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Abstract: The exhaust gas temperature plays a leading role in the thermal efficiency of the automotive 
powertrain system. It also determines the performance of catalytic converters for removing toxic gases. When 
the exhaust temperature is excessively high, it will give rise to extra heat energy loss in the exhaust systems. 
Meanwhile overheating leads to engine component damage, engine knock, fuel pre-ignition and emission after-
treatment system failure. The inherent formation mechanism of exhaust temperature is highly complicated, 
which depends on multiple factors in the combustion process as well as heat and mass transfer. The maximum 
combustion efficiency itself requires the stoichiometric mixture (air to fuel ratio equal to 14.7). Two parameters 
with dominant impact on exhaust gas temperature are engine speed and engine load. Some typical delays occur 
in engine operations as well due to fuel atomization, air and fuel mixing, vaporization, heat transfer, and so on. 
It is essential to operate at the optimal exhaust temperature to maximize the performance to cost ratio and to 
avoid severe damage. Ambiguity and uncertainty are inevitable, which gives rise to high complexity in 
modeling and prediction of the exhaust gas temperature. The goal of this research instead is to design a feasible 
and applicable simple exhaust gas temperature model for potential optimal engine design. The intelligent 
hybrid fuzzy neural network learning is proposed to model the exhaust gas temperature in the powertrain 
system with high nonlinearity, high complexity and high uncertainty. The fuzzy system is introduced to deal 
with the uncertainty and ambiguity through fuzzy sets, covering fuzzification, inference engine and 
defuzzification subsystems. Hybridization is made when artificial neural networks involve in together with the 
fuzzy system. In this case, training, learning, predication and validation of the hybrid fuzzy neural network 
powertrain exhaust gas temperature model can be implemented. This simple model can be accomplished with 
ease, which can also be extended to the exhaust gas temperature model prediction across arbitrary types of 
automotive engines. 
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1 Introduction 
The exhaust gas temperature takes on a crucial role 
in engine overall performance optimization, such as 
the automotive engine combustion efficiency, heat 
energy converting efficiency, exhaust emission 
reduction, catalytic device converting efficiency, 
engine overheating prevention, safety operation of 
sensors and actuators, as well as the stability issue 
of powertrain control systems. It acts as one of the 
key parameters of engine performance management. 
For instance, its impact on the exhaust gas after-
treatment system has been well documented decades 
ago, in which the optimal exhaust gas temperature 
range has been indicated [1]. 

There are numerous factors which will affect the 
exhaust gas temperature, such as engine speed, 
engine load, combustion efficiency, air/fuel ratio, 
operating modes (idling, light load, heavy load), 
intake air temperature, coolant temperature, valve 

timing, heat transfer (in-cylinder, exhaust manifold, 
and tailpipe), and so on. On the other hand, it is 
impractical to construct an accurate and precise 
mathematical model of the exhaust gas temperature, 
which could potentially take all these factors into 
account. Usually exhaust gas temperature modeling 
focuses on certain aspects of physical phenomena, 
such as the combustion mechanisms, heat transfer 
principles or exhaust gas flow dynamics. It gives 
rise to various mathematical models, ranging from 
simple zero-dimensional models, one-dimensional 
models based on computational fluid dynamics, up 
to the complex multi-dimensional models with the 
presence of high computational complexity [2-3]. 
Instead of conventional exhaust gas temperature 
modeling, various artificial intelligence approaches 
have been successfully applied to some other topics 
of automotive engine modeling, control and 
optimization issues (e.g. nonlinear idle speed control 
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systems) as well as many diversified engineering 
practices (e.g. biomedical sample characterization). 
By virtual of artificial intelligence, it is potentially 
feasible to build some accurate prediction models 
for the exhaust gas temperature with the least effort. 

From a comprehensive overview on automotive 
ISC (Idle Speed Control) systems with high 
nonlinearity and complexity, it is concluded that 
nearly all engineering practices of classical control, 
modern control and intelligent control theories can 
be successfully implemented on ISC modeling and 
control, even against severe vehicle NVH (Noise, 
Vibration, and Harshness) conditions and with 
diverse types of delays. Meanwhile these techniques 
can be easily extended to other complex electrical, 
mechanical, aeronautical, automotive, robotic and 
biomedical systems. For example, artificial neural 
networks are proposed to train the engine idle speed 
fuzzy controller. As a result, a hybrid fuzzy-neural 
control system has been set up. Under various types 
of torque disturbances, excellent performance on 
controller actions and system responses has been 
observed. The fuzzy logic and neural networks 
model has been implemented on other automotive 
control systems recently. To decrease levels of 
vehicle exhaust emissions and fuel consumptions, 
optimal gear shifting control schemes are proposed 
and comparisons are made. It is shown that both 
types of intelligent control approaches can work 
properly. It is noticed that the artificial neural 
network model works best on the cases of single 
objective optimization, while the fuzzy logic control 
provides the best overall performance of multi-
objective optimization, by trading off between the 
engine fuel consumption and exhaust gas emission 
reduction [4-6]. 

The research work on modeling and prediction of 
the exhaust gas temperature is relatively limited. 
Temperature modeling based on the Wiebe equation 
has been developed to identify key parameters of the 
zero-dimensional combustion model. It is however 
not suitable for the real time applications. Thus the 
control-oriented temperature model is proposed 
which can still exploit its temperature analytical 
solution. Integration of the control-oriented model 
and dynamic model has been made whose testing 
results are validated under diverse transient state 
conditions. Machine learning has been introduced as 
well to predict the exhaust gas temperature in some 
preliminary studies. The simple linear model of the 
exhaust gas temperature in terms of dominant 
engine speed and engine load with delays has been 
established.  Markov Chain Monte Carlo is applied 
for optimal parameter identification. The posterior 
density of Monte Carlo integration is substituted by 

the stationary probability instead for numerical 
integration on a basis of the discrete-time Markov 
chain. The model prediction outcomes and testing 
data have shown close matches [7-8]. 

In fact the feasibility of artificial intelligence 
based modeling, optimization and control practices 
has been well documented and validated across 
numerous disciplines of science and engineering 
already. It is the common knowledge that fuzzy 
models can well describe imprecise data and vague 
information with uncertainty via mathematical fuzzy 
sets. The linguistic fuzzy modeling focuses more on 
interpretability (e.g. Mamdani model). The precise 
fuzzy modeling focuses more on accuracy (e.g. 
Takagi-Sugeno model). Neural networks instead 
help for engineering problem solving and pattern 
recognition by mimicking the work of biological 
neurons for machine learning and deep learning. 
The fuzzy neural networks incorporate the human 
reasoning interpretation of fuzzy systems via fuzzy 
sets and some specified If-Then fuzzy rules for 
learning and prediction. It is also feasible for fuzzy 
logic to be applied on the intricate stochastic 
optimal control system design [9-11]. 

In some early studies of other engineering topics, 
the fuzzy system has been applied to noise filtering 
for Raman spectrum for the potential to enhance 
remote robotic surgery in real time. As a result, 
fuzzy logic filter is adopted to eliminate the rapidly 
varying unpredictable noises. Both the singleton 
fuzzifiers and Gaussian fuzzifiers are testified to 
enhance the quality of biomedical sample spectrum 
identification. More recently a similar fuzzy neural 
network model has also been applied to differentiate 
Raman spectra of human blood samples between 
healthy people and patients, where the principal 
component analysis is used for dimensionality 
reduction so as to reduce the number of neurons in 
the input layer. The hidden layer serves as the fuzzy 
inference engine by generating fuzzy rules. Then the 
output layer is applied for defuzzification. The 
model prediction results outperform those through 
backpropagation neural networks. It indicates the 
feasibility to apply fuzzy neural network learning on 
spectroscopic diagnosis techniques. Essentially the 
diverse approaches of artificial intelligence can be 
comprehensively implemented together for problem 
solving on biomedical sample characterization via 
Raman spectroscopy, including fuzzy logic, genetic 
algorithms, artificial neural networks and principal 
component analysis. The systematic approach can 
be easily expanded to other challenging engineering 
areas [12-13]. In this research, without loss of 
generality, the hybrid fuzzy neural network model is 
presented for accurate prediction of the exhaust gas 
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temperature of the lean burn spark ignition engine 
under frequent operating mode switching and time 
varying conditions under different scales of air/fuel 
ratios. The convincing temperature model prediction 
outcomes have been reached on a basis of the hybrid 
Fuzzy Neural Network model prediction. 

 
2 Exhaust Gas Temperature Model 
Theoretically the conservation law of energy should 
be typically applied to compute the exhaust gas 
temperature of automotive powertrain systems. A 
set of differential equations is needed to describe the 
physical principles of the in-cylinder combustion 
process as well as the heat and mass transfer 
processes. In fact, engine exhaust gas temperature 
depends on numerous parameters such as engine 
speed, engine load, ambient temperature, coolant 
temperature, and air/fuel ratio. Engine speed is 
measured as the revolution per minute (RPM) of the 
crankshaft while engine load is measured as the 
manifold absolute pressure (MAP). In fact virtually 
it is impossible to build an accurate analytical 
exhaust temperature model applicable to all types of 
automotive engines. Numerical solutions are more 
feasible than the “universal” model instead to 
determine the exhaust temperature profile across 
diverse operating conditions with uncertainty and 
nonlinearity. At the same time, any simple exhaust 
temperature model must be represented by a causal 
system, which only depends on present and past 
engine speed and engine load inputs. When engine 
speed increases, the intake air flow rate increases. 
Extra fuel is injected to combustion chamber, which 
elevates the combustion temperature, so does the 
exhaust gas temperature. Similarly when the intake 
manifold absolute pressure (MAP) increases, the 
intake air to the cylinder becomes dense. Complete 
combustion induces extra heat generation, which 
also increases the exhaust gas temperature. Due to 
numerous latent types of physical delays and 
chemical delays in engine combustion systems and 
heat and mass transfer propagation processes, the 
normalized engine exhaust gas absolute temperature 
(TExh) can be simply modelled as the nonlinear 
function of the normalized engine speed (n) and 
normalized engine load (p) with delays, as shown in 
(1), where T refers to the sampling time of the 
discrete time system and k refers to the index of the 
discrete time. The first order, second order, and 
higher order backward difference terms (∇, ∇2, …) 
should be taken into account for the causal engine 
temperature control systems. 
 

2 2

2 2
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, , [ ], [ 1], [ 2], )

( [ ], [ ] / , [ ] / ,
, , [ ], [ ] / , [ ] / , )
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p k p k p k

g n k n k T n k T

p k p k T p k T

= − −

− −

=  

 

         (1) 

 
3 Fuzzy Takagi-Sugeno (T-S) Model 
To model a powertrain sub-system with uncertainty 
and ambiguity, a Takagi-Sugeno (T-S) fuzzy model 
can be selected to depict complex highly nonlinear 
powertrain systems via a set of linear sub-models. 
T-S fuzzy models can further simplify complex 
systems with fewer rules and higher accuracy than 
other fuzzy models. The time-varying fuzzy 
membership functions are parts of the T-S fuzzy 
model in order to describe both the input data and 
output data qualitatively. In this case, the T-S fuzzy 
model is suitable for characterization of the exhaust 
gas temperature that lacks of the certainty, as shown 
in (2). For matter of simplicity, it can be rewritten as 
(3), which acts as a linear combination of the engine 
parameter set {x1, x2, … , x6} and the corresponding 
fuzzy membership functions {1, 2, … , 6}.  

2
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2
4 5 6

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
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  
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+ +  + 
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

ExhT k x k x k x k

x k x k x k

  

  

 + +

+ + +
 (3) 

The fuzz membership function defines a degree of 
membership of an input variable to a fuzzy set 
between 0 and 1, where “0” refers to non-
membership and “1” refers to full-membership. 
Partially true or false is represented by certain 
degree within 0 and 1. It provides the flexibility to 
manifest the arbitrary condition of vagueness and 
uncertainties, so as to deal with the inaccuracy and 
imprecision. The fuzzy model is accompanied by 
the fuzzy rules expressed as the if-then statements 
showing fuzzy relationship between inputs and 
outputs. The output fuzzy set is a set of membership 
degrees for each output value. The T-S fuzzy model 
actually has the advantage of a small number of 
fuzzy rules. Each fuzzy rule Ri is straightforwardly 
formulated as (4):  

If x1 is S1
i, x2 is S2

i, …, xm is Sm
i;  

Then yi = c0
i + c1

ix1 + … + cm
i xm.  (4) 

where Sj
i is the fuzzy set, cj

i [j=1, 2, …, m] is the 
parameter set, yi [i=1, 2, …, n] acts as the crisp 
output. 3 steps of fuzzification, inference engine and 
defuzzification are implemented to convert crisp 
inputs to fuzzy sets, to formulate control actions, 
and to convert fuzzy sets obtained by the inference 
engine back to the crisp value.  
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The Gaussian fuzzifier has been proposed to define 
the fuzzy membership j

i,  
i 2

j j
i
j

-(x -z )

wi
jμ =e i=1,2, …, n; j=1, 2, …, m  (5) 

where zj
i and wj

i are the center and width of the 
Gaussian fuzzifier; n is the number of fuzzy subsets; 
m is the number of input parameters. Parameter 
initializations of [zj

i, wj
i] are randomly generated 

and then Gaussian fuzzifier is constructed. 
 
For each subset, the fuzzy multiplicative operator is 
applied to compute the fuzzy membership i, where 
i=j

1(x1)*j
2(x2)*…*j

m(xm), i=1,2, …, n   (6) 
The fuzzy output can be calculated via (7), where 
(3) turns out to be its special case on applications of 
exhaust gas temperature prediction. Initialization of 
the parameter set cj

i [j=1, 2, …, m] is also randomly 
generated with constraints.  

i

i i i
0 1 1 m

n i
i=1

i n
i

m

=1

Σ μ [ ]y c + c x + …=
Σ

+ c x
μ

  (7) 

 
3 T-S Fuzzy Neural Network Training 

and Learning 
The fuzzy neural network system is the hybrid 
machine learning model based on combination of 
artificial neural networks and fuzzy logic. In terms 
of the underlying T-S fuzzy model, the fuzzy neural 
networks employ the adaptive data-driven learning 
scheme to train the fuzzy neural network system. It 
is necessary to retain the semantics of the T-S fuzzy 
system via constraints across the entire learning 
procedures. The fuzzy neural networks could be 
formulated as three-layer neural networks. The first 
layer is the input layer covering all input variables. 
The second layer is the hidden layer encompassing 
the fuzzy rules. The third layer is the output layer 
producing the output variables. The adaptive self- 
learning algorithm is applied in the fuzzy neural 
networks to update the parameters and to make 
adjustment on synaptic weights with respect to the 
gradient vector. It consists of error computation, 
weighting vector correction and parameter update. 
The squared error loss function to be minimized is 
computed as (8). 

2
d o e =(y - y ) /2     (8) 

where e is the loss function, yo is the actual output 
from the measurement, yd is the desired output from 
the hybrid fuzzy neural network model. The 
parameters are subject to modification following a 
set of learning rules in (9-10). The back propagation 
scheme has been applied using the typical gradient 
descent method. 

i i
j j i

j

c c
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( ) ( 1) e
K K 


= − −
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  (9) 
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=




             (10) 

where cj
i is the parameter set of the linear fuzzy 

model to be updated, i is the multiplicative fuzzy 
membership, xj is the input fuzzy set, ρ is the 
learning rate of the parameter set cj

i. The parameters 
in fuzzy membership functions are subject to update 
as well, as shown in (11) and (12), where θ is the 
learning rate of [zj

i, wj
i] in the Gaussian fuzzifier. 

i i
j j i

j

z z
z

( ) ( 1) e
K K 


= − −


                    (11) 

i i
j j i

j

w w
w

( ) ( 1) e
K K 


= − −


           (12) 

The higher the learning rate, the faster the learning 
process. The lower the learning rate, the smoother 
and more stable the learning process. A tradeoff is 
potentially needed in general. The total number of 
iterations must also be defined beforehand. Via 
fuzzy neural network training, the network keeps 
adjusting its fuzzy membership functions iteratively 
using a backpropagation learning algorithm, in order 
to reduce the squared error loss function and 
enhance the network accuracy. Via fuzzy neural 
network learning, the goal is to reach the best 
parameter set so as to minimize the loss function 
and optimize the system performance. Eventually 
the resulting best set of parameters for fuzzy neural 
networks will be chosen for exhaust gas temperature 
model testing, predication and validation. 
 
4 Numerical Simulations and Testing 
Based on the simplified exhaust gas temperature 
model via fuzzy neural network training, numerical 
simulations will be conducted in this session. The 
number of neurons (NI) in the input layer is set to 6 
as being discussed in context and the number of 
neurons (NO) in the output layer is equal to 1 
corresponding to single output of the exhaust gas 
temperature. The number of neurons (NH) in the 
hidden layer must be determined ahead to avoid 
over-fitting. An empirical formula should be used to 
determine the range of NH instead. The objective is 
to restrict the number of nonzero free parameters 
within a limited degree of freedom with respect to 
the data set. The degree of freedom of the data is the 
product between the number of samples (NS) and the 
dimension of each sample as shown in (13), where λ 
is the scaling factor between 2 and 10. 

NS = λ∗(NI + NO)* NH                 (13) 
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Now for instance, when the scaling factor λ is 3 and 
the number of samples is 300, then the number of 
neurons in the hidden layer is about 15. Thus the 
hidden layer with 15 neurons will be applied in the 
numerical simulations.  

The normalized engine speed (n), its first order 
backward difference term and its second order 
backward difference term (∇n, ∇2n), as well as the 
normalized engine load (p), its first order backward 
difference term and its second order backward 
difference terms (∇p, ∇2p) are used as the input 
variables to the Gaussian fuzzifier. T-S fuzzy neural 
network model is applied for training and learning. 
The output variable will be the normalized exhaust 
gas temperature (TExh). 300 existing data samples 
will be collected for fuzzy neural network training 
with the parameter sets. Another 300 data samples 
will be applied for fuzzy neural network learning for 
the updated parameter sets to substitute the existing 
parameter sets. The simulation results after the 
fuzzy neural network training are shown in Fig. 1 
and Fig. 2.  
 
In Fig.1, the desired and actual normalized exhaust 
gas temperature (TExh) as well as the estimation 
error are shown. In Fig.2, the corresponding input 
sample data of engine speed and engine load are 
shown. The fuzzy neural network training results at 
this stage are reasonable but not optimal indeed.  

 
Fig. 1 Fuzzy Neural Network Training  

(Output: Normalized Exhaust Temperature) 
 

In Fig. 3, the desired and actual exhaust gas absolute 
temperature (K) as well as the estimation error are 
shown, together with the corresponding engine 
speed and engine load. Via intelligent learning, the 
fuzzy neural network training provides better match 
between desired and actual results of exhaust gas 

absolute temperature. Then the updated parameter 
set will be used as the reference for fuzzy neural 
network based exhaust temperature prediction. After 
minimizing the loss function, it provides the optimal 
solution based on the defined loss function. 

 
Fig. 2 Fuzzy Neural Network Training (Inputs) 

(Top: Engine Speed; Bottom: Engine Load) 

  
Fig. 3 Fuzzy Neural Network Learning 

(Top: Engine Speed; Bottom: Engine Load) 
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Exhaust gas absolute temperature model predition is 
made next using hybrid T-S fuzzy neural network 
models. Additional 400 data sample points of engine 
speed and engine load data sets will be the testing 
inputs to the fuzzy neural networks after training 
and learning with optimal parameter sets obtained 
from fuzzy neural network learning. The prediction 
outcomes of the exhaust gas absolute temperature 
profile are directly compared with the experimental 
results. Best matches have been  observed in Fig. 4, 
whose result is superior to both cases in Fig. 1 and 
Fig. 3. It shows the feasibility of the proposed and 
validated exhaust temperature fuzzy neural network 
modelling, optimization and control approach.   

 
Fig. 4 Fuzzy Neural Network Testing and Prediction 

(Top: Engine Speed; Bottom: Engine Load) 
 
5 Conclusion 
The hybrid fuzzy neural network model has been 
well designed for complex exhaust gas temperature 
model prediction problems. The engine speed and 
engine load are two major parameters in nonlinear 
modeling, while exhaust gas temperature is directly 
dependent on engine speed and manifold absolute 
pressure. Both physical delays and chemical delays 
have been taken into account in the modeling 

process based on combustion systems as well as 
heat and mass transfer systems. Fuzzy logic has 
been applied for modeling the powertrain system 
uncertainty properly. The artificial neural networks 
are then implemented for training, learning and 
optimization. The nonlinear relationship between 
the exhaust gas temperature output and two inputs 
of engine speed and engine load has been well 
established using this approach. Based on numerical 
simulations, the hybrid machine learning model can 
be employed to emulate diverse complex nonlinear 
characteristics of the powertrain system and predict 
the exhaust gas temperature perfectly. 
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