
Equations, Computer and Chemical Engineering,
Vol. 16, No. IO/II, 1992, pp. 1007-1009.
[15] Mustapha, K.A., Furati, K.M., Knio, O.M. A
Finite Difference Method for Space Fractional
Differential Equations with Variable Diffusivity
Coefficient. Commun. Appl. Math. Comput. 2, 671–
688 (2020). https://doi.org/10.1007/s42967-020-
00066-6
[16] Raisinghania, M.D., Fluid Dynamics, chapter-
12, p-928-930. India. 2003.
[17] Vreugdenhil, C.D. Numerical Method for
Shallow water equations. Boston: kluwer Academic
publishers, 1994.
[18] Kubatko, E., Development, Implementation and
Verification of hp- Discontinuous Galerkin Models
for shallow Water Hydrodynamics and Transport,
PhD. Dissertation, 2005.
[19] Bessona, O., Kaneb, S. and Syc, M., On a 1D-
Shallow Water Model: Existence of solution and
numerical simulations, International Conference in
Honor of Claude Lobry, 2007.
[20] Bulatov, O. V. Analytical and Numerical
Riemann Solutions of the Saint Venant Equations for
Forward and Backward Facing Step Flows,
Computational Mathematics and Mathematical
Physics, Faculty of Physics, Moscow State
University, Moscow, 10.1134/S0965542514010047,
2013.
[21] Inokuti, M. General use of the Lagrange
multiplier in non-linear mathematical physics, in: S.
Nemat-Nasser (Ed.), Variational Method in the
Mechanics of Solids, Pergamon Press, Oxford, 1978,
pp. 156—162.
[22] Mungkasi, S., & Hari Wiryanto, L. Variational
Iteration Solution to the Gravity Wave-Model
Equations. Journal of Physics: Conference Series,
1007, 2018.
[23] Finlayson, B.A., The Method of Weighted
Residuals and Variational Principles, Academic
Press, New York, 1972.
[24] Nayfeh, A.H., Problems in Perturbation, Wiley,
New York, 1985.
[25] Abdou, M.A. and Soliman, A.A. New
Application of Variational Iteration Method,
Nonlinear Phenomena, 211,
10.1016/j.physd.2005.08.002, 2005, pp.1-8.
[26] Hagedorn, P. Non-linear Oscillations (translated
by Wolfram Stadler), Clarendon Press, Oxford, 1981.
[27] Holmes M.H. Perturbation Methods. In:
Introduction to the Foundations of Applied
Mathematics. Applied Mathematics, Springer, New
York, NY, 2009.
[28] Chow, V. T. Open-channel hydraulics.
McGraw-Hill Book Co., New York, N.Y., 1959.
[29] Deltares, Delft3D-Flow, Simulation of multi-
dimensional hydrodynamic flows and transport
phenomena, including sediments, User Manual,
Version 3.15.34158, May 2014.
[30] Trucano,_T.G., Swiler,L.P., Igusa,T.,
Oberkampf, W.L. and Pilch, M., Calibration,
validation, and sensitivity analysis: What’s what,
Reliability Engineering and System Safety, 91 (2006)
1331–1357.
[31] Lundgren, L. and Mattsson, K. An efficient
finite difference method for the shallow water
equations. Journal of Computational Physics, 422(),
109784, doi:10.1016/j.jcp.2020.109784
[32] Powell, M.D., Vickery, P.J. and Reinhold, T.A.,
Reduced drag coefficient for high wind speeds in
tropical cyclones, Nature, vol. 422, March 20. 2003,
pp.279-283.
[33] Donelan, M.A., Drennan, W.M. and Katsaros,
K.B. The Air–Sea Momentum Flux in Conditions of
Wind Sea and Swell, Journal of Physical
Oceanography, Vol(27), 1996, 10.1175/1520-
0485(1997)027.
[34] Drews, C.W., Using wind set down and storm
surge on Lake Fire to calibrate the air sea drag
coefficient, PLoS One, 8,
101371/Journal.pone.0072510, 2013.
[35] Charnock, H., Wind stress on a Water Surface,
Quart. J. Roy. Meteorol. Soc., 81,1955, 639-640.
[36] Large, W.G. and Pond, S., Open Ocean
Momentum Flux Measurements in Moderate to
Strong Winds, J. Phys. Ocean ogr., 11, 1981, pp.324-
336.
[37] Smith, S.D. and Banke, E.G., Variation of the
sea surface drag coefficient with wind speed. Quart,
J. Roy.Meteorol.Soc., 101, 1975, pp.665-673.
[38] Bender, M.A., Ginis, I., Tuleya, G.R., Thomas,
B. and Marchok, T., The operational GFDL Coupled
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2024.6.6
Marin Akter, Mohammad Abdul Alim,
Md. Manjurul Hussain, Kazi Shamsunnahar Mita,
Anisul Haque, Md. Munsur Rahman, Md. Rayhanur Rahman