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Abstract: This study applies three advanced techniques based on transforms to find approximate solutions to 

the Lane-Emden type equation, which is often encountered in mathematical physics and astrophysics. The 

proposed methods utilize new trial functions derived from expressing the second-order derivative of the 

variable function 𝑦(𝑥) using Bernoulli polynomials, and applying Laplace, Sumudu, and differential 

transforms. To assess the effectiveness of the proposed methods, the study establishes an error analysis and 

stability analysis, and provides numerical examples demonstrating their accuracy and efficiency. In addition, a 

comparison of the absolute errors is made among the three methods, namely, Laplace Transform Bernoulli 

Collocation Method (LTBCM), Sumudu Transform Bernoulli Collocation Method (STBCM), and Differential 

Transform Bernoulli Collocation Method (DTBCM), and with those obtained from prior literature. The results 

show that all three methods perform very well in terms of efficiency and accuracy, and can be considered as 

suitable techniques for solving the Lane-Emden type equation. 

Key-Words: Fins problem, homotopy perturbation method, Laplace and differential transform methods; 

boundary value problems, polynomial projection 

 

1 Introduction 

 
Many fields of physics and astrophysics, including 

stellar structure, thermodynamics, and fluid 

dynamics, use the Lame-Emden equation, credited 

to the studies of two astrophysicists, Jonathan 

Homer Lane and Robert Emden. These problems 

often appear as a singular initial/boundary valued 

second-order differential equation, which is a 

dimensionless structure of Poisson’s equation for 

the gravitational potential of a self-gravitating 

spherically symmetric, polytropic fluid and the 

thermal behaviour of a spherical bunch of gas 

according to the laws of thermodynamics (see [1]). 

In general, the well-known Lane-Emden equation 

has the form  

𝑦″(𝑥) +
𝛼

𝑥
+ 𝑓(𝑥, 𝑦(𝑥)) = 𝑔(𝑥), 𝑥 ∈ [0,1], 𝛼 > 0,                                           

(1.1)  

with initial conditions 

𝑦(0) = 𝑎 ∈ ℝ,   𝑦′(0) = 0,                                                                                       

(1.2)  

where 𝑓(𝑥, 𝑦) is a nonlinear continuous function in 

the variables 𝑥 and 𝑦, 𝑔(𝑥) ∈ 𝐶[0,1]. Here, the 

prime denotes the usual differentiation operation 

with respect to variable 𝑥, and 𝛼 is a constant. The 

function 𝑓 is assumed to be continuous, and the 

partial derivative of 𝑓 with respect to 𝑥 is assumed 

to exists and be continuous on the entire domain 
[0,1] so that the existence and uniqueness of the 

solution are assured on the given interval. 
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Finding accurate solutions to (1.1)-(1.2) is essential 

for understanding the behaviour of these systems, 

and this has been an attractive research topic among 

mathematicians and physicists in the past decades. 

The exact analytical solutions to most problems in 

mathematical physics, engineering, astrophysics and 

many physical phenomena, which are normally 

modelled by differential equations except for a few, 

are difficult to obtain. Several numerical and 

analytical methods have been proposed and applied 

to solve Lane-Emden equation types (1.1) and (1.2). 

The analytical approaches that have been used in 

solving these equations are based on truncated series 

expansion and, as such, have been found to be 

desirable because they easily overcome the 

difficulty caused by the singularity at  (see [2]). 

These approaches include the Adomian 

decomposition method [3], the differential transform 

method [5], the Laplace transform method [6], the 

homotopy analysis method [8], the variational 

iteration method [9], [10], [11], [12], the power 

series method [13], [14], etc. The collocation 

method is one of several numerical approaches 

developed to solve Lane-Emden equations, aiming 

to overcome the drawbacks and limitations of 

analytical methods.  

The collocation method appears to be the simplest 

way to discretize functional equations. It requires 

that the residual equation be satisfied at the 

collocation points, thus yielding a number of 

collocation equations that are amenable to simple 

methods for solving linear systems. Methods such as 

Bessel collocation [15], Jacobi-Gauss collocation 

method [16], Legendre-Tau method [17], Sinc 

collocation [18], Chebyshev spectral method [19], 

and collocation method based on radial basis 

functions [20] have been used to solve Lane-Emden 

type equations in the literature. A number of other 

methods are also available, such as the successive 

linearization method [21], the optimal homotopy 

asymptotic method [23], the Lagrangian method 

[24], the Laguerre polynomial approach [25], the 

squared remainder minimization method [26], the 

artificial neural network [27], the Bernoulli wavelets 

functional matrix method [28], the Morlet wavelet 

neural network method [29], the gravitational 

decoupling method [30], and more. These methods 

exhibit versatility, enabling their application to a 

wide range of geometries and boundary conditions.  

Recently, Adewumi et al. [31], [32], [33], and [34] 

developed numerical methods based on the Laplace 

transform to solve hyperbolic telegraph equations, 

boundary value problems of ordinary differential 

equations, and problems with semi-infinite domains. 

The main idea of the methods is based on the 

combination of the Laplace transform and 

collocation method with Taylor, Chebyshev and 

Laguerre polynomials as basis functions. Bernoulli 

polynomials defined on the interval are well-known 

to have many applications. Their excellent 

properties in function approximation make them 

widely used. They appear in the integral 

representation of differentiable periodic functions 

since they are employed to approximate such 

functions in polynomials. They are also used to 

represent the remainder term of the composite 

Euler-Maclaurin [35]. 

The objective of this paper is to develop efficient 

numerical techniques for approximating the 

solutions of linear and nonlinear Lane-Emden type 

equations (1.1)–(1.2). To achieve this, we propose 

coupling the collocation method with three integral 

transforms: Laplace, Sumudu, and differential 

transforms. The basis functions for the 

approximation are Bernoulli polynomials. Overall, 

this article aims to demonstrate the potential of 

transform-based collocation methods as a powerful 

computational tool for solving Lame-Emden-type 

problems. 

The paper is structured as follows: Section 2 

provides a brief overview of the fundamental 

properties of Laplace, Sumudu, differential 

transforms, and Bernoulli polynomials. Section 3 

discusses the derivation of the methods, while 

Section 4 presents the error analysis and numerical 

stability of the proposed methods. We demonstrate 

the effectiveness of the proposed techniques through 

illustrative examples in Section 5. Finally, we 

present concluding remarks in Section 6. 
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2 Basic Properties of Bernoulli 

Polynomials with Features of Laplace, 

Sumudu and Differential Transforms 

2.1 Laplace transform 

The Laplace transform is a strong mathematical 

technique that is widely utilized in engineering, 

physics, and other areas of applied mathematics. If 

𝑦(𝑥) is a piecewise continuous function, the 

Laplace transform of 𝑦(𝑥) denoted by ℒ{𝑦(𝑥)} is 

defined as 

𝑌(𝑠) : = ℒ{𝑦(𝑥)} = ∫ 𝑒−𝑠𝑥
∞

0

𝑦(𝑥)d𝑥, 

    (2.1) 

and the inverse Laplace transform which recovers 

the original function, is given by 

𝑦(𝑥) : = ℒ−1{𝑌(𝑠)} =
1

2𝜋𝑖
∫ 𝑒𝑠𝑥

𝛼+𝑖∞

𝛼−𝑖∞

𝑌(𝑠)d𝑠,  𝛼 > 0. 

     (2.2) 

The real number 𝛼 in (2.2) has to be such that all 

singularities of 𝑌(𝑠) lies to the left of the path of 

integration. Furthermore, the Laplace transform of 

𝑛th order derivative is given as 

ℒ{𝑦(𝑛)(𝑥)} = 𝑠𝑛𝑌(𝑠) − 𝑠𝑛−1𝑦(0) − 𝑠𝑛−2𝑦′(0) ⋯ 𝑠𝑦(𝑛−2)(0) − 𝑦(𝑛−1)(0). 

  (2.3) 

For more details on the basic theory and 

applications of Laplace transform, see [36].  

2.2 Sumudu Transform 

The Sumudu transform of a function f(x) is defined 

over a set of functions 

𝐴 = {𝑓(𝑥): ∃𝑀, 𝜏1, 𝜏2 > 0, |𝑓(𝑥)| < 𝑀𝑒

|𝑥|

𝜏𝑗 ,  if 𝑥 ∈

(−1)𝑗 × [0, ∞)}   (2.4) 

by the following formula 

𝐹(𝑢) = 𝒮(𝑓(𝑥); 𝑢) = ∫ 𝑓
∞

0
(𝑢𝑥)𝑒−𝑥d𝑥,  𝑢 ∈

(−𝜏1, 𝜏2).   

For integer order, the Sumudu transform is given as 

𝒮 (
𝑑𝑓(𝑥)

𝑑𝑥
) =

1

𝑢
(𝐹(𝑢) − 𝑓(0)), 

and for the second derivative of the function 𝑓(𝑥), it 
is given by 

 

𝒮(𝑓″(𝑥)) =
𝐹(𝑢)−𝑓(0)

𝑢2 −
𝑓′(0)

𝑢
.    

     (2.8) 

In general, the Sumudu transform of the 𝑚th-order 

derivative of a function f(x) is given by 

𝒮 (
𝑑𝑚𝑓(𝑥)

𝑑𝑥𝑚 ) =
1

𝑢𝑚
(𝐹(𝑢) − ∑ 𝑢𝑘

𝑚−1

𝑘=0

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|𝑥=0). 

We refer interested readers to [37] and the 

references therein for more details on the properties 

and applications of the Sumudu transform, where 

various examples and case studies demonstrate its 

efficacy in solving real-world problems. 

2.3 Differential transform 

The differential transform of the 𝑘-th differential 

function 𝑦(𝑥) at 𝑥 = 0 is of the form 

𝑌(𝑘) =
1

𝑘!
(

𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘 )|𝑥=0,     

    (2.9) 

where 𝑌(𝑘) is the transformed function and 𝑢(𝑥) is 

an auxiliary function related to y(x). The inverse 

differential transform allows one to recover the 

original function from its transformed form and is 

given by 

𝑦(𝑥) = ∑ 𝑌∞
𝑘=0 (𝑘)𝑥𝑘 .     

   (2.10) 

In real applications, function 𝑦(𝑥) is often 

expressed as a finite series and (2.10) can be written 

as 

𝑦(𝑥) = ∑ 𝑌𝑁
𝑘=0 (𝑘)𝑥𝑘 .     

    (2.11) 

 From (2.9)- (2.11), we deduce the following 

properties of the differential transform which enable 

efficient manipulation and analysis of transformed 

functions. These properties include linearity, 
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compatibility with derivatives, and the ability to 

handle products and powers of functions: 

1. If 𝑦(𝑥) = 𝑔(𝑥) ± ℎ(𝑥), then 𝑌(𝑘) =
𝐺(𝑘) ± 𝐻(𝑘). 

2. If 𝑦(𝑥) = 𝑐𝑔(𝑥), then 𝑌(𝑘) = 𝑐𝐺(𝑘), 

where 𝑐 is a constant. 

3. If 𝑦(𝑥) =
𝑑𝑛(𝑥)

𝑑𝑥𝑛 , then 𝑌(𝑘) =
(𝑘+𝑛)!

𝑘!
𝐺(𝑘 +

𝑛). 

4. If 𝑦(𝑥) = 𝑔(𝑥)ℎ(𝑥), then 𝑌(𝑘) =
∑ 𝐺𝑘

𝑘1=0 (𝑘1)𝐻(𝑘 − 𝑘1). 

5. If 𝑦(𝑥) = 𝑥𝑛, then 𝑌(𝑘) = 𝛿(𝑘 − 𝑛), where 

𝛿(𝑘 − 𝑛) = {
1,      𝑘 = 𝑛,
0,      𝑘 ≠ 𝑛.

 

6. If 𝑦(𝑥) = 𝑥𝑚𝑓(𝑥) with 𝑚 ∈ 𝑁, then 

𝑌(𝑘) = {
0,      𝑘 = 𝑛,
𝐹(𝑘 − 𝑚),      𝑘 ≥ 𝑚.

 

 

2.4 Bernoulli Polynomials 

Bernoulli polynomials are a family of orthogonal 

polynomials that play a fundamental role in number 

theory, combinatorics, and mathematical analysis. 

The classical Bernoulli polynomials, 𝐵𝑛(𝑥), are 

usually defined using the exponential generating 

function (see [38]): 

𝜔𝑒𝑥𝜔

𝑒𝑤−1
= ∑ 𝐵𝑘

∞

𝑘=0

(𝑥)
𝜔𝑘

𝑘!
,  (|𝜔| < 2𝜋). 

This generating function provides a compact 

representation of Bernoulli polynomials and enables 

the derivation of various properties and identities 

associated with them. The primary property of the 

Bernoulli polynomials is given by the following 

familiar expansion: 

∑ (
𝑛 + 1

𝑘
)

𝑛

𝑘=0

𝐵𝑘(𝑥) = (𝑛 + 1)𝑥𝑛. 

The first few Bernoulli polynomials are 

𝐵0(𝑥) = 1,  𝐵1(𝑥) = 𝑥 −
1

2
,  𝐵2(𝑥)

= 𝑥2 − 𝑥 +
1

6
, 

𝐵3(𝑥) = 𝑥3 −
3

2
𝑥2 +

1

2
𝑥,  𝐵4(𝑥)

= 𝑥4 − 2𝑥3 + 𝑥2 −
1

30
 

and so on. Other interesting properties of Bernoulli 

polynomials include [39] 

1. Differentiation: 𝐵′𝑛(𝑥) =
𝑛𝐵𝑛−1(𝑥),   𝑛 = 1,2, ⋯. 

2. Integral means conditions: ∫ 𝐵𝑛
1

0
(𝑥)𝑑𝑥 =

0,   𝑛 = 1,2, ⋯. 

3. Differences: 𝐵𝑛(𝑥 + 1) − 𝑛𝐵𝑛(𝑥) =
𝑛𝑥𝑛−1,   𝑛 = 1,2, ⋯. 

4. A series representation in terms of 

monomials: ∑ (𝑛
𝑘

)𝑛
𝑘=0 𝐵𝑘(0)𝑥𝑛−𝑘. 

For more details on the properties of Bernoulli 

polynomials, readers are referred to [40] and the 

extensive literature available on this topic. 

 

3. Description of the Methods 

3.1 Laplace Transform Bernoulli Collocation 

Method 

The second derivative, 𝑦″(𝑥) in (1.1) is sought in 

the truncated Bernoulli series form 

𝑦″(𝑥) = ∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥),    

     

 (3.1) 

where 𝑎𝑛, 𝑛 = 0,1, ⋯, 𝑁 are the unknown Bernoulli 

coefficients, 𝑁 is chosen a positive integer, and 

𝐵𝑛(𝑥), 𝑛 = 0,1,⋯, 𝑁 are the Bernoulli polynomials. 

Applying Laplace transform to both sides of (3.1), 

we have 

𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0) = ℒ (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥)) . 

     

 (3.2) 

Using the initial conditions (1.2) in (3.2) and 

simplifying gives 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.11 A. O. Adewumi, S. O. Akindeinde, R. S. Lebelo

E-ISSN: 2766-9823 122 Volume 6, 2024



𝑌(𝑠) =
1

𝑠2 (𝑎𝑠 + ℒ (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥))) .  

     (3.3) 

Taking the inverse Laplace transform of (3.3) yields 

𝑦(𝑥) = ℒ−1 [
1

𝑠2 (𝑎𝑠 + ℒ (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥)))] . 

     

 (3.4) 

Now, substituting (3.1) and (3.4) into (1.1), we 

obtain 

∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥) +

𝛼

𝑥
+ 𝑓 (𝑥, ℒ−1 [

1

𝑠2 (𝑎𝑠 + ℒ (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥)))]) = 𝑔(𝑥).

   (3.5) 

The residual function 𝑅(𝑥) corresponding to (3.5) is 

then collocated at the points 𝑥𝑖 to give 

𝑅𝑁(𝑥𝑖) = ∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥𝑖) +

𝛼

𝑥𝑖
+ 𝑓(𝑥𝑖, ℒ−1[

1

𝑠2 (𝑎𝑠 + ℒ(∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥𝑖)))]) − 𝑔(𝑥𝑖),

 (3.6) 

where 

𝑥𝑖 = 𝑎 +
(𝑏−𝑎)

𝑁+2
𝑖,   𝑖 = 1,2, ⋯ 𝑁 + 1.   

     (3.7) 

Equation (3.6) generates 𝑁 + 1 system of algebraic 

equations in 𝑁 + 1 unknowns. The unknown 

coefficients are computed using the Gaussian 

elimination method for the linear case, while 

Newton’s method is used for nonlinear cases. The 

required approximate solution is then obtained by 

substituting the values of unknown constants into 

(3.4). 

3.2 Sumudu Transform Bernoulli 

Collocation Method 

Here, we also approximate the second derivative of 

the function 𝑦(𝑥) by a truncated Bernoulli 

polynomial series as in (3.1) and then apply Sumudu 

transform on both sides of the equation to give 

1

𝑢2
[𝐹(𝑢) − 𝑓(0) − 𝑢𝑓′(0)] = 𝒮 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥)) .

     

 (3.8) 

Again, using the initial conditions (1.2) in (3.8) and 

simplifying, the resulting equation yields 

𝐹(𝑢) = 𝑎 + 𝑢2𝒮 (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥)) .  

     

 (3.9) 

Thus, the inverse Sumudu transform is then taking 

on (3.9) to give 

𝑦(𝑥) = 𝒮−1 (𝑎 + 𝑢2𝒮 (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥))) . 

     

 (3.10) 

Substituting (3.1) and (3.10) into (1.1), we obtain 

∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥) + 𝛼

𝑥
+ 𝑓 (𝑥, 𝒮−1 [𝑎 + 𝑢2𝒮 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥))]) = 𝑔(𝑥).

   (3.11) 

Again, collocating the residual function 𝑅(𝑥) of 

(3.11) at the points 𝑥𝑖 gives 

𝑅𝑁(𝑥𝑖) = ∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥𝑖) + 𝛼

𝑥𝑖
+ 𝑓 (𝑥𝑖, 𝒮−1 [𝑎 + 𝑢2𝒮 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥𝑖))]) − 𝑔(𝑥𝑖),

 
 (3.12) 

where 𝑥𝑖 is as defined in (3.7). Apparently, (3.12) 

constitutes 𝑁 + 1 system of algebraic equations in 

𝑁 + 1 unknowns which can be solved depending on 

whether the system of equations is linear or 

nonlinear. We obtain the approximate solution by 

substituting the values of unknown coefficients into 

(3.10). 

3.3 Differential Transform Bernoulli 

Collocation Method 

As before, the second derivative, 𝑦″(𝑥), in (1.1) is 

sought in the truncated Bernoulli series form (3.1). 

The differential transform is applied on the equation 

to obtain 

(𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) = 𝒟𝒯 (∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥)) .

     

 (3.13) 

By rearranging (3.13), we have 

𝑌(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
[𝒟𝒯 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥))] . 

     (3.14) 

Thus, the new trial function takes the form 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.11 A. O. Adewumi, S. O. Akindeinde, R. S. Lebelo

E-ISSN: 2766-9823 123 Volume 6, 2024



𝑦(𝑥) = 𝑌(0) + 𝑌(1)𝑥 +

∑ (
1

(𝑘+1)(𝑘+2)
[𝒟𝒯 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥))] 𝑥𝑘+2)𝑁

𝑘=0 .  

  (3.15) 

Then substitute (3.1) and (3.15) into (1.1), we have 

∑ 𝑎𝑛
𝑁
𝑛=0 𝐵𝑛(𝑥) +

𝛼

𝑥
+ 𝑓 (𝑥, 𝑎 + ∑ (

1

(𝑘+1)(𝑘+2)
[𝒟𝒯 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥))] 𝑥𝑘+2)𝑁

𝑘=0 )

= 𝑔(𝑥),

  (3.16) 

where 𝑌(0) = 𝑎 and 𝑌(1) = 0 from initial 

conditions (1.2). 

The residual function 𝑅(𝑥) of (3.16) is also 

collocated at the points 𝑥𝑖 to give 

𝑅𝑁(𝑥𝑖) = ∑ 𝑎𝑛

𝑁

𝑛=0

𝐵𝑛(𝑥𝑖) + 𝑓 (𝑥𝑖, 𝑎 + ∑ (
1

(𝑘 + 1)(𝑘 + 2)
[𝒟𝒯 (∑ 𝑎𝑛

𝑁

𝑛=0

𝐵𝑛(𝑥𝑖))] 𝑥𝑖
𝑘+2)

𝑁

𝑘=0

)

+
𝛼

𝑥𝑖
− 𝑔(𝑥𝑖),

(3.17)

 

where 𝑥𝑖 is as defined in (3.7). Equation (3.17) 

produces 𝑁 + 1 system of equations in 𝑁 + 1 

unknowns which can be solved by Gaussian 

elimination or Newton’s method for linear and 

nonlinear cases, respectively. The required 

approximate solution is then obtained by 

substituting the values of unknown constants into 

(3.15). 

Remark 3.1.  To the best of author’s knowledge, 

the combination of differential and Sumudu 

transforms with collocation method for the 

numerical solutions of Lane-Emden type equation 

(1.1)-(1.2) has not been reported in the published 

literature. 

 

4 Error Analysis and Accuracy of the 

Solution 

Following [41], we illustrate the convergence of the 

methods by assuming that the unknown and the 

known solutions are in the space of 𝐶𝑚[0,1] with 

bounded derivatives. Thus, we state the following 

theorems: 

Theorem 4.1.  ([42]) Suppose that 𝑔(𝑥) ∈ 𝐶𝑚[0,1] 

and is approximated by Bernoulli polynomials. 
Assume that 𝑃𝑁[𝑔](𝑥) is the approximate 

polynomial of 𝑔(𝑥) in terms of Bernoulli 

polynomials and 𝑅𝑁[𝑔](𝑥) is the remainder term. 

Then, the associated formulae are stated as follows: 

 

 

 

 

 

 

 

 

𝑔(𝑥) = 𝑃𝑁[𝑔](𝑥) + 𝑅𝑁[𝑔](𝑥),   𝑥 ∈ [0,1],

𝑃𝑁[𝑔](𝑥) = ∫ 𝑔
1

0

(𝑥)d𝑥 + ∑
𝐵𝑗(𝑥)

𝑗!

𝑁

𝑗=1

(𝑔(𝑗−1)(1) − 𝑔(𝑗−1)(0)) ,

𝑅𝑁[𝑔](𝑥) = −
1

𝑁!
∫ 𝐵𝑁

∗
1

0

(𝑥 − 𝑡)𝑔(𝑁)(𝑡)d𝑡,

 

where 𝐵𝑁
∗ (𝑥) = 𝐵𝑁(𝑥 − [𝑥]) and [𝑥] denotes the 

largest integer not greater than 𝑥. 

Lemma 4.2.  ([42],[43]) Suppose 𝑔(𝑥) ∈ 𝐶∞[0,1] 

(with bounded derivatives) and 𝑔𝑁(𝑥) is 

approximated using Bernoulli polynomials. Then the 

error bound would be obtained as follows: 

 ||𝐸(𝑔𝑁(𝑥))||∞ ≤ 𝐶𝐺(2𝜋)−𝑁,   𝑥 ∈ [0,1],  

    (4.1) 

where 𝐺 denotes a bound for all the derivatives of 

function 𝑔(𝑥) (i.e., ||𝑔𝑖(𝑥)||∞ ≤ 𝐺, for 𝑖 = 0,1, ⋯), 

and 𝐶 is a positive constant. 

Furthermore, we state the following main theorem 

and show that if both 𝑦(𝑥) and 𝑔(𝑥) are 

approximated by the Bernoulli polynomials in (1.1), 

then the error of the approximation of 𝑦(𝑥) depends 

directly on the approximation of 𝑔(𝑥). Thus, using a 

large value of 𝑁 will produce high-order 

approximation of the required solutions. 
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Theorem 4.3.  Assume that 𝐹(𝑥, 𝑦(𝑥)) =

𝑥−𝛼 ∫ 𝑡𝛼𝑥

0
𝑓(𝑡, 𝑦(𝑡))d𝑡 and 𝐺(𝑥) = 𝑎 + 𝐿𝛼(𝑔(𝑥)), 

where 𝐿𝛼(⋅) = ∫ 𝑥−𝛼𝑥

0 ∫ 𝑡𝛼𝑥

0
(⋅)d𝑡d𝑥 is a linear 

integral operator. If we approximate 𝑦(𝑥) and 𝐺(𝑥) 

by 𝑦𝑁(𝑥) and 𝐺𝑁(𝑥), respectively, using Bernoulli 

polynomials, then 

 ||𝑦(𝑥) − 𝑦𝑁(𝑥)||∞ ≤
1

1−𝐿𝐹
||𝐺(𝑥) − 𝐺𝑁(𝑥)||∞,  

     (4.2) 

where 𝐿𝐹 is the Lipschitz constant of the function 

𝐹(𝑥, 𝑦(𝑥)) with respect to its second variable 𝑦(𝑥) 

and also 𝐿𝐹 ≪ 1. 

Proof. For the proof of this theorem, see [41].  

 

5 Numerical Stability of the Methods 

The stability of any numerical approach is related to 

the errors incurred at every stage of computation. 

Therefore, if errors introduced at some stage in the 

calculations, such as from erroneous initial 

conditions or local truncation or round-off errors, 

propagate without bound throughout subsequent 

calculations, the solution becomes unstable. Thus, a 

method is stable if small changes in the initial data 

produce correspondingly small changes in the final 

results. That is, the difference between the 

theoretical and numerical solutions remains 

bounded at a given time t, as time and space steps 

tend to zero or the time step remains fixed at every 

level and 𝑡 → ∞. 

To demonstrate the numerical stability of the 

transform-based collocation methods, we introduce 

some random noises to the initial data. We present 

the plots of the approximate solutions with and 

without noise. Following [44], a random noise is 

added to the initial data 𝑦(0) and 𝑦′(0) in (1.2). The 

noise functions 𝑦𝛿(0) and 𝑦′𝛿(0) are obtained by 

adding 𝛿, the random noise, to 𝑦(0) and 𝑦′(0) 

respectively such that 

𝑦𝛿(0) = 𝑦(0) + 𝛿     

     

 (5.1) 

and 

𝑦′𝛿(0) = 𝑦′(0) + 𝛿,     

     

 (5.2) 

where the quantity, 𝛿, is usually very small (of some 

𝑝% of the maximum absolute errors) and may be 

considered bounded. Thus, the corresponding 

residual functions for LTBCM, STBCM and 

DTBCM with noise, 𝛿, for the Lane-Emden 

equation (1.1) with initial conditions (1.2) are given 

by 

𝑅𝑁
𝛿 (𝑥𝑖) = ∑ 𝑎𝑛

𝑁

𝑛=0

𝐵𝑛(𝑥𝑖) +
𝛼

𝑥𝑖

+𝑓 (𝑥𝑖 , ℒ−1 [
1

𝑠2 ((𝑎 + 𝛿)𝑠 + 𝛿 + ℒ (∑ 𝑎𝑛

𝑁

𝑛=0

𝐵𝑛(𝑥𝑖)))])

−𝑔(𝑥𝑖),

 

   (5.3) 

𝑅𝑁
𝛿 (𝑥𝑖) = ∑ 𝑎𝑛

𝑁

𝑛=0

𝐵𝑛(𝑥𝑖) +
𝛼

𝑥𝑖

+𝑓 (𝑥𝑖, 𝒮−1 [(𝑎 + 𝛿) + 𝛿𝑢 + 𝑢2𝒮 (∑ 𝑎𝑛

𝑁

𝑛=0

𝐵𝑛(𝑥𝑖))])

−𝑔(𝑥𝑖),

 

   (5.4) 

and 

𝑅𝑁
𝛿 (𝑥𝑖) = ∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥𝑖) +

𝛼

𝑥𝑖
+ 𝑓(𝑥𝑖, (𝑎 + 𝛿) + 𝛿𝑥 +

∑ (
1

(𝑘+1)(𝑘+2)
[𝒟𝒯 (∑ 𝑎𝑛

𝑁
𝑛=0 𝐵𝑛(𝑥𝑖))] 𝑥𝑖

𝑘+2)𝑁
𝑘=0 )

−𝑔(𝑥𝑖).

    (5.5) 

respectively. 

 

6 Numerical Examples  

In this section, we consider some examples for 

numerical illustrations of the methods and compare 

the absolute errors obtained with other methods in 

the literature. To establish the stability of the 

methods, we present the plots of approximate 

solutions with and without noise terms in the initial 
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data. The noises 𝛿𝑖 , (𝑖 = 1,2,3) are taken to be 

10−2, 10−3, and 10−4 respectively. 

Example 6.1.  We first consider the equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + 1 = 0,    

     

 (6.1) 

with initial conditions 

𝑦(0) = 1,   𝑦′(0) = 0.    

     

 (6.2) 

The exact solution is 𝑦(𝑥) = 1 −
1

6
𝑥2 [41]. 

Method 1: Applying LTBCM developed in 

Section 3 for 𝑁 = 0, we have 

𝑦″(𝑥) = 𝑎0𝐵0(𝑥).     

     

 (6.3) 

Taking the Laplace transform of both sides of (6.3), 

we have 

𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0) = ℒ(𝑎0𝐵0(𝑥)).  

     

 (6.4) 

Using the initial conditions (6.2) in (6.4) and then 

rearrange to get 

𝑌(𝑠) =
1

𝑠
+

1

𝑠3 𝑎0.    

     

 (6.5) 

On taking the inverse Laplace transform of (6.5), we 

have 

𝑦(𝑥) = 1 +
1

2
𝑎0𝑥2.     

     

 (6.6) 

The residual function is obtained and collocated at 

the point 𝑥 =
1

2
 to yield 

3𝑎0 + 1 = 0.      

     

 (6.7) 

or 𝑎0 = −
1

3
. Substituting this value into (6.6) yields 

𝑦(𝑥) = 1 −
1

6
𝑥2,     

     

 (6.8) 

which is the same as the exact solution. 

Method 2: Similarly, we approximate the second 

derivative 𝑦″(𝑥) as in (6.3) and on taking the 

Sumudu transform on both sides of the equation, we 

have 

1

𝑢2
[𝑌(𝑢) − 𝑦(0) − 𝑢𝑦′(0)] = 𝒮(𝑎0𝐵0(𝑥)). 

Substituting the initial conditions (6.2) into (6.9) 

and simplifying, we have 

𝑌(𝑢) = 1 + 𝑢2𝑎0.    

     

 (6.10) 

Then taking the inverse Sumudu transform of 

(6.10), we obtain 

𝑦(𝑥) = 1 +
1

2
𝑎0𝑥2.     

     

 (6.11) 

On substituting (6.11) into (6.1), we obtain a 

residual function which is also collocated at the 

point 𝑥 =
1

2
 to give 3𝑎0 + 1 = 0 whose solution is 

trivially 𝑎0 = −
1

3
. Plugging this into (6.11) to yield 

𝑦(𝑥) = 1 −
1

6
𝑥2, that is, the exact solution. 

 
Method 3: Here, we also approximate the second 

derivative 𝑦″(𝑥) as in (6.3) and on taking the 

differential transform on both sides of the equation, 

we have 

(𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) = 𝒟𝒯(𝑎0𝐵0(𝑥)). 

     

 (6.12) 

Rearranging (6.12) and substituting the resulting 

equation into (3.15) yields 
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𝑦(𝑥) = 𝑌(0) + 𝑌(1)𝑥 +
1

2
𝑎0𝑥2.   

     

 (6.13) 

Applying the initial conditions given by (6.2), we 

have 

𝑦(𝑥) = 1 +
1

2
𝑎0𝑥2.     

     

 (6.14) 

Thus, the following equation is obtained after 

collocating the residual function of (6.1) at the point 

𝑥 =
1

2
 to get 𝑎0 = −

1

3
 and this is substituted into 

(6.14) to yield 𝑦(𝑥) = 1 −
1

6
𝑥2, which is the exact 

solution. 

 

Figure 1: Comparison of solution of Example 6.1 

by the proposed methods and the exact solution 

 

 

Figure 2: Behaviour of the solutions of Example 

6.1 by our proposed methods with and without noise 

Figures 1 and 2 show the plots of the behaviours of 

the solutions with and without noise terms in the 

initial data using LTBCM, STBCM and DTBCM 

for case 𝑁 = 0.  From the two figures, it is observed 

that the variations in the solutions with noise and 

without noise are negligible, and hence, the methods 

are numerically stable. 

Example 6.2.  We also consider the equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦(𝑥) = 0,    

     

 (6.15) 

with initial conditions 

𝑦(0) = 1,   𝑦′(0) = 0.    

     

 (6.16) 

The exact solution is 𝑦(𝑥) =
sin(𝑥)

𝑥
 . 

The errors listed in Table 1 are obtained by applying 

the three methods to solve this problem when 𝑁 =
10. Figure 3 depicts the plot of the exact solution 

and the approximate solutions obtained by LTBCM, 

STBCM and DTBCM, while Figure 4 shows the 

behaviour of approximate solutions without and 

with noises, 𝛿 = 10−1, 10−2, 10−3 when 𝑁 = 8. It 
shows that the methods are numerically stable since 

the variations in the approximate solutions are 

insignificant. 

Table 1: Comparison of absolute errors for 

Example 6.2 when 𝑁 = 10 

𝑥  Exact solution 

LTB

CM 

STBC

M 

DTBC

M 

0.

1 
0.99833416646828152307 1.350𝑒 −

17  

1.350𝑒 −
17  

1.350𝑒
− 17 

0.

2 
0.99334665397530607730 1.571𝑒

− 17 

1.571𝑒
− 17 

1.571𝑒
− 17 

0.

3 
0.98506735553779858369 1.644𝑒

− 17 

1.644𝑒
− 17 

1.644𝑒
− 17 

0.

4 
0.97354585577162622918 1.663𝑒

− 17 

1.663𝑒
− 17 

1.663𝑒
− 17 

0.

5 
0.95885107720840600054 1.644𝑒

− 17 

1.644𝑒
− 17 

1.644𝑒
− 17 
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𝑥  Exact solution 

LTB

CM 

STBC

M 

DTBC

M 

0.
6 

0.94107078899172559535 1.627𝑒
− 17 

1.627𝑒
− 17 

1.627𝑒
− 17 

0.
7 

0.92031098176813007665 1.613𝑒
− 17 

1.613𝑒
− 17 

1.613𝑒
− 17 

0.
8 

0.89669511362440345204 1.564𝑒
− 17 

1.564𝑒
− 17 

1.564𝑒 −
17  

0.
9 

0.87036323291942598717 1.555𝑒
− 17 

1.555𝑒
− 17 

1.555𝑒
− 17 

1.
0 

0.84147098480789650665 5.000
e-20 

5.000𝑒
− 20 

5.000𝑒
− 20 

 

Figure 3: Comparison of solution of Example 6.2 

by the proposed methods and the exact solution 

 

Figure 4: Behaviour of the solutions of Example 

6.2 by our proposed methods with and without 

noise. 

Example 6.3  We consider a case where 𝑓(𝑥, 𝑦) =

𝑒𝑦(𝑥), 𝑔(𝑥) = 0 which gives the isothermal gas 

sphere equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑒𝑦(𝑥) = 0,    

     

 (6.17) 

with initial conditions 

𝑦(0) = 0,   𝑦′(0) = 0.    

     

 (6.18) 

The nonlinear function, 𝑓(𝑥, 𝑦) = 𝑒𝑦(𝑥), is 

approximated by using five terms of its Maclaurin 

expansion, that is, 𝑓(𝑥, 𝑦) = 𝑒𝑦(𝑥) ≈ 1 + 𝑦 +
𝑦2/2 + 𝑦3/6 + 𝑦4/24. The methods are applied to 

solve this problem when 𝑁 = 8 and 𝑁 = 10. Table 

2 shows the comparison of the absolute errors with 

other methods in the literature. From the table, it is 

observed that the errors are in good agreement with 

[41] but more accurate than those obtained in [47]. 

Also Figures 5 and 6 show the comparison of 

approximate solutions using the methods and the 

behaviour of approximate solutions without and 

with noises, respectively. Since the variations in the 

approximate solutions are negligible, it can 

therefore be concluded that the methods are 

numerically stable. 

Table 2: Comparison of absolute errors for 

Example 6.3 when 𝑁 = 10 

𝑥 

Exact 

solution 

LTB

CM 

STB

CM 

DTB

CM 

Err

or 

in 

[41

] 

Err

or 

in 

[47

] 

0.

0 
0.00000000000 0.00𝑒

+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

3.01𝑒
− 31 

9.24𝑒
− 18 

0.

1 
−0.0016658338 6.21𝑒

− 11 

6.21𝑒
− 11 

6.21𝑒
− 11 

6.21𝑒
− 11 

5.28𝑒
− 10 

0.

2 
−0.0066533671 9.22𝑒

− 13 

9.22𝑒
− 13 

9.22𝑒
− 13 

9.22𝑒
− 13 

3.37𝑒
− 08 

0.
5 

−0.0411539567 5.95𝑒
− 10 

5.95𝑒
− 10 

5.95𝑒
− 10 

5.95𝑒
− 10 

8.12𝑒
− 06 
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𝑥 

Exact 

solution 

LTB

CM 

STB

CM 

DTB

CM 

Err

or 

in 

[41

] 

Err

or 

in 

[47

] 

1.
0 

−0.1588272857 3.97𝑒
− 07 

3.97𝑒
− 07 

3.97𝑒
− 07 

3.97𝑒
− 07 

4.93𝑒
− 04 

 

Figure 5: Comparison of solution of Example 6.3 

by the proposed methods and the exact solution 

 

Figure 6: Behaviour of the solutions of Example 6.3 

by our proposed methods with and without noise 

Example 6. 4.  We also consider case 𝑓(𝑥, 𝑦) =

sin(𝑦), 𝑔(𝑥) = 0 and this gives the equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + sin(𝑦) = 0,   

     

 (6.19) 

with initial conditions 

𝑦(0) = 1,   𝑦′(0) = 0.    

     

 (6.20) 

In a similar manner, we apply the three methods to 

solve this problem where the nonlinear function, 

𝑓(𝑥, 𝑦) = sin(𝑦) is approximated by using three 

terms of its Maclaurin expansion series, that is, 

𝑓(𝑥, 𝑦) = sin(𝑦) ≈ 𝑦 − 𝑦3/6 + 𝑦5/120. The 

point-wise absolute errors of the methods for case 

𝑁 = 10 together with the absolute errors of [41] and 

[45] are presented in Table 3. It is observed that the 

errors are in good agreement with [41] but superior 

to those obtained in [45]. Figures 7 and 8 depict the 

plots of numerical results of Lane-Emden equation 

for 𝑁 = 8 and behaviour of the solution with and 

without noise terms in the initial data, respectively. 

In Figure 8 it is observed that the variations in the 

approximate solutions are very negligible and hence 

the methods are numerically stable. 

Table 3: Comparison of absolute errors for 

Example 6.4 when 𝑁 = 10 

𝑥 

Exact 

solution 

LTB

CM 

STB

CM 

DTB

CM 

Err

or 

in 

[41

] 

Err

or 

in 

[45

] 

0.

0 
1.0000000000 0.00𝑒

+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

1.11𝑒
− 16 

0.00𝑒
+ 00 

0.

1 
0.9985979273 3.25𝑒

− 07 

3.25𝑒
− 07 

3.25𝑒
− 07 

3.25𝑒
− 07 

7.21𝑒
− 06 

0.

2 
0.9943962648 1.28𝑒

− 06 

1.28𝑒
− 06 

1.28𝑒
− 06 

1.28𝑒
− 06 

1.00𝑒
− 05 

0.

5 
0.9651777797 7.53𝑒

− 06 

7.53𝑒
− 06 

7.53𝑒
− 06 

7.53𝑒
− 06 

1.04𝑒
− 05 

1.

0 
0.8636807315 2.35𝑒

− 05 

2.35𝑒
− 05 

2.35𝑒
− 05 

2.35𝑒
− 05 

7.03𝑒
− 06 
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Figure 7: Comparison of solution of Example 6.4 

by the proposed methods and the exact solution 

 

Figure 8: Behaviour of the solutions of Example 6.4 

by our proposed methods with and without noise 

Example 6. 5.  We also consider case 𝑓(𝑥, 𝑦) =

𝑦3(𝑥), 𝑔(𝑥) = 0 and this gives the equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦3(𝑥) = 0,   

     

 (6.21) 

with initial conditions 

𝑦(0) = 1,   𝑦′(0) = 0.    

     

 (6.22) 

In [46], the exact solution of this problem is 

reported. We apply the methods in Section 3 to 

solve this problem. In Table 4, an interesting 

comparison is made with the errors of [41] and [48]. 

For small value of Bernoulli polynomials, that is, 

𝑁 = 10, we obtain absolute errors which are in 

good agreement with those in [48] where the authors 

had used 𝑁 = 25 . This is an indication that our 

methods are superior to that of [48]. Also Figure 9 

shows the plot of approximate solutions and Figure 

10 depicts the behaviour of solutions with and 

without noise terms in the initial data. It is then 

observed that the variations in the approximate 

solutions are very negligible which means that the 

methods are numerically stable. 

Table 4: Comparison of absolute errors for 
Example 6.5 when 𝑁 = 10 

𝑥 

Exact 

solution 

LTB

CM 

STB

CM 

DTB

CM 

Err

or 

in 

[41

] 

Err

or 

in 

[48

] 

N=

25 

0.

0 
1.0000000000 0.00𝑒

+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.

1 
0.9983358000 2.95𝑒

− 08 

2.95𝑒
− 08 

2.95𝑒
− 08 

2.95𝑒
− 08 

2.95𝑒
− 08 

0.

5 
0.9598391000 3.00𝑒

− 08 

3.00𝑒
− 08 

3.00𝑒
− 08 

3.00𝑒
− 08 

3.00𝑒
− 08 

1.

0 
0.8550576000 3.14𝑒

− 08 

3.14𝑒
− 08 

3.14𝑒
− 08 

3.14𝑒
− 08 

3.14𝑒
− 08 
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Figure 9: Comparison of solution of Example 6.5 

by the proposed methods and the exact solution 

 

Figure 10: Behaviour of the solutions of Example 

6.5 by our proposed methods with and without noise 

Example 6.6.  We consider case 𝑓(𝑥, 𝑦) = 𝑦4(𝑥), 

𝑔(𝑥) = 0 which gives the equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦4(𝑥) = 0,    

     (6.23) 

with initial conditions 

𝑦(0) = 1,   𝑦′(0) = 0.    

     

 (6.24) 

The exact solution of this problem is also reported 

in [46]. The point-wise errors are presented in Table 

5 when 𝑁 = 10 and we compare the errors obtained 

using the three methods with those of [41] and [48]. 

Figures 11 and 12 show the approximate solutions 

obtained by the methods and the behaviour of the 

solutions with and without noise terms in the initial 

data, respectively for case 𝑁 = 8. From Figure 12 it 

is observed that the variations in approximate 

solutions are very negligible and hence, the methods 

are numerically stable. 

Table 5: Comparison of absolute errors for 

Example 6.6 when 𝑁 = 10 

𝑥 

Exact 

solution 

LTB

CM 

STB

CM 

DTB

CM 

Err

or 

in 

[41

] 

Err

or 

in 

[48

] 

N=

25 

0.

0 
1.0000000000 0.00𝑒

+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.

1 
0.9983367000 4.05𝑒

− 08 

4.05𝑒
− 08 

4.05𝑒
− 08 

4.05𝑒
− 08 

4.04𝑒
− 08 

0.

2 
0.9933862000 1.35𝑒

− 08 

1.35𝑒
− 08 

1.35𝑒
− 08 

1.35𝑒
− 08 

1.35𝑒
− 08 

0.

5 
0.9603109000 2.33𝑒

− 09 

2.33𝑒
− 09 

2.33𝑒
− 09 

2.33𝑒
− 09 

2.34𝑒
− 09 

1.

0 
0.8608138000 1.22𝑒

− 08 

1.22𝑒
− 08 

1.22𝑒
− 08 

1.22𝑒
− 08 

1.22𝑒
− 08 

 

Figure 11: Comparison of solution of Example 6.6 

by the proposed methods and the exact solution 
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Figure 12: Behaviour of the solutions of Example 

6.6 by our proposed methods with and without noise 

Example 6.7.  Finally, we consider the white-

dwarf equation 

𝑦″(𝑥) +
2

𝑥
𝑦′(𝑥) + (𝑦2(𝑥) − 𝐶)3/2 = 0,   

     (6.25) 

with initial conditions 

𝑦(0) = 1,   𝑦′(0) = 0.    

     

 (6.26) 

This example is solved by the three methods with 

𝑁 = 8, 𝐶 = 0.4 and 𝐶 = 0.2, 𝑁 = 10. In Table 6 we 

present a comparison of the absolute errors obtained 

by the methods for 𝐶 = 0.2 when 𝑁 = 10 with 

those obtained in [10] and [26]. From the table, it is 

observed that the errors obtained using our methods 

are in close agreement with those in [10] but more 

accurate than those in [26]. Furthermore, Figure 13 

shows the plot of approximate solutions by the 

methods while Figure 14 depicts the plot of 

behaviour of solutions with and without noise terms 

in the initial data for the case 𝐶 = 0.4, 𝑁 = 8. It is 

observed that the methods are numerically stable 

since the variations in the approximate solutions 

with and without noises are negligible. 

Table 6: Comparison of absolute errors for 

Example 6.7 when 𝑁 = 10 

𝑥 RK4 

LTB

CM 

STB

CM 

DTB

CM 

Err

or 

in 

[10

] 

Err

or 

in 

[26

] 

0.

0 
1.0000000000 0.00𝑒

+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.00𝑒
+ 00 

0.

5 
0.9711547964 1.60𝑒

− 09 

1.60𝑒
− 09 

1.60𝑒
− 09 

8.58𝑒
− 09 

1.61𝑒
− 05 

1.

0 
0.8949287011 1.48𝑒

− 08 

1.48𝑒
− 08 

1.48𝑒
− 08 

7.45𝑒
− 08 

6.38𝑒
− 05 

 

Figure 13: Comparison of solution of Example 6.7 

by the proposed methods and the exact solution 

 

Figure 14: Behaviour of the solutions of Example 

6.7 by our proposed methods with and without noise 

 

7 Conclusion 

This paper developed and applied transform-based 

collocation methods to solve Lane-Emden type 

equations that usually arise in mathematical physics 

and astrophysics. Successfully applied to both linear 

and nonlinear Lane-Emden equations within the 

interval [0, 1], these methods demonstrate 

exceptional accuracy and efficiency. Through 

comprehensive comparisons of absolute errors with 

existing literature (Tables 1-6), it is evident that our 

methods not only agreed with results from 

established approaches but also exhibit superiority 

in certain cases. The findings underscore the 

robustness of these methods, further supported by 
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their demonstrated numerical stability, even amidst 

high levels of noise in initial data (as evidenced by 

Figures 2-14).  

For future research, exploring the extension of these 

methods to solve Lane-Emden equations in higher 

dimensions or incorporating adaptive strategies to 

enhance efficiency and accuracy could offer 

promising avenues. Additionally, investigating the 

application of the proposed methods to other classes 

of differential equations or their adaptation for 

solving problems in different scientific disciplines 

could further expand their utility and impact. 

Declaration of Generative AI and AI-assisted 

Technologies in the Writing Process 

During the preparation of this work the authors used 

Grammarly for grammar checking. After using this 

tool/service, the authors reviewed and edited the 
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