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 Abstract: This study investigates the robustness of two-sample inferential statistics when datasets are 
derived from mixture distributions, where traditional methods like the t-test may fail due to violated 
assumptions. Using R software, random variables from Standard Normal, Gamma, and Exponential distributions 
were generated and analyzed using four inferential tests: Rank Transformation t-test (Rt), Wilcoxon Sum Rank 
Test (WSD and its Asymptotic version WSA), and Trimmed t-test (Tt-test). Robustness was evaluated based on 
Type I error rates across varying levels of multicollinearity and sample sizes (n=10, 20, 30, 40, 50, 60, 70, 80 
and100). A test was deemed robust if it maintained acceptable error rates (α=0.1, 0.05, and 0.01) and 
demonstrated consistency across multicollinearity levels and sample sizes. At α=0.1, the WSD and Tt-test 
exhibited the highest robustness. At α=0.05, the Tt-test was the most robust, while at α=0.01, both the Tt-test and 
WSD were robust, with the Tt-test slightly outperforming. Overall, the Tt-test and WSD consistently 
demonstrated robustness across all significance levels, suggesting they are reliable alternatives for two-sample 
problems involving mixture distributions. These findings underscore the importance of selecting robust statistical 
methods to ensure accurate inferences in complex data scenarios. 
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1 Introduction 

A mixture distribution refers to the probability 
distribution of a random variable constructed from a 
collection of other random variables. These component 
variables may be random real numbers or vectors, and 
while they can share the same distributional form, the 
resulting mixture may be continuous and characterized by 
a mixture density function. The individual distributions 
that form the mixture are known as mixture components, 
and the probabilities associated with each are called 
mixture weights. In essence, a mixture distribution 
represents a combination of two or more probability 
distributions. 

In data analysis, violations of the normality assumption 
are common. These deviations often result from unequal 
error variances or the presence of outliers. As a result, 
robust or non-parametric statistical methods are often 
required. When data do not follow a normal distribution, 
it indicates that the underlying random variables may not 
be identically distributed. Such data are typically modeled 
using mixture distributions, where component 
distributions may differ in their parameters, contributing 
to outliers and non-normal characteristics in the dataset. 
The concept of mixture distributions has been extensively 
studied across various disciplines, including biology, the 
social sciences, engineering, and the physical sciences. 
[21] conducted foundational work evaluating the 
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performance of several paired inferential tests—including 
the paired t-test, Wilcoxon signed-rank test, rank 
transformation t-test, and trimmed t-test—in the presence 
of outliers and multicollinearity. His simulations, based 
on Gaussian data contaminated with outliers, showed that 
certain robust tests were more effective in handling such 
irregularities. Subsequently, [18] made significant 
theoretical contributions to mixture models, forming the 
basis for both classical and Bayesian statistical 
applications. [6]  introduced the use of a Dirichlet process 
prior to model unobserved random effects, allowing for 
unequal variances across sampling units and enabling a 
smooth non-parametric estimate approximating a 
Bayesian estimator. 
In the early 2000s, a series of empirical studies emerged. 
[13] examined the mixture hypothesis in geometric 
distributions using the likelihood ratio test. His 
simulations revealed relationships between geometric and 
exponential mixture hypotheses. [14] used Monte Carlo 
experiments to compare the statistical power of paired 
parametric and non-parametric tests, finding that test 
effectiveness varied with context. [8]  illustrated the use 
of mixture distributions in a biological context, showing 
how fish measurements varied with age and how the 
overall distribution represented a mixture of age-specific 
distributions. 
In subsequent years, the focus on statistical robustness 
intensified. [5] assessed the performance of one-sample 
parametric, semi-parametric, and non-parametric tests in 
the presence of outliers. [2] extended this research to 
matched-pair designs, examining robustness under 
different correlations and sample sizes. Their results 
indicated that the t-test often failed to maintain 
appropriate Type I error rates. [10] studied mixture 
models in which the mixing distribution could be 
identified using Schwarz’s Bayesian criterion and 
Neyman tests. His work introduced smooth goodness-of-
fit tests for sequences of independently identically 
distributed. random variables. That same year, [3], [15], 
[16] and [17] published reviews and domain-specific 
research exploring mixture distribution applications 
across various fields. [1] contributed by evaluating the 
performance of inferential statistics derived from 
Gaussian and Cauchy mixtures, recommending the rank 
transformation test as a robust option across all 
significance levels, especially in one-sample settings. 
Most recently [9] highlighted the limitations of the two-
sample Hotelling’s T² test in multivariate analysis, 
proposing a robust permutation test based on the 
minimum regularized covariance determinant estimator 
for high-dimensional data. 

In statistical inference, many widely used test statistics—
such as the t-test and Hotelling’s T²—are based on the 
assumptions that data are normally and identically 
distributed. However, real-world data frequently violate 
these assumptions due to outliers, unequal variances, and 
structural complexity. These issues are especially 
common in data generated from mixture distributions, 
where the underlying random variables come from 
multiple distinct distributions (e.g., Gaussian, 
exponential, or Cauchy). Although mixture distributions 
are prevalent across diverse fields such as biology, 
engineering, and the social sciences, most robustness 
studies have focused exclusively on normally distributed 
data, neglecting more realistic and complex distributional 
scenarios. This represents a critical gap in understanding 
how inferential statistics perform under non-normality 
caused by data drawn from heterogeneous sources. 
Moreover, although some robust and non-parametric 
methods have been developed, their comparative 
performance across different mixture types, sample sizes, 
and significance levels remains insufficiently explored. A 
comprehensive evaluation of both traditional and modern 
inferential tests in the context of mixture-distributed data 
is urgently needed. 
Despite the growing body of literature, most existing 
studies have concentrated primarily on data from normal 
distributions, often overlooking others, such as 
exponential or heavy-tailed (such as Cauchy) 
distributions. This study aims to address that gap by 
examining the robustness of various two-sample 
inferential test statistics using data drawn from mixture 
distributions. Specifically, it investigates mixtures of 
normal, exponential, and Cauchy distributions. The 
objective is to identify non-parametric and semi-
parametric methods that maintain robustness across 
different sample sizes and significance levels. Detailed 
simulation procedures and distributional assumptions are 
presented in the following sections. 

2. Materials and methods   

2.1 Distributions used for the Study 

In this study, data were generated from four 
distributions, namely; the normal distribution, gamma 
distribution and the exponential distribution. 

(i) Normal distribution: 

The normal distribution is the most widely known and 
used of all distribution and because it can approximate 
many natural phenomena so well, it has developed into 
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a standard of reference for many probability problems.
 Properties of the Normal distribution  

i. It is symmetric about the mean and has bell 
shaped  

ii. Its random variable ranges from -∞to ∞ 
iii. It has two parameters, µ and σ.  

The normal density function is  

𝑓(𝑥: 𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒−(𝑥−𝜇)2 2𝜎2⁄    

      
 (1) 

(ii) Gamma Distribution 

Gamma distribution is a two-parameter family of 
continuous probability distributions. The exponential 
distribution, Erlang distribution, and chi-squared 
distribution are special cases of the gamma 
distribution. There are three different parametrizations 
in common use: 

i. With a shape parameter k and a scale parameter 
θ. 

ii. With a shape parameter α = k and an inverse 
scale parameter β = 1/θ, called a rate parameter. 

iii. With a shape parameter k and a mean parameter 
μ = kθ = α/β. 

We say that a random variable X is distributed gamma 
if  

X ~ Gamma (α, β) 

xxxf 





 


 )1(

)(
),,(             

       (2) 

0 < x < ∞, α > 0, β > 0  

where, mean = 


  and variance = 2


  

(iii) Exponential Distribution 

A continuous random variable X is said to have an 
Exponential (λ) distribution if it has probability density 
function 

𝑓𝑋(𝑥|𝜆) =  {
𝜆𝑒−𝜆𝑥, 𝑓𝑜𝑟 𝑥 > 0
0            𝑓𝑜𝑟 𝑥 ≤ 0

                           

        (3) 

where λ > 0 is called the rate of the distribution. In the 
study of continuous-time stochastic processes, the 
exponential distribution is usually used to model the 
time until something happens in the process. The 
mean is 1/λ and the variance is 1/λ2 

2.2 Review of some inferential Statistic 

(i) Trimmed t-test for two independent two- 

samples 

[21] proposed the Trimmed t-test for the independent 
two-sample case, under unequal population variances. 
The trimmed mean is an attractive alternative to the 
mean and the median, because it effectively deals with 
outliers without discarding most of the information in 
the data set. Research has shown that the use of 
trimming (and other modern procedures) results in 
substantial gains in terms of control of Type I error, 
power, and narrowing confidence intervals [12]. Also, if 
data are normally distributed, the mean and the trimmed 
mean will be the same. [5] 

In each sample, the trimmed mean is computed by 
removing g-observations from each tail of the 
distribution: 

Given the Winsorized mean, the Winsorized sum-of-
squared derivation is computed as: 

SSDw = [g + 1][xg+1 − X̅w]
2

+ [xg+2 − X̅w]
2

+ ⋯ +

[g + 1][xn−g − X̅w]
2     (4)  

The trimmed t is obtained by dividing the difference 
between the trimmed means by the estimated standard 
error of the difference: 

𝑡 =  
X̅t1 − X̅t2

√
𝑆𝑤1

2

𝑛1− 2𝑔
+ 

𝑆𝑤2
2

𝑛2− 2𝑔

    (5) 

 where; 𝑆𝑤1
2 =

𝑆𝑆𝐷𝑤1

𝑛1−2𝑔−1
, 𝑆𝑤2

2 =
𝑆𝑆𝐷𝑤2

𝑛2−2𝑔−1
 

The degrees of freedom are obtained from 1

𝑑𝑓
=

 
𝐶2

𝑛1−2𝑔−1
+  

(1−𝐶)2

𝑛2−2𝑔−1
 

 where 𝐶 =  

𝑆𝑤1
2

(𝑛1− 2𝑔−1)

[
𝑆𝑤1

2

(𝑛1− 2𝑔−1)
]+ [

𝑆𝑤2
2

(𝑛2− 2𝑔−1)
]

 

(ii) Wilcoxon rank sum test 

Wilcoxon rank sum test is a quick and easy test for two 
independent samples. It is a good alternative test to the 
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t-test when the data don’t meet the assumptions of the 
test. (It is numerically equivalent to the Mann-Whitney 
U test). This test can also be performed if only rankings 
(i.e., ordinal data) are available. It tests the null 
hypothesis that the two distributions are identical 
against the alternative that the two distributions differ 
only with respect to the median. In order words, 
Wilcoxon rank sum test compares two distributions to 
assess whether one has systematically larger values than 
the other. The Wilcoxon test is based on the Wilcoxon 
rank sum test statistic W, which is the sum of the ranks 
of one of the samples. 

 Assumptions for Wilcoxon rank sum test: 

(i.) Within each samples the observations are 
independently and identically distributed. 

(ii.) The two samples must be independent of each 
other. 

(iii.) The error terms are mutually independent. 
(iv.) The shapes and spreads of the distributions are 

the same. 

 The procedures: 

(i.) Rank all the data values by assigning rank1 to 
the smallest data, 2 to the next smallest up to 
the largest. 

(ii.) If one group has fewer values than the other 
e.g., n1<n2, add the ranks in the smaller group 
to get the test statistic W. If n1= n2, add the 
ranks in the group containing the smallest 
ranks. 

(iii.) Enter the appropriate table for W, based on 
sample sizes and determine the probability for 
W. 

(iv.) Based on the p-value, reject H0 or accept H0. 

The rank sum statistic W becomes approximately 
normal as the two sample sizes increase. The test Z-
statistic by standardizing W is;  

Z =  
𝑊−𝜇𝑤

𝜎𝑤
~𝑁(0,1)         

      (6) 

where 𝜇𝑤 =  
𝑛1(𝑁+1)

2
 , 𝜎𝑤 = √

𝑛1𝑛2(𝑁+1)

12
 and 𝑁 = 𝑛1 +

𝑛2. 

p-value for the Wilcoxon test is based on the sampling 
distribution of the rank sum statistic W when the null 
hypothesis (no difference in distributions) is true. P-
value can be calculated from special tables, software 

or a normal approximation (with continuity 
correction). 

(iii) Wilcoxon signed rank test (Asymptotic)  

Wilcoxon signed-rank test is named after [19] who in a 
single paper proposed both the test and rank-sum test 
for two independent samples. The asymptotic 
distribution of Wilcoxon signed rank test is: 

𝑇 =
𝑇+−𝐸0(𝑇+)

√𝑉0(𝑇+)
~𝑁(0,1)       (7) 

where 𝐸0(𝑇+) =
(𝑛+1)

4
 and 𝑉0(𝑇+) =  √

𝑛(𝑛+1)(2𝑛+1)

24
 

Algorithm for simulation 

How data were generated from different distributions 
and subjected to the inferential test statistics including 
the estimation of Type I error rates using Monte Carlo 
procedures with the aid of R-programming codes are 
hereby discussed. 

Source of Data 

The following parameters were used to generate data for 
two samples problems with the aid of R-statistical 
programming package. 

i. Sample size(n) = 10, 20, 30, 40, 50, 60, 70, 80 
and100 

ii. Replications (RR) = 5000 
iii. Hypothesized median (md) = 0 
iv. Standard deviation (δ) = 1 
v. Correlation (ρ) = 0, 0.3, 0.6, 0.9, 0.95 and 0.99 

vi. Presented α-level = 0.1, 0.05 and 0.01 

Distributions used for Two Samples Problem 

The data were generated from the following 
distributions 

i. Normal distribution with mean (μ) = 0 and 
standard deviation (δ) = 1 

ii. Gamma distribution (n, 0.5)  
iii. Exponential distribution (n, 0.5) 

where n is the sample size. 

The Test Statistics used for Two Samples problem 

The test statistics used in the two samples 
problem are as follows: 

i. T-test for Rank transformation (Rt) in two 
sample by [7] 

ii. Wilcoxon sum Rank test (Distribution (WSD) 
and Asymptotic (WSA)) by [19] 

iii. Trimmed t-test (Tt) by [21] 
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2.3 Procedures for Monte Carlo Experiment 
The procedures for data generation and estimation of 
Type I error rate in two samples mixture distribution are 
as follows: 

i. Choose a sample size(n)  
ii. Generate random sample size from the 

distributions under consideration, X ~ N (n, 0, 
1) and Gamma distribution (n, 0.5), Y ~ N (n, 0, 
1) and Exponential distribution (n, 0.5). 

iii. X and Y are now polluted with correlated 
observations using equations (8) and (9) as in  

𝑋 =  𝜇1 +  𝜎1𝑍1      (8)  
𝑌 =  𝜇2 +  𝜌12𝜎2𝑍1 + √𝑚22𝑍2     (9) 

where  𝑍1~𝑁(0, 1), 𝑍2~𝑁(0, 1), and 

 𝑚22 =  𝜎2
2(1 − 𝜌12

2 ) 
In this study, 12   0, 0.3, 0.6, 0.9, 0.95 and 0.99.  

iv. Combine the data generated in step (ii). 
v. Subject the various test statistics and document 

their p-values 
vi. For each inferential test statistics in step(IV) 

defined as; 

𝐻𝑖 =  {
1, 𝑖𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < ∝
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

      (10) 

where α = 0.1, 0.05 and 0.01 are the level of 
significance 

vii. From step(ii) to (v) repeat up to 5000 times, 
RR=5000 

viii. For each of the inferential statistics, sum the 
results obtained in step (vi) as in the equation 
below; 

𝐻 =  ∑ 𝐻𝑖
𝑅𝑅
𝑖=1         (11) 

viii. For each of the inferential statistics, divide the 
result in step (vii) by the number of replications to 
estimate the type I error of the test statistics as given as 
follows: 

𝐾∝ =  
∑ 𝐻𝑖

𝑅𝑅
𝑖=1

𝑅𝑅
=  

𝐻

𝑅𝑅
       (12) 

  ix. Choose another sample size (n) to work with and 
repeat step (ii) to step (ix) until all sample sizes are 
exhausted. 

2.4 Examination of Robustness of the Test 

Statistics  

Robustness of the inferential statistics was investigated in 
mixture distribution. Any calculated Type 1 error rates of 
the test that falls within the range of 0.095 – 0.14, 0.045 – 
0.054 and 0.005 – 0.014 for 0.1, 0.05 and 0.01 
respectively at different alpha level (α)and sample sizes 
(n) which was adopted by [2], used by [1]. Also, a test 
statistic that has the highest number of counts is 
considered robust. 
 
3.  Results and Discussion 
Here, the results of simulation for all the inferential 
statistics in mixture distribution of two sample problem 
including graphical representation are discussed. 

 
Table 1: Simulation Results at 0.1 Level of Significance 

α = 0.1 
    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho=0 

10 1 0.2002 1 0.1158 

rho=0.9 

10 1 0.066 1 0.0602 

20 1 0.382 1 0.2988 20 1 0.2174 1 0.2002 
30 1 0.5308 1 0.4586 30 1 0.4474 1 0.4128 
40 1 0.6644 1 0.6028 40 1 0.6768 1 0.6214 
50 1 0.7634 1 0.7206 50 1 0.831 1 0.7806 
60 1 0.8276 1 0.7984 60 1 0.9256 1 0.889 
80 1 0.8798 1 0.8546 80 1 0.9886 1 0.9764 
100 1 0.965 1 0.9592 100 1 0.9994 1 0.9972 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho=0.3 
10 1 0.197 1 0.12 

rho=0.95 
10 1 0.0278 1 0.0352 

20 1 0.4286 1 0.3356 20 1 0.102 1 0.114 

30 1 0.619 1 0.5346 30 1 0.2596 1 0.2582 
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40 1 0.7732 1 0.7114 40 1 0.4514 1 0.4384 
50 1 0.8696 1 0.8264 50 1 0.6392 1 0.6054 
60 1 0.9242 1 0.895 60 1 0.7974 1 0.7536 
80 1 0.954 1 0.9356 80 1 0.952 1 0.9258 
100 1 0.996 1 0.991 100 1 0.9948 1 0.9858 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho=0.6 

10 1 0.16 1 0.1128 

rho=0.99 

10 1 0.0024 1 0.0038 
20 1 0.4188 1 0.3334 20 1 0.0064 1 0.012 
30 1 0.6538 1 0.573 30 1 0.012 1 0.0228 
40 1 0.8204 1 0.7624 40 1 0.0274 1 0.042 
50 1 0.9118 1 0.873 50 1 0.0518 1 0.0766 

60 1 0.963 1 0.9402 60 1 0.101 1 0.1264 

80 1 0.9936 1 0.9872 80 1 0.2548 1 0.2592 
100 1 0.9996 1 0.998 100 1 0.4678 1 0.4312 

 

 
Figure 1a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.1 

Table 2: Times Type I Error rates approximate to α = 0.1, 0.05 and 0.01 

 

α = 0.1 
  Test Statistics 10 20 30 40 50 60 80 100 SUM RANK 

Rt 0 0 0 0 0 0 0 0 0 3.5 
WSD 1 1 0 0 1 1 0 0 4 2 
WSA 

  
0 0 

  
0 0 0 3.5 

Tt 4 1 0 0 1 1 0 0 7 1 

 
α = 0.05 

  Test Statistics 10 20 30 40 50 60 80 100 SUM RANK 
Rt 0 0 0 0 0 0 0 0 

 
3 

WSD 0 0 0 0 0 0 0 0 
 

3 
WSA 0 0 0 0 0 0 0 0 

 
3 

Tt 3 0 0 0 0 0 0 0 3 1 

0

0,05

0,1

0,15

0,2

0

0,2

0,4

0,6

0,8

1

10 20 30 40 50 60 80 100 10 20 30 40 50 60 80 100 10 20 30 40 50 60 80 100

rho=0 rho=0.3 rho=0.6

Alpha = 0.1

Rt WSD Tt WSA
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α = 0.01 

  Test Statistics 10 20 30 40 50 60 80 100 SUM RANK 
Rt 0 0 0 0 0 0 0 0 

 
3.5 

WSD 1 2 0 1 0 0 0 0 4 2 
WSA 0 0 0 0 0 0 0 0 

 
3.5 

Tt 2 2 1 0 0 0 0 1 6 1 
 

 

Figure 1b. Bar Chart Indicating Total Times Type I Error rates approximate to α = 0.1 

Table 3: Two Sample Simulation Result at 0.05 Level of Significance 

α = 0.05 
    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho = 0 

10 1 0.109 1 0.048 

rho = 0.9 

10 1 0.0196 1 0.0214 
20 1 0.255 1 0.1678 20 1 0.0776 1 0.0802 
30 1 0.3942 1 0.3018 30 1 0.2098 1 0.2004 
40 1 0.517 1 0.4352 40 1 0.396 1 0.3694 
50 1 0.6278 1 0.5552 50 1 0.5898 1 0.5406 
60 1 0.714 1 0.655 60 1 0.7526 1 0.7074 
80 1 0.7838 1 0.7352 80 1 0.933 1 0.8976 
100 1 0.926 1 0.9086 100 1 0.992 1 0.9798 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho = 0.3 

10 1 0.0984 1 0.0492 

rho = 0.95 

10 1 0.0062 1 0.0094 
20 1 0.273 1 0.1828 20 1 0.0278 1 0.0386 
30 1 0.4486 1 0.3518 30 1 0.0816 1 0.102 
40 1 0.6198 1 0.5258 40 1 0.1824 1 0.2036 
50 1 0.7468 1 0.667 50 1 0.3258 1 0.3342 
60 1 0.8406 1 0.7836 60 1 0.4898 1 0.4942 
80 1 0.8952 1 0.8564 80 1 0.7782 1 0.7308 
100 1 0.9832 1 0.9724 100 1 0.9378 1 0.9024 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho = 0.6 

10 1 0.0728 1 0.0442 

rho = 0.99 

10 1 0 1 6.00E-04 
20 1 0.2376 1 0.1658 20 1 6.00E-04 1 0.002 
30 1 0.4488 1 0.3564 30 1 0.0018 1 0.0048 
40 1 0.6504 1 0.5608 40 1 0.0032 1 0.0092 

0

4

0

7

0 1 2 3 4 5 6 7 8

Rt

WSD

WSA

Tt

Alpha = 0.1
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50 1 0.7946 1 0.7174 50 1 0.0056 1 0.0148 
60 1 0.89 1 0.8382 60 1 0.0136 1 0.0306 
80 1 0.9738 1 0.9528 80 1 0.0438 1 0.0744 
100 1 0.9958 1 0.9894 100 1 0.1202 1 0.1506 

 

 
Figure 2a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.05 

 

 
Figure 2b: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.05 

 

Figure 2c. Bar Chart Indicating Total Times Type I Error rates approximate to α = 0.05 
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Table 4: Two Sample Simulation Result at 0.01 Level of Significance 

Alpha = 0.01 
    Rt WSD WSA Tt     Rt WSD WSA Tt 

Rho=0 

10 1 0.0214 1 0.0074 

Rho=0.9 

10 1 0.0012 1 0.0022 
20 1 0.073 1 0.0346 20 1 0.0056 1 0.0086 

30 1 0.1654 1 0.1028 30 1 0.0168 1 0.023 
40 1 0.291 1 0.1904 40 1 0.053 1 0.0688 
50 1 0.4142 1 0.3018 50 1 0.122 1 0.1394 
60 1 0.5406 1 0.4348 60 1 0.223 1 0.2386 
80 1 0.6514 1 0.5474 80 1 0.5082 1 0.479 
100 1 0.8878 1 0.8332 100 1 0.762 1 0.7178 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

Rho=0.3 

10 1 0.0092 1 0.0052 

Rho=0.95 

10 1 2.00E-04 1 8.00E-04 
20 1 0.0482 1 0.028 20 1 4.00E-04 1 0.003 
30 1 0.1316 1 0.0878 30 1 0.0032 1 0.0082 

40 1 0.2584 1 0.1888 40 1 0.0104 1 0.0218 
50 1 0.4026 1 0.3114 50 1 0.0266 1 0.0542 
60 1 0.5596 1 0.4706 60 1 0.0592 1 0.0942 
80 1 0.8108 1 0.7292 80 1 0.197 1 0.2428 
100 1 0.9316 1 0.8846 100 1 0.426 1 0.4488 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

Rho=0.6 

10 1 0.0012 1 0.0022 

Rho=0.99 

10 1 0 1 0 
20 1 0.0056 1 0.0086 20 1 0 1 2.00E-04 
30 1 0.0168 1 0.023 30 1 0 1 0 
40 1 0.053 1 0.0688 40 1 0 1 4.00E-04 
50 1 0.122 1 0.1394 50 1 2.00E-04 1 6.00E-04 
60 1 0.223 1 0.2386 60 1 0 1 8.00E-04 
80 1 0.5082 1 0.479 80 1 0 1 0.0028 
100 1 0.762 1 0.7178 100 1 0.001 1 0.0082 

 

 
Figure 3a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.01 
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Figure 3b: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.01 

 

Figure 3c. Bar Chart Indicating Total Times Type I Error rates approximate to α = 0.01 

 

4. Discussion 

The simulation results for Type I error rates of two-
sample inferential tests, as presented in Table 1 and 
graphically depicted in Figures 1a and 1b, revealed 
the following: at α=0.1, the Tt-test and the WSD, in 
this order, exhibit superior Type I error rates as 
multicollinearity and sample sizes increase, while the 
Rt and WSA tests show lower Type I error rates. 
Furthermore, when aggregated across all levels of 
multicollinearity for each sample size, as shown in 
Table 2 and Figure 1c, the Tt-test performs better 
than the other tests at the α=0.1significance level. 
Similarly, the results for α=0.05, presented in Table 3 
and illustrated in Figures 2a and 2b, indicate that only 
the Tt-test maintains superior Type I error rates as 
multicollinearity and sample sizes increase. 

Aggregated results across all levels of 
multicollinearity for each sample size, as depicted in 
Table 2 and Figure 2c, further confirm that the Tt-test 
outperforms all other test statistics considered in the 
study. At α=0.01, as shown in Table 4 and 
graphically in Figures 3a and 3b, the Tt-test and 
WSD, in this order, achieve better Type I error rates 
as multicollinearity and sample sizes increase. When 
aggregated across all multicollinearity levels for each 
sample size, as shown in Table 4 and Figure 3c, the 
Tt-test emerges as the top performer at the α=0.01 
significance level. 
Overall, the investigation of simulation results for 
two-sample inferential statistics across different 
significance levels and multicollinearity conditions, 
as detailed in Tables 1, 3, and 4 and graphically 
represented in Figures 1, 2, and 3 revealed that 
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correlation really affects the performance of all the 
test statistics considered as some of them were unable 
to maintain the pre-selected alpha level excepts Tt 
test at each sample size. Hence, in the long run, the 
Tt-test outperformed other test statistics at each 
sample sizes as it has the highest counts. 

Additionally, the frequency with which the Type I 
error rates of the test statistics fall within the 
preferred interval has been summarized in Table 6. 
This table ranks the robustness of the two-sample 
inferential statistics for mixture distributions in order 
of importance. 

 

Table 5. Total number Times Type I error rate approximates to true error rates when counted across the 

sample sizes 

Test 
Statistics 10 20 30 40 50 60 80 100 SUM RANK 

Rt 0 0 0 0 0 0 0 0 0 3.5 

WSD 2 3 0 1 1 1 0 0 8 2 

WSA 0 0 0 0 0 0 0 0 0 3.5 

Tt 6 3 1 0 1 1 0 1 13 1 

 
Figure 4. Bar chart indicating overall total times Type I error rates approximates to the true error rates 

across all sample sizes 

Table 6. Overall Summary of Robustness of the inferential Statistics in Mixture Distribution 

Alpha Level Test statistics 

0.1 WSD and Tt 

0.05 Tt 

0.01 Tt and WSD 
Overall Tt and WSD 

5. Conclusion 
The simulation results demonstrate that the Trimmed t-
test (Tt-test) and the Wilcoxon Sum Rank Test (WSD) 
exhibit robust Type I error rates across varying levels of 

significance, sample sizes, and multicollinearity in 
mixture distributions. When results are aggregated across 
all levels of multicollinearity and sample sizes, the Tt-test 
consistently demonstrates superior robustness, with the 
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WSD also performing reliably in certain conditions. 
These findings, summarized in Table 5, provide a clear 
ranking of robustness for the test statistics in mixture 
distributions, highlighting the effectiveness of the Tt-test 
as the most reliable option across the evaluated 
conditions. Overall, this study underscores the importance 
of selecting robust inferential statistics like the Tt-test and 
WSD for accurate hypothesis testing in complex data 
scenarios, such as mixture distributions, particularly when 
standard assumptions are not met. 

 

 

 

 

Acknowledgements 

The authors appreciate the anonymous reviewers for their 
in-debt review of the paper and professional 
contributions. 
 
References 
 
[1] Adejumo, T.J., Akomolafe, A.A., Okegbade, A.I. 

and Gbolagade, S.D. (2022) “A Simulation Study 
on Robustness of One Sample Inferential 
Statistics in Mixture Distribution”, African 

Scientific Reports 1(142-153) 
[2] Ajiboye. A. S, Adejumo, T.J. and Ayinde, K. 

(2017). A study on sensitivity and robustness of 
matched-pairs inferential test statistics to outliers, 
FUTA Journal of Research in Sciences 13;350. 

[3] Ayedun, C.A., Omonijo, D.O., Durodola, O.D., 
Ajibola, M.O., Oloke, C.O., Kehinde, R. and 
Akinjare, O.A. (2019). An evaluation of users’ 
satisfaction level with the quality of the office 
facilities in some selected private universities in 
Ogun state, Nigeria, The 33rd International 

Business Information Management Conference 

(33rd IBIMA) Granada. 
[4] Ayinde, K., Kuranga, J.O. and Solomon, S.G. 

(2009). Empirical investigation of type 1 error 
rate of some normality test statistics, 
International Journal of Computer Applications 
148;24. 

[5] Ayinde, K., Adejumo, T. J. and Solomon, G. S. 
(2016). A Study on Sensitivity and Robustness of 
One Sample Test Statistics to Outliers. Global 

Journal of Science Frontier Research: F 

Mathematics and Decision Science Vol. 16  (6). 
[6] Blair, R., Higgins, C. and James, J. (1985). 

Comparison of the power of the paired samples t-

test to that of Wilcoxon’s signed-ranks test under 
various population shapes, Psychological Bulletin 

97;119.https://doi.org/10.1037/0033-

2909.97.1.119 
[7] Conover, W.J. and Iman, R. (1981). Rank 

transformations as a bridge between parametric 
and non-parametric statistics, The American 

Statisticians 35;125. 
[8] Denys, P. (2008). Testing mixed distributions 

when the mixing distribution is known, 
Conference paper.  

https://doi.org/10.1007/978-3-642-01044-623 
[9] Hasan, B. Soofia, I. Nosheen, F. and Olayan, A. 

(2024). A Robust High-Dimensional Test for 
Two-Sample Comparisons.  Axioms. 13(9), 
585; https://doi.org/10.3390/axioms13090585. 

[10] JinSeo, C. Jin, P. Seok and Sang Woo, P. (2018). 
Testing for the conditional geometric mixture  
Distribution, Journal of Economic Theory and 

Econometrics 29;1. 
[11] John, A. (2016). Sign test-the free encyclopedia, 

https://www.encyclopedia.com 
[12] Keselman, H.J., Wilcox, F., Algina, R.R. and 

Fradette, K.A. (2008). Comparative study of 
robust tests for spread: asymmetric trimming 
strategies, British Journal of Mathematical and 

Statistical Psychology 61;235. 
[13] Michael, N. (2002). On a non-parametric 

recursive estimator of the mixture distribution, 
The Indian Journal of Statistics San Antonio 

Conference: Selected articles 64;306. 
 

[14] Michelle, K., Mcdougalli and Rayner, G.D. 
(2004). Robustness to non-normality of various 
tests for the one sample location problem, Journal 
of Applied Mathematics and Decision Sciences 
8;235. 

[15] Odukoya, J.A., Fayomi, O., Omonijo, D.O., 
Anyaegbunam, M.C. and Olowookere, E.I. 
(2019). An assessment of the psychological 
undertones to accidents in manufacturing 
industries, International Journal of Mechanical 

and Production Engineering Research and 

Development (IJMPERD) 9; 545. 
[16] Odukoya, J.A., Omonijo, D.O, Misra, S. and 

Ahuja, R. (2019). Information technology in 
learning institutions: an advantage or a 
disadvantage? In: Abraham A., Panda M., 
Pradhan S., Garcia-Hernandez L., Ma K. (eds) 
Innovations in Bio-Inspired Computing and 
Applications, IBICA. Advances in Intelligent 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2025.7.5

Taiwo J. Adejumo, Sunday D. Gbolagade, 
 Opeyemi A. Oshuoru, Sunday O. Koleoso, 

Oluwakayode O. Shadare, Kamoru T. Oyeleke

E-ISSN: 2766-9823 75 Volume 7, 2025

https://doi.org/10.1037/0033-2909.97.1.119
https://doi.org/10.1037/0033-2909.97.1.119
https://doi.org/10.1007/978-3-642-01044-623
https://doi.org/10.3390/axioms13090585
https://www.encyclopedia.com/


Systems and Computing 1180 (2021). 

https://doi.org/10.1007/978-3-030-49339-4 34 
[17] Omonijo, D.O., Anyaegbunam, M.C., Okoye, E., 

Nnatu, S.O., Okunlola, B.O., Adeleke, V.A.,  
Olowookere, E.O, Adenuga, A.O, and Olaoye, P. 
(2019). The Influence of genital mutilation on 
women’s sexual activities in Oke-Ona, 
community, Abeokuta, Nigeria, Journal of 

Educational and Social Research, 8; 254.  

https://doi.org/10.2478/jesr-2019-0044 

[18] Prakasa Rao, B.L.S. Nonparametric functional 
Estimation, 1st Edition (1983). 

[19] Wilcoxon, F. (1945). Individual comparisons by 
ranking methods, Biometrics Bulletin 1;80. 

[20] Wolfgang, W., and Alexander, E. (2013). 
Robustness and power of the parametric t test and 
the nonparametric Wilcoxon test under non-
independence of observations, Psychological Test 

and Assessment Modelling 55. 
[21] Yuen, K.K. (1974). The two-sample trimmed t 

for unequal population variances, Biometrika, 
61;165. 

 
 
 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2025.7.5

Taiwo J. Adejumo, Sunday D. Gbolagade, 
 Opeyemi A. Oshuoru, Sunday O. Koleoso, 

Oluwakayode O. Shadare, Kamoru T. Oyeleke

E-ISSN: 2766-9823 76 Volume 7, 2025

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The authors equally contributed in the present 

research, at all stages from the formulation of the 

problem to the final findings and solution. 

 
   

 

Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 

  
Conflict of Interest
The authors have no conflicts of interest to declare 

that are relevant to the content of this article. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

https://doi.org/10.1007/978-3-030-49339-4%2034
https://doi.org/10.2478/jesr-2019-0044



