin 0 and d2G(x)
dx2

(0) = 1. The turning
points a, b of this orbit are solutions of G(x) = E.
Then the origin 0 is a center of (2). This center
is isochronous when the period of all orbits
near 0 ∈ R2 are constant (T = 2π√

g′(0)
= 2π).

The corresponding potential G(x) is also called
isochronous.

Since the potential G(x) has a local minimum
at 0, then we may consider an involution A by

G(A(x)) = G(x) and A(x)x < 0

for all x ∈ [a, b]. So, any closed orbit is A-
invariant and A exchanges the turning points:
b = A(a).

We proved the following results in [1]

Theorem 1-1 Let g(x) be an analytic func-
tion and G(x) =

∫ x
0 g(s)ds and A be the analytic

involution defined by G(A(x)) = G(x). Suppose
that for x 6= 0, xg(x) > 0. Then the equation

ẍ+ g(x) = 0 (1)

has an isochronous center at 0 if and only if the
function

d

dx
[G(x)/g2(x)]

is A-invariant i.e. d
dx [G/g2](x) = d

dx [G/g2](A(x))
in some neighborhood of 0. .

Theorem 1-2 Let G(x) =
∫ x
0 g(s)ds be

an analytic potential. Suppose that for x 6=
0, xg(x) > 0. Then the equation

ẍ+ g(x) = 0 (1)

has an isochronous center at 0 if and only if

x− 2G

g
= F (G) (4)

where F is an analytic function defined in some
neighborhood of 0.

2 An alternative result

As consequences we prove the following

Theorem 2-1 Let G(x) =
∫ x
0 g(s)ds be an

analytic potential defined in a neighborhood of 0.
Suppose equation

ẍ+ g(x) = 0 (1)

has an isochronous center at 0. Let g(n)(x) be the
n-th derivative of the potential (with respect to x):

g(n)(x) = dn

dxnG(x), n ≥ 1 then these derivatives
may be expressed under the form

g(n)(x) = an(G)x+ bn(G), n ≥ 0 (5)

where an and bn are analytic functions with re-
spect to G.

In fact, as we had see in [1], the functions an
and bn are only dependent on G1 the odd part of
G = G(x).

Proof By Proposition 3-4 of [1], condition

x(G) =
√

2G+P (G) with P = P (G) is a non-zero
analytic function implies that equation (1) has an
isochronous center at 0. Deriving with respect to
G one obtains

dx

dG
=

1

x
+ P ′(G) =

1

g

or equivalently

g

x
=

1

1 + xP ′(G)
= a1(G) +

b1(G)

x
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with

a1(G) =
−1

2GP ′2 − 1
and b1(G) =

2GP ′

2GP ′2 − 1
.

Notice that by hypothesis G is defined defined in
a neighborhood of 0 then 2GP ′2 − 1 is necessary
non zero.
The functions a1(G) and b1(G) are analytic since
P and P ′ they are too.
Derive now g′(x) it yields

g′(x) =
dg

dx
=

d

dx
a1 (G)x+ a1 (G) +

d

dx
b1 (G) =

d

dG
a1 (G) gx+

d

dG
b1 (G) g + a1(G).

g′(x) =

((
d

dG
a1

)
x+

d

dG
b1

)
(a1x+ b1) + a1(G)

where the symbol prime ′ means d
dG and a1 or b1

stands for a1(G) or b1(G).
After replacing g(x) = a1(G)x + b1(G) one

obtains

2Ga′1a1+a′1xb1+a1
2+1/2

a1
√

2b1√
G

+ b′1a1x+b′1b1

By simplifying one find the expression of
g′(x) = a2(G)x+ b2(G) with

a2(G) = a′1b1 +
a1b1
2G

+ b′1a1

b2(G) = 2Ga1a
′
1 + a21 + b1b

′
1

Here
a1b1
2G

=
P ′

(2GP ′2 − 1)2

which is analytic. Then the functions a2(G) and
b2(G) are analytically dependent on the functions
a1(G), b1(G) and their derivatives.

By recurrence we easily prove that

g(p)(x) = ap(G)x+ bp(G)

where the function ap(G) and bp(G) are analytic
with respect to G. Thank to Maple we are able
to carry out the calculations.

Theorem 2-2 Let G(x) =
∫ x
0 g(s)ds be an

analytic potential and φ(x) a function defined in
a neighborhood of 0. A be the analytic involution
defined by G(A(x)) = G(x). Then for a < 0 <

b = A(a) and G(a) = G(b) = E the following
integrals equality holds∫ b

a

φ(x)√
E −G(x)

g(x)dx =

∫ b

0

φ(x)− φ(A(x))√
E −G(x)

g(x)dx

In particular, if we may expressed φ(x) = u(G)x+
v(G) then∫ b

a

φ(x)√
E −G(x)

g(x)dx =

∫ b

0

2u(G)x√
E −G(x)

g(x)dx

Proof It suffices to split the integral∫ b

a

φ(x)√
E −G(x)

g(x)dx =

∫ 0

a

φ(x)√
E −G(x)

g(x)dx+

∫ b

0

φ(x)√
E −G(x)

g(x)dx

Recall that a < 0 < b. By definition when
x ∈ [a, 0] then A(x) ∈ [0, b] and conversely. By a
change of variable x = A(y) the integral becomes∫ 0

a

φ(x)√
E −G(x)

g(x)dx = −
∫ b

0

φ(A(y))√
E −G(y)

g((A(y))A′(y)dy =

−
∫ b

0

φ(A(y))√
E −G(y)

g(y)dy

since g((A(y))A′(y) = g(y). Therefore∫ b

a

φ(x)√
E −G(x)

g(x)dx =

∫ b

0

φ(x)√
E −G(x)

g(x)dx−

∫ b

0

φ(A(y))√
E −G(y)

g(y)dy = .

On the other hand, suppose φ(x) = u(G)x+v(G).
Then the following integral may be written∫ b

a

φ(x)√
E −G(x)

g(x)dx =

∫ b

a

u(G)x+ v(G)√
E −G(x)

g(x)dx =

∫ b

a

u(G)x√
E −G(x)

g(x)dx+

∫ b

a

v(G)√
E −G(x)

g(x)dx

The last integral can be written∫ b

a

v(G)√
E −G(x)

g(x)dx =

∫ E

0

v(G)√
E −G

dG = 0

since v(G) is analytic. The other integral can be
written∫ b

a

u(G)x√
E −G(x)

g(x)dx =

∫ 0

a

u(G)x√
E −G(x)

g(x)dx+
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∫ b

0

2u(G)x√
E −G(x)

g(x)dx

=

∫ b

0

u(G)y√
E −G(y)

g(A(y))A′(y)dy =∫ b

0

−u(G)y√
E −G(y)

g(y)dy =

∫ b

0

u(G)y√
E −G(y)

g(y)dy

since y = A(x). Finally,∫ b

a

φ(x)√
E −G(x)

g(x)dx =

∫ b

0

u(G)x√
E −G(x)

g(x)dx+

∫ b

0

u(G)x√
E −G(x)

g(x)dx

We may also derive

Corollary 2-3 Under hypotheses of Theo-
rem 2-1, consider the derivatives of g : g(j)(x) =
djg
dxj

Then the analytic function

Vm,ν(x) =
m∏
j=1

(
djg

dxj

)ν
j

may be expressed under the form :

Vm,ν(x) = um,ν(G)x+ vm,ν(G) (6)

where ν = (ν1, ν2, ...., νm) and um,ν and vm,ν
are analytic functions with respect to G.

Proof By Theorem 2-1 any derivative of g
may be written when G is isochronous

g(n)(x) = an(G)x+ bn(G), n ≥ 0

where an and bn being analytic functions. It is
easy to realize that it is the same for any power
of any derivative (g(n)(x))νn. We may prove that
by recurrence

(g(n)(x))νn = an,ν(G)x+ bn,ν(G).

More generally, we may also prove by recurrence
that a product of power of derivatives have the
similar expression

(g(n)(x))ν1(g(p)(x))ν2 = an,p,ν(G)x+ bn,p,ν(G).

Thus we may write for any product

Vm,ν(x) =
m∏
j=1

(
djg

dxj

)ν
j

= um,ν(G)x+ vm,ν(G)

3 Applications to the WKB
quantization

3.1 The quantum spectrum

Consider the Schrodinger equation

[
− h̄

2

2

d2

dx2
+G(x)

]
ψ(x) = Eψ(x). (7)

The Hamiltonian of the system is given by

H =
p2

m
+G(x)

where the mass m = 1.
This Hamiltonian is a constant of motion, whose
value is equal to the total energy E.
The wave function can always be written as

ψ(x) = exp(
i

h
σ(x))

The WKB expansion for the phase is a power se-
ries in h̄ :

σ(x) =
∞∑
0

(
h̄

i
)kσk(x).

Following [1], [5] rewrite the quantisation condi-
tion as

∞∑
0

I2k(E) = (n+
1

2
)h̄, n ∈ N

1where

I2k(E) =
1

2π
(
h̄

i
)2k
∫
γ
dσ2k, k ∈ N. (8)

When G(x) is analytic and xg(x) > 0, it has
been proved that the contour integrals can be re-
placed by equivalent Rieman integrals between
the two turning points. More precisely,

I2(E) = − h̄2

24
√

2π

∂2

∂E2

∫ b

a

g2(x)√
E −G(x)

dx

and

I4(E) = − h̄4

4
√

2π
[

1

120

∂3

∂E3

∫ b

a

g′2(x)√
E −G(x)

dx

− 1

288

∂4

∂E4

∫ b

a

g2(x)g′(x)√
E −G(x)

dx]
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One establishes the following

∮
γ
dσm = 2

∑
L(ν)=m

2
m
2
−1+|ν|i

(m− 3 + 2 | ν |)!!
∂

m
2
−1+|ν|

∂E
m
2
−1+|ν|×

∫ b

a

UνG
(ν)

√
E −G

dx

where

G(ν)(x) =
m∏
j=1

(
djG

dxj

)ν
j

Coefficients Uν are defined by a recurrence
equation.
Notice that higher order corrections quickly
increase in complexity and we know only few
cases where a WKB expansion can be worked to
all orders. Which resulting in a convergent series
whose sum is identical to the exact spectrum.

3.2 Applications

Here are some easy examples in order to verify
Theorem 2-1.

3.2.1 The isotonic potential

It is known, the spectrum of a potential is gener-
ally not strictly regularly spaced, except for the
harmonic G(x) = 1

2x
2 and the isotonic ones,

which are very particular cases :

G(x) =
1

8α2
[αx+ 1− 1

αx+ 1
]2

There are isochronous potentials with a strictly
equally spaced (harmonic) spectrum. As we have
seen in [1] its inverse is

x =
√

2G+P (G) =

√
2
√
Gα2 − 1−

√
2Gα2 + 1

α
=

√
2G− 1 +

√
2Gα2 + 1

α
.

3.2.2 A generalization

Let us consider now a three-parameters family of
potentials more general than the isotonic case

x =
2G

g
− 2

α
(
−1 +

√
1 + βG

)
b
√

1 + βG
,

where α and β are real parameters such that
2α2 ≤ β.
Here

x =
√

2G+P (G) =
−2α+

√
2Gβ +

√
4α2 + 4Gβα2

β

A resolution of these equations yields

G(x) =
8α2 + (β + 2α2)(4αx+ βx2)

2(β − 2α2)2
−

(4α2 + 2αβx)
√

2(2 + βx2 + 4αx)

2(β − 2α2)2

Then, the above potential is isochronous accord-
ing to Theorem 2-1. Applying scaling property
of isochronous potentials. The potentials G(x)
and 1

γ2
G(γx) have the same period. That means

the following three-parameters potentials family
is isochronous

G(x) =
1

2γ2
X2(γx) =

[2α+ βγx− α
√

2(2 + βγ2x2 + 4αγx)]2

2γ2(β − 2α2)2

So the case 2α2 = β and γ = 1 yields the isotonic
potential.

3.2.3 WKB corrections

By Theorem 2-1, we may write g = dG
dx = a(G)x+

b(G) . Writing

I2(E) =
−h̄2

24
√

2π

∂2

∂E2

∫ b

a

g2(x)√
E −G(x)

dx =

−h̄2

24
√

2π

∂2

∂E2

∫ b

a

g(x)√
E −G(x)

g(x)dx

and by Theorem 1-2 we may express

− h̄2

24
√

2π

∂2

∂E2

∫ b

0

2a(G)x√
E −G(x)

g(x)dx =

− h̄2

24
√

2π

∂2

∂E2

∫ E

0

2a(v)
√
x(v)√

E − v
dv.

Then making the change of variables u = v
E (we

suppose here ω = 1)

I2(E) = − h̄2

24π

∂2

∂E2
[E

∫ 1

0

2a(uE)x(u)√
1− u

du].
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A similar calculation gives the fourth order
correction

I4(E) = − h̄4

4
√

2π
[

1

120

∂3

∂E3

∫ b

a

g′2(x)

g(x)
√
E −G(x)

g(x)dx

− 1

288

∂4

∂E4

∫ b

a

g(x)g′(x)√
E −G(x)

g(x)dx].

By Theorem 1-1 one gets g = dG
dx = a(G)x+ b(G)

and g′ = dg
dx = a1(G)

√
2G + b1(G). However, we

may easily prove

g′2

g
= a1,2(G)x+ b1,2(G)

where a1,2(G) and b1,2(G) are analytic functions.
As well as

g(x)g′(x) = c1,2(G)x+ d1,2(G)

where c1,2(G) and c1,2(G) are analytic functions.
Similar to I2, I4 may be expressed through Abel
integrals :

I4(E) = − h̄
4

4π
[
E−3

120

∫ E

0

(x(v))5√
E − v

∂3

∂v3
a1,2(v) dv

−E
−4

288

∫ E

0

(x(v))7√
E − v

∂4

∂v4
c1,2(v) dv].

Thus one can choose I2(E) and deduce the
corresponding analytic isochronous potential
such that, its asymptotic decay is faster than
the asymptotic decay of I4(E). Therefore, I2(E)
and I4(E) grow exponentially fast as E grows
to ∞. We will get the similar for higher order
corrections.

Turn now to upper order WKB correction.
Following [1], [3] the explicit expression for I2n(E)
is given by

I2n(E) = −
√

2

π
h̄2n

∑
L(ν)=2n

2|ν|

(2n− 3 + 2 | ν |)!!
Jν(E)

(9)
where

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ b

a

UνG
(ν)

√
E −G

dx

where

G(ν)(x) =
2n∏
j=1

(
djG

dxj
)νj

and where ν = (ν1, ν2, ..., ν2n), νj ∈ N,L(ν) =∑2n
j=1 jνj and | ν |=

∑2n
j=1 νj . The coefficients

Uν satisfy a certain recurrence relation.

By Corollary 2-3 G(ν) may be expressed un-
der the form

G(ν)(x) =
n∏
j=1

(
djG

dxj

)ν
j

= un,ν(G)x+ vn,ν(G)

where un,ν and vn,ν are analytic functions with
respect to G. Therefore,

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ b

a

Uνun,ν(G)x√
E −G

g(x)dx

By Corollary 1-1, we can write

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ b

0

2Uνun,ν(G)x√
E −G

g(x)dx

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ E

0

2Uνun,ν(v)x(v)√
E − v

dv

Another equivalent formulation via Abel integrals

Jν(E) = A(n,ν)

∫ E

0

(x(v))n−2+|ν|√
E − v

∂n−1+|ν|

∂En−1+|ν|
un,ν(v),

where A(n,ν) = 2UνE
−n+1−|ν|.

Similar to I2 and I4 the nth correction I2n will
be expressed through Abel integrals :

I2n(E) =
−h̄2n

π

∑
L(ν)=2n

2|ν|+1UνE
−n+1−|ν|

(2n− 3 + 2 | ν |)!!
×

∫ E

0

(x(v))n−2+|ν|√
E − v

∂n−1+|ν|

∂En−1+|ν|
un,ν(v)dv

where un,ν(G) is such that

G(ν)(x) =
m∏
j=1

(
djG

dxj

)ν
j

= un,ν(G)x+ vn,ν(G).
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4 Conclusion

It is well known that the quantum Schrodinger
solvable potentials is rather small because quan-
tum exactly solvability is a very strong condition.
We have therefore highlighted another no less
complicated but interesting expression of I2n(E)
in the general case. The natural question is which
of the two is more appropriate to use. In fact,
it will depend on the type of isochronous po-
tentials that we consider. In some situations, it
may be easier to use either of these formulas. As
we remarked higher order corrections quickly in-
crease in complexity. Here too the WKB correc-
tions I2n(E) grow exponentially fast as E grows
to ∞. The WKB series should be summed for
any isochronous potential and would be finite as
E grows to ∞.
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