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1 Introduction 

      Fractional partial differential equations are 

essentially manifestation of classical partial 

differential equations. They have been developed and 

applied to a wide range of physical and engineering 

disciplines, including visco-elasticity, acoustics, 

electromagnetic and electro-chemistry. More 

recently, both double and triple Laplace 

decomposition methods were utilized to obtain 

solutions of fractional partial differential equations 

[1- 9]. Other methods have been equally successfully 

employed to solve linear and nonlinear problems 

natural Sciences [ 10,11].  

Scholars exerted great efforts to obtain solutions to 

fractional partial differential equations. In principle, 

finding exact solutions to fractional partial 

differential equations entails much effort. Hence, 

scholars have focus on numerical methods, 

particularly the perturbation method. However, these 

methods suffer from some limitations. For instance, 

the fact that the approximate solution requires a series 

of small parameters is puzzling because the majority 

of nonlinear problems lack such parameters. While 

optimal choices of small parameters occasionally 

result in ideal solutions, in the majority of cases 

serious flaws in solutions ensue form unstable 

choices. The homotopy perturbation method was first 
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developed in 1998[12-14] and was further studied by 

a host of authors in order to handle linear and 

nonlinear problems arising in scientific domains [15-

20]. Recently, many researchers have attempted to 

find solutions of linear and nonlinear partial 

differential equations using a variety of methods in 

combination with all integral transform. Examples of 

these are Laplace decomposition method and 

homotopy perturbation transform method [21-27]. 

In a recent work, Kamal [28] suggested a novel 

general triple integral transform known as Gamar 

Transform, which is defined as follows: 

𝕋3[𝑤(𝑥, 𝑦, 𝑡), (𝑟, 𝑠, 𝑣)] = 𝔾[𝑤(𝑥, 𝑦, 𝑡), (𝑟, 𝑠, 𝑣)]

= 𝕋𝑥[𝕋𝑦[𝕋𝑡[𝑤(𝑥, 𝑦, 𝑡); 𝑡

→ 𝑣]𝑦 → 𝑠]𝑥 → 𝑟], 𝑟, 𝑠, 𝑣 > 0, 

= 𝓅(𝑟) ∫ 𝑒−𝒲(𝑟)𝑥
∞

0

(𝓆(𝑠) ∫ 𝑒−𝜓(𝑠)𝑦
∞

0

(𝓊(𝑣) ∫ 𝑒−𝜑(𝑣)𝑡𝑤(𝑥, 𝑦, 𝑡)

∞

0

𝑑𝑡) 𝑑𝑦) 𝑑𝑥 

= 𝓅(𝑟)𝓆(𝑠)𝓊(𝑣) ∫ ∫ ∫ 𝑒−𝒲(𝑟)𝑥−𝜓(𝑠)𝑦−𝜑(𝑣)𝑡𝑤(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡

∞

0

∞

0

= 𝑊(𝑟, 𝑠, 𝑣).  (1) 

 provided that all integrals exists for some  

𝒲(𝑟), 𝜓(𝑠) and 𝜑 (𝑣), where 𝒲(𝑟), 𝜓(𝑠) and 

𝜑 (𝑣) are transform functions for  𝑥, 𝑦  and  𝑡  

respectively. This transform can generate 

virtually all triple integral transform through 

changing the values of  𝒲(𝑟), 𝜓(𝑠) , 𝜑 (𝑣), 

𝒲(𝑟), 𝜓(𝑠) and 𝜑 (𝑣).For examples: 

 If 𝓅(𝑟) = 𝓆(𝑠) = 𝓊(𝑣) = 1 and 

𝒲(𝑟) = 𝑟, 𝜓(𝑠) = 𝑠, 𝜑(𝑣) = 𝑣, then 

this new transform turns into the triple 

Laplace transform [38-41]. 

ℒ𝑥ℒ𝑦ℒ𝑡[𝑤(𝑥, 𝑦, 𝑡)]

= ∫ ∫ ∫ 𝑒− 𝑟𝑥 –𝑠 𝑦− 𝑣𝑡[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

 If 𝓅(𝑟) = 𝒲(𝑟) =
1

𝑟
, 𝓆(𝑠) = 𝜓(𝑠) =

1

𝑠
 

and 𝓊(𝑣) = 𝜑(𝑣) =
1

𝑣
, then this new 

transform turns into the triple Sumudu 

transform[42]. 

𝕊𝑥𝕊𝑦𝕊𝑡[𝑤(𝑥, 𝑦, 𝑡)]

=
1

𝑟𝑠𝑣
∫ ∫ ∫ 𝑒𝑒

− 
𝑥 
𝑟

 − 
𝑦
𝑠

 − 
𝑡
𝑣[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

 If 𝓅(𝑟) = 𝑟, 𝓆(𝑠) = 𝑠, 𝓊(𝑣) = 𝑣 and 

𝒲(𝑟) =
1

𝑟
, 𝜓(𝑠) =

1

𝑠
, 𝜑(𝑣) =

1

𝑣
, then 

the new transform turns into the triple  

Elzaki transform[43]. 

𝔼𝑥𝔼𝑦𝔼𝑡[𝑤(𝑥, 𝑦, 𝑡)]

= 𝑟𝑠𝑣 ∫ ∫ ∫ 𝑒− 
𝑥 

𝑟
 − 

𝑦

𝑠
 − 

𝑡

𝑣[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

 If 𝓅(𝑟) =
1

𝑟
, 𝓆(𝑠) =

1

𝑠
, 𝓊(𝑣) =

1

𝑣
 and 

𝒲(𝑟) = 𝑟, 𝜓(𝑠) = 𝑠, 𝜑(𝑣) = 𝑣, then 

this new transform turns into the triple 

Aboodh transform[44]. 

𝔸𝑥𝔸𝑦𝔸𝑡[𝑤(𝑥, 𝑦, 𝑡)]

=
1

𝑟𝑠𝑣
∫ ∫ ∫ 𝑒− 𝑟𝑥 −𝑠𝑦− 𝑣𝑡[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

 If 𝓅(𝑟) = 1, 𝓆(𝑠) =
1

𝑠
, 𝓊(𝑣) =

1

𝑣
 and 

(𝑟) = 𝑟, 𝜓(𝑠) = 𝑠, 𝜑(𝑣) =
1

𝑣
 , then this 

new transform turns into the triple 

Laplace-Sumudu-Aboodh 

transform[45]. 

ℒ𝑥𝕊𝑦𝔸𝑡[𝑤(𝑥, 𝑦, 𝑡)]

=
1

𝑠𝑣
∫ ∫ ∫ 𝑒− 𝑟𝑥− 𝑠𝑦 – 

1

𝑣 
 𝑡[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.8 Abdelilah Kamal. H. Sedeeg

E-ISSN: 2766-9823 83 Volume 6, 2024



 If 𝓅(𝑟) = 1, 𝓆(𝑠) = 1, 𝓊(𝑣) = 1 and 

(𝑟) =
1

𝑟
, 𝜓(𝑠) =

1

𝑠
, 𝜑(𝑣) =

1

𝑣
 , then this 

new transform turns into the triple 

Kamal transform[46]. 

𝕂𝑥𝕂𝑦𝕂𝑡[𝑤(𝑥, 𝑦, 𝑡)]

= ∫ ∫ ∫ 𝑒− 
1

𝑟
 𝑥− 

1

𝑠
 𝑦 – 

1

𝑣 
 𝑡[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

 If 𝓅(𝑟) = 1, 𝓆(𝑠) = 𝑠, 𝓊(𝑣) =
1

𝑣
 and 

𝒲(𝑟) = 𝑟, 𝜓(𝑠) = 𝑠, 𝜑(𝑣) =
1

𝑣
 , then 

this new transform turns into the triple 

Laplace- ARA - Sumudu transform[47]. 

𝐿𝑥𝒢𝑦𝕊𝑡[𝑤(𝑥, 𝑦, 𝑡)]

=
𝑠

𝑣
∫ ∫ ∫ 𝑒− 𝑟 𝑥− 𝑠 𝑦 – 

1

𝑣 
 𝑡[𝑤(𝑥, 𝑦, 𝑡)]𝑑𝑥𝑑𝑦

∞

0

𝑑𝑡.

∞

0

∞

0

 

 

We note that the inverse Gamar transform is 

defined by 

𝕋3
−1[𝑊(𝑟, 𝑠, 𝑣)] = 𝔾−1[𝑊(𝑟, 𝑠, 𝑣)]

= 𝕋𝑟
−1 [𝕋𝑠

−1 [𝕋𝑣
−1[𝑊(𝑟, 𝑠, 𝑣)]]] = 𝑤(𝑥, 𝑦, 𝑡) 

=
1

2𝜋𝑖
∫

1

𝓅(𝑟)
𝑒𝒲(𝑟)𝑥𝑑𝑟 

1

2𝜋𝑖

𝑎+𝑖∞

𝑎−𝑖∞

∫
1

𝓆(𝑠)
𝑒𝜓(𝑠)𝑦

𝑏+𝑖∞

𝑏−𝑖∞

𝑑𝑠
1

2𝜋𝑖
∫

1

𝓊(𝑣)

𝑐+𝑖∞

𝑐−𝑖∞

𝑒𝜑(𝑣)𝑡𝑊(𝑟, 𝑠, 𝑣)𝑑𝑣 , 𝑎, 𝑏, 𝑐

∈ ℛ .  (2) 

where 𝔾 = 𝕋𝑥𝕋𝑦𝕋𝑡 is the general triple transform 

with respect to 𝑥, 𝑦 and 𝑡 , and the inverse of general 

triple transform denoted by    𝔾−1 = 𝕋𝑟
−1

𝕋𝑠
−1𝕋𝑣

−1  

is with respect to 𝑟, 𝑠 and 𝑣. 

   A well-known equation controlling the motion of 

viscous fluid flow designated Navier-Stokes 

Equation has been derived in the 19th century [29]. 

This equation is viewed as the equal to Newton's 

second law of motion as far as fluid substances are 

concerned and it is a fusion of the equations of 

momentum, continuity and energy. This equation 

covers many physical phenomena such as blood flow, 

liquid flow in tubes and air flow in the proximity of 

aircraft wings. The fractional modelling of Navier-

Stokes Equation was first carried out by El-Shahed 

and Salem [30] who applied the classic Navier-

Stokes Equation using Laplace and the finite Hankel 

and Fourier Sine transforms combining homotopy 

perturbation method and Laplace decomposition 

method. Kumar et al [31] have analytically solved a 

nonlinear fractional model of Navier-Stokes 

Equation. Furthermore utilizing the homotopy 

analysis method, Ragab et al and Ganji et al solved 

nonlinear time-fractional Navier-Stokes Equation 

[32,33].In contrast, Birajdar [34] and Momani and 

Odibat [35] have employed the Adomian 

decomposition method for numerical computation of 

time-fractional Navier-Stokes Equation. Kumar et al 

used both Adomian decomposition method and 

Laplace transform algorithm to find the analytical 

solution of time-fractional Navier-Stokes Equations 

[36]. Morever, Chaurasia and kumar solved the same 

problem by combining Laplace and Hankel finite 

transforms [37].In the current paper, we will study 

the system of multi-dimensional Navier-Stokes 

Equation of the following form: 

𝐷𝑡
𝛼𝑤 + 𝑤

𝜕𝑤

𝜕𝑥
+ 𝑚

𝜕𝑤

𝜕𝑦
− 𝜌0 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2 ) = −
1

𝜌

𝜕𝑟

𝜕𝑥
,

𝐷𝑡
𝛼𝑚 + 𝑤

𝜕𝑚

𝜕𝑥
+ 𝑚

𝜕𝑚

𝜕𝑦
− 𝜌0 (

𝜕2𝑚

𝜕𝑥2
+

𝜕2𝑚

𝜕𝑦2 ) = −
1

𝜌

𝜕𝑟

𝜕𝑦
.

 ( 3 ) 

Where 𝑥, 𝑦, 𝑡 > 0 and 𝑛 − 1 < 𝛼 < 𝑛. 

Subject to the condition  

𝑤(𝑥, 𝑦, 0) = 𝑘(𝑥, 𝑦),     

𝑚(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦).  
         (4) 
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    The objective of this paper is to present an 

approximate analytic of multi-dimensional solution 

of Navier-Stokes Equation using Gamar transform  

combined with Adomian decomposition method.  

The remainder of the paper is structured as follows: 

In Section 2, basic concepts and properties of Gamar 

transformation are introduced. Some core definitions 

and notations on fractional calculus are outlined in 

Section 3. A succinct description of GTADM is 

presented in Section 4. In Section 5, the approximate 

analytical solutions of two elected examples of time-

fractional order Navier-Stokes Equation are obtained. 

Section 6 concludes the study. 

2 Fundamental Concepts of Gamar 

Transform 

This section is concerned with the presentation of the 

Gamar transform in three-dimensional spaces. We 

out line basic properties regarding the existence 

conditions, linearity and the inverse of this transform. 

Moreover, some essential properties and results are 

used to compute the Gamar  transform for elementary 

basic functions. We introduce the triple convolution 

theorem and the derivative properties of the new 

transform. 

2.1 Some Properties and Theorems of Gamar 

Transform [28] 

Property 2.1. (Linearity). If  𝔾[𝑤(𝑥, 𝑦, 𝑡)] =

Ψ(𝑟, 𝑠, 𝑣) and  𝔾[ℎ(𝑥, 𝑦, 𝑡)] = 𝐻(𝑟, 𝑠, 𝑣), then for 

any constants 𝐴 and 𝐵 , we have 

𝔾[𝐴 𝑤(𝑥, 𝑦, 𝑡) + 𝐵 ℎ(𝑥, 𝑦, 𝑡)] = 𝐴 Ψ(𝑟, 𝑠, 𝑣) +

𝐵 𝐻(𝑟, 𝑠, 𝑣).                             (5) 

Property 2.2. If   𝑤(𝑥, 𝑦, 𝑡) = 𝑓(𝑥)ℎ(𝑦)𝑧(𝑡)  , 𝑥 >

0, 𝑦 > 0 and 𝑡 > 0. Then  

𝔾[𝑤(𝑥, 𝑦, 𝑡)] = 𝕋𝑥[𝑓(𝑥)]𝕋𝑦[ℎ(𝑦)]𝕋𝑡[𝑧(𝑡)].     (6)                                                         

where 𝕋𝑥,𝕋𝑦 and 𝕋𝑡 are general integral transform 

for 𝑓(𝑥), ℎ(𝑦) and 𝑧(𝑡) respectively. 

Definition 2.1. If  𝑤(𝑥, 𝑦, 𝑡) defined on [0, 𝑋] ×

[0, 𝑌] × [0, 𝑇] satisfies the condition |𝑤(𝑥, 𝑦, 𝑡)| 

          ≤ 𝕂𝑒𝛼𝑥+𝛿𝑦+𝜆𝑡 , ∃𝕂 > 0, ∀𝑥 > 𝑋, 𝑦 >Y and  𝑡 > 𝑇. 

Then, 𝑤(𝑥, 𝑦, 𝑡) is called a function of exponential 

orders  𝛼 ,𝛿 and 𝜆 as 𝑥, 𝑦, 𝑡 → ∞ . 

Theorem 2.1.The existence condition of Gamar 

transform of the continuous function 𝑤(𝑥, 𝑦, 𝑡) 

defined on[0, 𝑋] × [0, 𝑌] × [0, 𝑇]is to be of 

exponential orders 𝛼 ,𝛿and 𝜆 , for Re[𝒲(𝑟)] > 𝛼 , 

Re[𝜓(𝑠)] > 𝛿 and Re[𝜑 (𝑣)] > 𝜆. 

Theorem 2.2.  Let  𝔾[𝑤(𝑥, 𝑦, 𝑡)] = Ψ(𝑟, 𝑠, 𝑣). Then, 

𝔾[𝑤(𝑥 − 𝛼, 𝑦 − 𝛿, 𝑡 − 𝜆)𝐻(𝑥 − 𝛼, 𝑦 − 𝛿, 𝑡 − 𝜆)] =

𝑒−𝒲(𝑟)𝛼−𝜓(𝑠)𝛿−𝜑(𝑣)𝜆 Ψ(𝑟, 𝑠, 𝑣).            (8) 

where 𝐻(𝑥, 𝑦, 𝑡) denotes the unit step function 

defined by 

𝐻(𝑥 − 𝛼, 𝑦 − 𝛿, 𝑡 − 𝜆)

= {
1,    𝑥 > 𝛼, 𝑦 > 𝛿, 𝑡 > 𝜆

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.              
 

  

Theorem 2.3. (Triple Convolution Theorem).  

Let  𝔾[𝑤(𝑥, 𝑦, 𝑡)] = Ψ(𝑟, 𝑠, 𝑣)  and 𝔾[ℎ(𝑥, 𝑦, 𝑡)] 

= H(𝑟, 𝑠, 𝑣) , then 
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and 𝔾[ℎ(𝑥, 𝑦, 𝑡)] = H(𝑟, 𝑠, 𝑣) , then 

    𝔾[(𝑤 ∗∗∗ ℎ)(𝑥, 𝑦, 𝑡)] =
Ψ(𝑟, 𝑠, 𝑣)𝐻(𝑟, 𝑠, 𝑣)

𝓅(𝑟)𝓆(𝑠)𝓊(𝑣)
. (9) 

 

2.2. Gamar Transform of Some Elementary 

Functions [28] 

 𝔾[𝑥𝑛𝑦𝑛𝑡𝑛] =

𝓅(𝑟)

𝒲𝑛+1(𝑟)

𝓆(𝑠)

𝜓𝑛+1(𝑠)

𝓊(𝑣)

𝜑𝑛+1(𝑣)
  (Γ(𝑛 + 1))3. 

 𝔾[𝑒𝑎𝑥+𝑏𝑦+𝑐𝑡] =
𝓅(𝑟)

(𝒲(𝑟)−𝑎)

𝓆(𝑠)

(𝜓(𝑠)−𝑏)

𝓊(𝑣)

(𝜑(𝑣)−𝑐)
. 

 𝔾[cos(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡)] =

𝓅(𝑟)𝓆(𝑠)𝓊(𝑣)[𝒲(𝑟)𝜓(𝑠)𝜑(𝑣)−𝑎𝑏𝜑(𝑣)−𝑏𝑐𝒲(𝑟)−𝑎𝑐𝜓(𝑠)]

(𝒲2(𝑟)+𝑎2)(𝜓2(𝑠)+𝑏2)(𝜑2(𝑣)+𝑐2)
. 

 𝔾[sin(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡)] =

𝓅(𝑟)𝓆(𝑠)𝓊(𝑣)[𝑏𝒲(𝑟)𝜑(𝑣)+𝑎𝜓(𝑠)𝜑(𝑣)+𝑐𝒲(𝑟)𝜓(𝑠)−𝑎𝑏𝑐]

(𝒲2(𝑟)+𝑎2)(𝜓2(𝑠)+𝑏2)(𝜑2(𝑣)+𝑐2)
 

 𝔾[cosh(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡)] =

𝓅(𝑟)𝓆(𝑠)𝓊(𝑣)[𝒲(𝑟)𝜓(𝑠)𝜑(𝑣)−𝑎𝑏𝜑(𝑣)−𝑏𝑐𝒲(𝑟)−𝑎𝑐𝜓(𝑠)]

(𝒲2(𝑟)−𝑎2)(𝜓2(𝑠)−𝑏2)(𝜑2(𝑣)−𝑐2)
. 

 𝔾[sinh(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡)] =

𝓅(𝑟)𝓆(𝑠)𝓊(𝑣)[𝑏𝒲(𝑟)𝜑(𝑣)+𝑎𝜓(𝑠)𝜑(𝑣)+𝑐𝒲(𝑟)𝜓(𝑠)+𝑎𝑏𝑐].

(𝒲2(𝑟)−𝑎2)(𝜓2(𝑠)−𝑏2)(𝜑2(𝑣)−𝑐2)
 

2.3. Gamar Transform for Partial Differential 

Derivatives[28] 

     In this section, we present some theorems related 

to the new general triple integral transform of partial 

derivatives.  

Theorem2.3. (Derivative properties with respect to  

𝑥). Let Ψ(𝑟, 𝑠, 𝑣) is general triple transform of 

𝑤(𝑥, 𝑦, 𝑡) and 𝐺𝐷(0, 𝑠, 𝑣) is general double 

transform of  𝑤(0, 𝑦, 𝑡), then 

a) 𝔾 [
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑥
] = 𝒲(𝑟)Ψ(𝑟, 𝑠, 𝑣) −

𝓅(𝑟)𝐺(0, 𝑠, 𝑣). 

b) 𝔾 [
𝜕2𝑤(𝑥,𝑦,𝑡)

𝜕𝑥2 ] = 𝒲2(𝑟)Ψ(𝑟, 𝑠, 𝑣) −

𝓅(𝑟)𝒲(𝑟)𝐺(0, 𝑠, 𝑣) −

𝓅(𝑟)𝕋𝑦𝕋𝑡 [
𝜕𝑤(0,𝑦,𝑡)

𝜕𝑥
]. 

c) 𝔾 [
𝜕𝑛𝑤(𝑥,𝑦,𝑡)

𝜕𝑥𝑛 ] = 𝒲𝑛(𝑟)Ψ(𝑟, 𝑠, 𝑣) −

𝓅(𝑟) ∑ 𝒲𝑛−1−𝑖(𝑟)𝕋𝑦𝕋𝑡 [
𝜕𝑖𝑤(0,𝑦,𝑡)

𝜕𝑥𝑖 ]𝑛−1
𝑖=0 . 

Theorem 2.4. (Derivative properties with respect to 

𝑦). Let Ψ(𝑟, 𝑠, 𝑣) is Gamar transform of 𝑤(𝑥, 𝑦, 𝑡) 

and  𝐺𝐷(𝑟, 0, 𝑣) is general double transform of  

𝑤(𝑥, 0, 𝑡), then 

a) 𝔾 [
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑦
] = 𝜓(𝑠)Ψ(𝑟, 𝑠, 𝑣) −

𝓆(𝑠)𝐺𝐷(𝑟, 0, 𝑣). 

b) 𝔾 [
𝜕2𝑤(𝑥,𝑦,𝑡)

𝜕𝑦2 ] = 𝜓2(𝑠)Ψ(𝑟, 𝑠, 𝑣) −

𝓆(𝑠)𝜓(𝑠)𝐺𝐷(𝑟, 0, 𝑣) −

𝓆(𝑠)𝕋𝑥𝕋𝑡 [
𝜕𝑤(𝑥,0,𝑡)

𝜕𝑦
]. 

c) 𝔾 [
𝜕𝑛𝑤(𝑥,𝑦,𝑡)

𝜕𝑦𝑛 ] = 𝜓𝑛(𝑠)Ψ(𝑟, 𝑠, 𝑣) −

𝓆(𝑠) ∑ 𝜓𝑛−1−𝑖(𝑠)𝕋𝑥𝕋𝑡 [
𝜕𝑖𝑤(𝑥,0,𝑡)

𝜕𝑦𝑖 ]𝑛−1
𝑖=0 . 

Theorem 2.5. (Derivative properties with respect to 

𝑡). If  Ψ(𝑟, 𝑠, 𝑣) is general triple transform of  

𝑤(𝑥, 𝑦, 𝑡)  and  𝐺𝐷(𝑟, 𝑠, 0) is general double 

transform of  𝑤(𝑥, 𝑦, 0), then 

a) 𝔾 [
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑡
] =  𝜑(𝑣)Ψ(𝑟, 𝑠, 𝑣) −

𝓊(𝑣)𝐺𝐷(𝑟, 𝑠, 0). 

b) 𝔾 [
𝜕2𝑤(𝑥,𝑦,𝑡)

𝜕𝑡2 ] = 𝜑2(𝑣)Ψ(𝑟, 𝑠, 𝑣) −

𝓊(𝑣)𝜑(𝑣)𝐺𝐷(𝑟, 𝑠, 0) −

𝓊(𝑣)𝕋𝑥𝕋𝑦 [
𝜕𝑤(𝑥,𝑦,0)

𝜕𝑡
]. 
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c) 𝔾 [
𝜕𝑛𝑤(𝑥,𝑦,𝑡)

𝜕𝑡𝑛 ] = 𝜑𝑛(𝑣)Ψ(𝑟, 𝑠, 𝑣) −

𝓊(𝑣) ∑ 𝜑𝑛−1−𝑖(𝑣)𝕋𝑥𝕋𝑦 [
𝜕𝑖𝑤(𝑥,𝑦,0)

𝜕𝑡𝑖 ]𝑛−1
𝑖=0 . 

 
Theorem 2.6. Let  Ψ(𝑟, 𝑠, 𝑣) is general triple 

transform of  𝑤(𝑥, 𝑦, 𝑡), then 

a) 𝔾[𝑥𝑛𝑤(𝑥, 𝑦, 𝑡)] =

(−1)𝑛 𝓅(𝑟)

𝒲′(𝑟)

𝜕𝑛

𝜕𝑟𝑛 (
Ψ(𝑟,𝑠,𝑣)

𝓅(𝑟))
). 

b) 𝔾[𝑦𝑛𝑤(𝑥, 𝑦, 𝑡)] =

(−1)𝑛 𝓆(𝑠)

𝜓′(𝑠)

𝜕𝑛

𝜕𝑠𝑛 (
Ψ(𝑟,𝑠,𝑣)

𝓆(𝑠)
). 

c) 𝔾[𝑡𝑛𝑤(𝑥, 𝑦, 𝑡)] =

(−1)𝑛 𝓊(𝑣)

𝜑′(𝑣)

𝜕𝑛

𝜕𝑣𝑛 (
Ψ(𝑟,𝑠,𝑣)

𝓊(𝑣)
). 

3. Basic Facts of the Fractional 

Calculus [38] 

      In this section, some definitions, and properties 

of the fractional calculus, which will be used in this 

work, are presented. 

Definition 3.1. The left Riemann-Liouville 

fractional integral operator of order   𝛼 > 0 of a 

function   𝑤 ∈ ℜ+ is determined as 

𝐼𝑡
𝛼𝑤(𝑡) =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑡

𝑡

0

− 𝜏)𝑛−𝛼−1 𝑤(𝜏)𝑑𝜏,   𝑛 − 1 < 𝛼

< 𝑛 , 𝑥 > 0.                          (10) 

where the integral on the right is convergent point 

wise defined over (0, ∞). 

Definition 3.2. The Caputo time-fractional 

derivative operator order 𝛼 > 0 of a function 𝑤(𝑡) 

on (0, ∞) is defined as 

𝐷𝑡
𝛼𝑤(𝑡) =

1

𝛤(𝑚 − 𝛼)
∫ (𝑡

𝑡

0

− 𝜏)𝑚−𝛼−1
𝑑𝑛

𝑑𝜏𝑛
𝑤(𝜏)𝑑𝜏  , 𝑛 − 1

< 𝛼 < 𝑛 .                          (11)  

where the integral on the right is convergent point 

wise defined over (0, ∞). 

Definition 3.3.The Mittag-Leffler function with two 

parameters is defined as 

𝐸𝛼,𝛿(𝑡) = ∑
𝑡𝑛

𝛤(𝑛𝛼 + 𝛿)

∞

𝑛=0

  , 𝑡, 𝛿 ∈ ℂ   , ℜ(𝛼)

> 0.                                        (12) 

General triple transform of some Mittag-leffler 

functions are given by 

 𝔾[𝑥𝑦𝑡𝛼−1𝐸𝛼,𝛿(𝜌𝑡𝛼)] =

𝓅(𝑟)

𝒲2(𝑟)

𝓆(𝑠)

𝜓2(𝑠)

𝓊(𝑣)𝜑𝛼−𝛿(𝑣)

(𝜑𝛼(𝑣)−𝜌)
. 

 𝔾[𝑦2𝑡𝛼𝐸1,𝛼+1(𝑡)] =

2!
𝓅(𝑟)

𝒲(𝑟)

𝓆(𝑠)

𝜓3(𝑠)

𝓊(𝑣)

𝜑(𝑣)(𝜑(𝑣)−1)
. 

 𝔾[𝑡2𝛼𝐸𝛼,2𝛼+1(𝑡)] =

𝓅(𝑟)

𝒲(𝑟)

𝓆(𝑠)

𝜓(𝑠)

𝓊(𝑣)

𝜑2𝛼(𝑣)(𝜑(𝑣)−1)
. 

Theorem 3.1: Let 𝜏, 𝛿, 𝜇 >  0, 𝑝– 1 < 𝜏 ≤ 𝑝, 

𝑚– 1 < 𝛿 ≤ 𝑚, 𝑛– 1 < 𝜇 ≤ 𝑛 and 𝑝, 𝑚, 𝑛 ∈ ℕ, so 

that 𝑓 ∈ 𝐶𝑙(ℝ+ × ℝ+ × ℝ+), 𝑙 = max{𝑝, 𝑚, 𝑛}, 

𝑤(𝑙) ∈ 𝐿1[(0, 𝛽) × (0, 𝜃) × (0, 𝜗)] for any positive  

𝛽, 𝜃and𝜗 and let |𝑤(𝑥, 𝑦, 𝑡)| ≤ 𝕂𝑒𝜏𝑥+𝛿𝑦+𝜇𝑡 , ∃𝕂 >

0, ∀𝑥 > 𝛽 > 0, 𝑦 > 𝜃 > 0 and  𝑡 > 𝜗 > 0 holds 

for constant 𝕂, 𝜏, 𝛿, 𝜇 >  0 .Then the general triple 

integral transforms of Caputo’s fractional derivatives 

𝐷𝑥
𝜏𝑤(𝑥, 𝑦, 𝑡), 𝐷𝑦

𝛿 𝑤(𝑥, 𝑦, 𝑡) and 𝐷𝑡
𝜇

 𝑤(𝑥, 𝑦, 𝑡) are 

defined by 
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a) 𝔾[𝐷𝑥
𝜏𝑤(𝑥, 𝑦, 𝑡)]

= 𝒲𝜏(𝑟)𝛹(𝑟, 𝑠, 𝑣)

− 𝓅(𝑟) ∑ 𝒲𝜏−1−𝑖(𝑟)𝕋𝑦𝕋𝑡 [
𝜕𝑖𝑤(0, 𝑦, 𝑡)

𝜕𝑥𝑖
]

𝑛−1

𝑖=0
. 

b) 𝔾[𝐷𝑦
𝛿  𝑤(𝑥, 𝑦, 𝑡)]

= 𝜓𝛿(𝑠)𝛹(𝑟, 𝑠, 𝑣)

− 𝓆(𝑠) ∑ 𝜓𝛿−1−𝑖(𝑠)𝕋𝑥𝕋𝑡 [
𝜕𝑖𝑤(𝑥, 0, 𝑡)

𝜕𝑦𝑖
] .

𝑛−1

𝑖=0
 

c) 𝔾[𝐷𝑡
𝜇

 𝑤(𝑥, 𝑦, 𝑡)]

= 𝜑𝜇(𝑣)𝛹(𝑟, 𝑠, 𝑣)

− 𝓊(𝑣) ∑ 𝜑𝜇−1−𝑖(𝑣)𝕋𝑥𝕋𝑦 [
𝜕𝑖𝑤(𝑥, 𝑦, 0)

𝜕𝑡𝑖
]

𝑛−1

𝑖=0
. 

4. The Gamar Transform Adomian 

decomposition method 

      In this part of the paper, we give the fundamental 

idea of the Gamar Adomian decomposition method 

(GADM) for the two-dimensional time-fractional 

Navier–Stokes Equations. In order to show the 

fundamental plan of the general triple Adomian 

decomposition method, we consider the following 

system of two-dimensional time-fractional Navier–

Stokes Equations: 

𝐷𝑡
𝛼𝑤 + 𝑤

𝜕𝑤

𝜕𝑥
+ 𝑚

𝜕𝑤

𝜕𝑦
− 𝜌0 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2 ) = −
1

𝜌

𝜕𝑟

𝜕𝑥
 ,    

𝐷𝑡
𝛼𝑚 + 𝑤

𝜕𝑚

𝜕𝑥
+ 𝑚

𝜕𝑚

𝜕𝑦
− 𝜌0 (

𝜕2𝑚

𝜕𝑥2
+

𝜕2𝑚

𝜕𝑦2 ) = −
1

𝜌

𝜕𝑟

𝜕𝑦
 ,

𝑥, 𝑦, 𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛 .    (13)

 

Subject to the conditions 

𝑤(𝑥, 𝑦, 0) = 𝑘(𝑥, 𝑦),

 𝑚(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦).
                    (14) 

where 𝐷𝑡
𝛼 =

𝜕𝛼

𝜕𝑡𝛼 is fractional Caputo derivative , 𝑟 

is the pressure, in addition if  𝑟 is known . Put  𝜇 =

1

𝜌

𝜕𝑟

𝜕𝑥
  and 𝜏 =

1

𝜌

𝜕𝑟

𝜕𝑦
. 

Applying the Gamar transform for Eq. (13), we 

obtain 

𝐷𝑡
𝛼𝑤 + 𝑤

𝜕𝑤

𝜕𝑥
+ 𝑚

𝜕𝑤

𝜕𝑦
− 𝜌0 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2 ) = −𝜇 ,     

𝐷𝑡
𝛼𝑚 + 𝑤

𝜕𝑚

𝜕𝑥
+ 𝑚

𝜕𝑚

𝜕𝑦
− 𝜌0 (

𝜕2𝑚

𝜕𝑥2
+

𝜕2𝑚

𝜕𝑦2 ) = −𝜏 ,

  𝑥, 𝑦, 𝑡 > 0.                        (15)

 

By linearity property and partial derivative properties 

of Gamar transform, we get 

𝑊(𝑟, 𝑠, 𝑣) =
𝓊(𝑣)

𝜑 (𝑣)
𝐾(𝑟, 𝑠) +

𝜌0

𝜑𝛼  (𝑣)
𝔾[𝑤𝑥𝑥 + 𝑤𝑦𝑦] 

−
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑤𝑥 + 𝑚𝑤𝑦] −

1

𝜑𝛼  (𝑣)
𝔾[ 𝜇].  (16) 

𝑀(𝑟, 𝑠, 𝑣) =
𝓊(𝑣)

𝜑 (𝑣)
𝐻(𝑟, 𝑠) +

𝜌0

𝜑𝛼  (𝑣)
𝔾[𝑚𝑥𝑥 + 𝑚𝑦𝑦] 

−
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑚𝑥 + 𝑚𝑚𝑦] −

1

𝜑𝛼 (𝑣)
𝔾[ 𝜏]. (17) 

Taking inverse Gamar transform to Eqs.(16) and 

(17),we get 

𝑤(𝑥, 𝑦, 𝑡) = 𝔾−1 [
𝓊(𝑣)

𝜑 (𝑣)
𝐾(𝑟, 𝑠)]

+ 𝔾−1 [
𝜌0

𝜑𝛼  (𝑣)
𝔾[𝑤𝑥𝑥 + 𝑤𝑦𝑦]] 

−𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝑤𝑤𝑥 + 𝑚𝑤𝑦]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[ 𝜇]].           (18)  
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𝑚(𝑥, 𝑦, 𝑡) = 𝔾−1 [
𝓊(𝑣)

𝜑 (𝑣)
𝐻(𝑟, 𝑠)]

+ 𝔾−1 [
𝜌0

𝜑𝛼  (𝑣)
𝔾[𝑚𝑥𝑥 + 𝑚𝑦𝑦]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑚𝑥 + 𝑚𝑚𝑦]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[ 𝜏]].          (19)    

The Adomian decomposition method admits the 

decomposition of 𝑤(𝑥, 𝑦, 𝑡) and 𝑚(𝑥, 𝑦, 𝑡) into 

infinite series components as follows 

𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝑤𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡) ,

𝑚(𝑥, 𝑦, 𝑡) = ∑ 𝑚𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡).

           (20) 

and the nonlinear terms 𝑤𝑤𝑥, 𝑚𝑤𝑦 , 𝑤𝑚𝑥 and 

𝑚𝑚𝑦 be equated to an infinite series of polynomials 

as follows 

𝑤𝑤𝑥 = ∑ 𝐴𝑛, 𝑚𝑤𝑦 = ∑ 𝐵𝑛

∞

𝑛=1

 ,

∞

𝑛=1

𝑤𝑚𝑥 = ∑ 𝐶𝑛

∞

𝑛=1

 , 𝑚𝑦 = ∑ 𝐷𝑛

∞

𝑛=1

 .

   (21) 

where  𝐴𝑛 , 𝐵𝑛 ,  𝐶𝑛 and 𝐷𝑛 are He’s polynomial. 

substituting  Eqs.(20) and (21) into Eqs.(18) and 

(19),we have 

∑ 𝑤𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡) 

= 𝔾−1 [
𝓊(𝑣)

𝜑 (𝑣)
𝐾(𝑟, 𝑠)] − 𝔾−1 [

1

𝜑𝛼 (𝑣)
𝔾[𝜇]] 

+𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (∑ 𝑤𝑛𝑥𝑥

∞

𝑛=0

+ ∑ 𝑤𝑛𝑦𝑦

∞

𝑛=0

)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [∑ 𝐴𝑛

∞

𝑛=0

+ ∑ 𝐵𝑛

∞

𝑛=0

]].                                                                    (22)  

∑ 𝑚𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡) = 𝔾−1 [
𝓊(𝑣)

𝜑 (𝑣)
𝐻(𝑟, 𝑠)]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[ 𝜏]]

+ 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (∑ 𝑚𝑛𝑥𝑥

∞

𝑛=0

+ ∑ 𝑚𝑛𝑦𝑦

∞

𝑛=0

) − 𝜏]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [∑ 𝐶𝑛

∞

𝑛=0

+ ∑ 𝐷𝑛

∞

𝑛=0

]].                                (23) 

The various components  𝑤𝑛(𝑥, 𝑦, 𝑡)  and 𝑚𝑛(𝑥, 𝑦, 𝑡)  

of the solutions 𝑤(𝑥, 𝑦, 𝑡) and 𝑚(𝑥, 𝑦, 𝑡)  

respectively can be easily determined by using the 

following recursive relations 

𝑤0(𝑥, 𝑦, 𝑡) = 𝔾−1 [
𝓊(𝑣)

𝜑 (𝑣)
𝐾(𝑟, 𝑠)] −

𝜇𝑡𝛼

Γ(𝛼+1)
,

𝑚0(𝑥, 𝑦, 𝑡) = 𝔾−1 [
𝓊(𝑣)

𝜑 (𝑣)
𝐻(𝑟, 𝑠)] −

𝜏 𝑡𝛼

Γ(𝛼+1)
.
        (24) 

   and, 
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𝑤𝑛+1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑤𝑛𝑥𝑥

+ 𝑤𝑛𝑦𝑦
)

−  𝜇]]

− 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝐴𝑛 + 𝐵𝑛]] , 𝑛

≥ 0.   (25) 

𝑚𝑛+1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (𝑚𝑛𝑥𝑥

+ 𝑚𝑛𝑦𝑦
) − 𝜏]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝐶𝑛 + 𝐷𝑛]] , 𝑛

≥ 0.   (26) 

provided that the Gamar transform exist for 

Eq.(24),(25) and (26). 

Note that, the first few terms of the Adomian 

polynomials 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 are given by 

𝐴0 = 𝑤0𝑤0𝑥
  , 

             𝐴1 = 𝑤0𝑤1𝑥
+ 𝑤1𝑤0𝑥

  ,             (27) 

𝐴2 = 𝑤0𝑤2𝑥
+ 𝑤1𝑤1𝑥

+ 𝑤2𝑤0𝑥
 , 

⋮ 

𝐵0 = 𝑚0𝑤0𝑦
  , 

𝐵1 = 𝑚0𝑤1𝑦
+ 𝑚1𝑤0𝑦

  ,    (28) 

𝐵2 = 𝑚0𝑤2𝑦
+ 𝑚1𝑤1𝑦

+ 𝑚2𝑤0𝑦
 , 

⋮ 

𝐶0 = 𝑤0𝑚0𝑥
  , 

𝐶1 = 𝑤0𝑚1𝑥
+ 𝑤1𝑚0𝑥

  ,          (29) 

𝐶2 = 𝑤0𝑚2𝑥
+ 𝑤1𝑚1𝑥

+ 𝑤2𝑚0𝑥
  

⋮ 

𝐷0 = 𝑚0𝑚0𝑦
  , 

𝐷1 = 𝑚0𝑚1𝑦
+ 𝑚1𝑚0𝑦

  ,              (30) 

𝐷2 = 𝑚0𝑚2𝑦
+ 𝑚1𝑚1𝑦

+ 𝑚2𝑚0𝑦
 

⋮ 

Thus, the solutions are 

𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝑤𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡)   ,     

𝑚(𝑥, 𝑦, 𝑡) = ∑ 𝑚𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡).    

5. Applications 

     In this section of this paper, we discuss the 

achievement of our present methods and examine its 

accuracy by using the decomposition method with 

connection of the Gamar transform.  

Example 5.1 

Consider the time-fractional order two-dimensional 

Navier–Stokes Equation  

𝜕𝛼𝑤

𝜕𝑡𝛼 + 𝑤
𝜕𝑤

𝜕𝑥
+ 𝑚

𝜕𝑤

𝜕𝑦
− 𝜌0 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 ) = −𝜇,

𝜕𝛼𝑚

𝜕𝑡𝛼 + 𝑤
𝜕𝑚

𝜕𝑥
+ 𝑚

𝜕𝑚

𝜕𝑦
− 𝜌0 (

𝜕2𝑚

𝜕𝑥2 +
𝜕2𝑚

𝜕𝑦2 ) = −𝜇.
   (31)  

 where 𝑥, 𝑦, 𝑡 > 0 and 𝑛 − 1 < 𝛼 < 𝑛 . 

Subject to the conditions 
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𝑤(𝑥, 𝑦, 0) = −𝑒 𝑥+𝑦,

𝑚(𝑥, 𝑦, 0) = 𝑒 𝑥+𝑦.
                    (32) 

Applying the Gamar transform for Eq. (31), we 

obtain 

𝔾[𝐷𝑡
𝛼𝑤 + 𝑤𝑤𝑥 + 𝑚𝑤𝑦] = 𝔾[𝜌0(𝑤𝑥𝑥 + 𝑤𝑦𝑦) +  𝜇] ,

𝔾[𝐷𝑡
𝛼𝑚 + 𝑤𝑚𝑥 + 𝑚𝑚𝑦] = 𝔾[𝜌0(𝑚𝑥𝑥 + 𝑚𝑦𝑦) − 𝜇] .

 (33) 

By linearity property and partial derivative properties 

of Gamar transform, we get 

𝑊(𝑟, 𝑠, 𝑣) = −
𝓊(𝑣)

𝜑(𝑣)

𝓅(𝑟)

(𝒲(𝑟) − 1)

𝓆(𝑠)

(𝜓(𝑠) − 1)

+
1

𝜑𝛼  (𝑣)
𝔾[𝜇]

+
1

𝜑𝛼  (𝑣)
𝔾[𝜌0(𝑤𝑥𝑥 + 𝑤𝑦𝑦)]

−
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑤𝑥

+ 𝑚𝑤𝑦] ,            (34) 

𝑀(𝑟, 𝑠, 𝑣) =
𝓊(𝑣)

𝜑(𝑣)

𝓅(𝑟)

(𝒲(𝑟) − 1)

𝓆(𝑠)

(𝜓(𝑠) − 1)

−
1

𝜑𝛼  (𝑣)
𝔾[𝜇]

+
1

𝜑𝛼  (𝑣)
𝔾[𝜌0(𝑚𝑥𝑥 + 𝑚𝑦𝑦)]

−
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑚𝑥

+ 𝑚𝑚𝑦].                (35) 

Taking inverse Gamar transform to Eqs.(34) and 

(35),we get 

𝑤(𝑥, 𝑦, 𝑡) = −𝑒 𝑥+𝑦 +
𝜇𝑡𝛼

Γ(𝛼 + 1)

+ 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝜌0(𝑤𝑥𝑥 + 𝑤𝑦𝑦)]]

− 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝑤𝑤𝑥

+ 𝑚𝑤𝑦]].                     (36) 

𝑚(𝑥, 𝑦, 𝑡) = 𝑒 𝑥+𝑦 −
𝜇𝑡𝛼

Γ(𝛼 + 1)

+ 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝜌0(𝑚𝑥𝑥

+ 𝑚𝑦𝑦)]]

− 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝑤𝑚𝑥

+ 𝑚𝑚𝑦]].                         (37) 

substituting Eqs.(20) and (21) into Eqs.(36) and  (37) 

,we have 

𝑤0(𝑥, 𝑦, 𝑡) = −𝑒 𝑥+𝑦 +
𝜇𝑡𝛼

Γ(𝛼 + 1)
,

𝑚0(𝑥, 𝑦, 𝑡) = 𝑒 𝑥+𝑦 −
𝜇𝑡𝛼

Γ(𝛼𝑥 + 1)
.

       (38) 

𝑤𝑛+1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑤𝑛𝑥𝑥

+ 𝑤𝑛𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝐴𝑛 + 𝐵𝑛]]  ,

𝑛 ≥ 0.                               (39) 
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𝑚𝑛+1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (𝑚𝑛𝑥𝑥

+ 𝑚𝑛𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝐶𝑛 + 𝐷𝑛]] ,

𝑛 ≥ 0.                      (40) 

Putting 𝑛 = 0 into Eq.(39) and Eq.(40) and using 

Eqs.(27-30), we get 

𝑤1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑤0𝑥𝑥

+ 𝑤0𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝑤0𝑤0𝑥

+ 𝑚0𝑤0𝑦]] 

= 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[−2𝜌0𝑒 𝑥+𝑦]] 

= −2𝜌0𝔾−1 [
𝓊(𝑣)

𝜑𝛼+1 (𝑣)

𝓅(𝑟)

(𝒲(𝑟) − 1)

𝓆(𝑠)

(𝜓(𝑠) − 1)
] 

= −2𝜌0

𝑡𝛼

Γ(𝛼 + 1)
𝑒 𝑥+𝑦. 

in the same way, we get 

𝑚1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (𝑚0𝑥𝑥

+ 𝑚0𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝑤0𝑚0𝑥

+ 𝑚0𝑚0𝑦]] 

= −𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[2𝜌0𝑒 𝑥+𝑦]] 

= 2𝜌0𝔾−1 [
𝓊(𝑣)

𝜑𝛼+1 (𝑣)

𝓅(𝑟)

(𝒲(𝑟) − 1)

𝓆(𝑠)

(𝜓(𝑠) − 1)
] 

= 2𝜌0

𝑡𝛼

Γ(𝛼 + 1)
𝑒 𝑥+𝑦 . 

Similarly if  𝑛 = 1, 

𝑤2(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑤1𝑥𝑥 + 𝑤1𝑦𝑦)]]

= −𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [(2𝜌0)2

𝑡𝛼

Γ(𝛼 + 1)
𝑒 𝑥+𝑦]] 

= −(2𝜌0)2𝔾−1 [
𝓊(𝑣)

𝜑2𝛼+1 (𝑣)

𝓅(𝑟)

(𝒲(𝑟) − 1)

𝓆(𝑠)

(𝜓(𝑠) − 1)
]

= −(2𝜌0)2
𝑡2𝛼

Γ(2𝛼 + 1)
𝑒 𝑥+𝑦. 

and, 

𝑚2(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑚1𝑥𝑥 + 𝑚1𝑦𝑦)]]

= 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [(2𝜌0)2

𝑡𝛼

Γ(𝛼 + 1)
𝑒 𝑥+𝑦]] 

= (2𝜌0)2𝔾−1 [
𝓊(𝑣)

𝜑2𝛼+1 (𝑣)

𝓅(𝑟)

(𝒲(𝑟) − 1)

𝓆(𝑠)

(𝜓(𝑠) − 1)
]

= (2𝜌0)2
𝑡2𝛼

Γ(2𝛼 + 1)
𝑒 𝑥+𝑦. 

In the same manner, we have 

𝑤𝑛(𝑥, 𝑦, 𝑡) = −
(2𝜌0)𝑛 𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
𝑒 𝑥+𝑦,

   𝑚𝑛(𝑥, 𝑦, 𝑡) =
(2𝜌0)𝑛 𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
𝑒 𝑥+𝑦,

      ∀𝑛 ≥ 1. 

Therefore, the solution of Eq.(31)  is given by 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤0 + 𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛 + ⋯, 

𝑚(𝑥, 𝑦, 𝑡) = 𝑚0 + 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛 + ⋯. 

𝑤(𝑥, 𝑦, 𝑡) =
𝜇𝑡𝛼

Γ(𝛼 + 1)
− 𝑒 𝑥+𝑦 ∑(2𝜌0)𝑛

𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)

∞

𝑛=0

 

= −𝑒 𝑥+𝑦𝐸𝛼,1(2𝜌0𝑡𝛼) +
𝜇𝑡𝛼

Γ(𝛼 + 1)
, 
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𝑚(𝑥, 𝑦, 𝑡) −
𝜇𝑡𝛼

Γ(𝛼 + 1)
+ 𝑒 𝑥+𝑦 ∑(2𝜌0)𝑛

𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)

∞

𝑛=0

= 𝑒 𝑥+𝑦𝐸𝛼,1(2𝜌0𝑡𝛼) −
𝜇𝑡𝛼

Γ(𝛼 + 1)
. 

By taking 𝛼 =  1 and  𝜇 =  0, then the exact 
solution of the classical Navier–Stokes Equation for 
the velocity is 

𝑤(𝑥, 𝑦, 𝑡) = −𝑒𝑥+𝑦+2𝜌0𝑡, 

𝑚(𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦+2𝜌0𝑡. 

The following figures, Fig.1 illustrates the 3D graph 
of exact solution of Example 5.1, for  𝜇 =  0 , 𝛼 =

 1 , 𝑡 =  2 and  𝜌0 = 0.4. 

The following figures, Fig.2 illustrates the 3D graph 
of exact solution of Example 5.1, for  𝜇 =  0 , 𝛼 =

 1 , 𝑡 =  2 and  𝜌0 = 0.6. 

 

Example 5.2 

Consider the time-fractional order two-dimensional 

Navier–Stokes Equation 

𝜕𝛼𝑤

𝜕𝑡𝛼 + 𝑤
𝜕𝑤

𝜕𝑥
+ 𝑚

𝜕𝑤

𝜕𝑦
− 𝜌0 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 ) = 𝜇,

𝜕𝛼𝑚

𝜕𝑡𝛼 + 𝑤
𝜕𝑚

𝜕𝑥
+ 𝑚

𝜕𝑚

𝜕𝑦
− 𝜌0 (

𝜕2𝑚

𝜕𝑥2 +
𝜕2𝑚

𝜕𝑦2 ) = −𝜇.
     (41)  

 where 𝑥, 𝑦, 𝑡 > 0 and 𝑛 − 1 < 𝛼 < 𝑛 . 

 

F
ig

.1
. 
T

h
e 

3
D

 g
ra

p
h

 o
f 

ex
a

ct
 s

o
lu

ti
o

n
 o

f 
E

q
.(

3
1
) 

fo
r  

𝜇
 =

 0
 , 

𝛼
 =

 1
 , 

𝑡 
=

 2
 a

nd
  𝜌

0
=

0
.4

. 

 

 
F

ig
.2

. 
T

h
e 

3
D

 g
ra

p
h

 o
f 

ex
a
ct

 s
o
lu

ti
o
n

 o
f 

E
q

.(
3
1
) 

fo
r  

𝜇
 =

 0
 , 

𝛼
 =

 1
 , 

𝑡 
=

 2
 a

nd
  𝜌

0
=

0
.6

. 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.8 Abdelilah Kamal. H. Sedeeg

E-ISSN: 2766-9823 93 Volume 6, 2024



Subject to the conditions 

𝑤(𝑥, 𝑦, 0) = − sin(𝑥 + 𝑦),

 𝑚(𝑥, 𝑦, 0) = sin(𝑥 + 𝑦) .
                     (42) 

Applying the Gamar transform for Eq. (41), we 

obtain 

𝔾[𝐷𝑡
𝛼𝑤 + 𝑤𝑤𝑥 + 𝑚𝑤𝑦] = 𝔾[𝜌0(𝑤𝑥𝑥 + 𝑤𝑦𝑦) +  𝜇],

𝔾[𝐷𝑡
𝛼𝑚 + 𝑤𝑚𝑥 + 𝑚𝑚𝑦] = 𝔾[𝜌0(𝑚𝑥𝑥 + 𝑚𝑦𝑦) − 𝜇].

 (43) 

By linearity property and partial derivative properties 

of Gamar transform, we get 

𝑊(𝑟, 𝑠, 𝑣) = −
𝓊(𝑣)

𝜑(𝑣)

𝓅(𝑟)𝓆(𝑠)[𝒲(𝑟) + 𝜓(𝑠)]

(𝒲2(𝑟) + 1)(𝜓2(𝑠) + 1)

+
1

𝜑𝛼  (𝑣)
𝔾[𝜇]

+
1

𝜑𝛼  (𝑣)
𝔾[𝜌0(𝑤𝑥𝑥 + 𝑤𝑦𝑦)]

−
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑤𝑥 + 𝑚𝑤𝑦] .    (44) 

𝑀(𝑟, 𝑠, 𝑣) =
𝓊(𝑣)

𝜑(𝑣)

𝓅(𝑟)𝓆(𝑠)[𝒲(𝑟) + 𝜓(𝑠)]

(𝒲2(𝑟) + 1)(𝜓2(𝑠) + 1)

−
1

𝜑𝛼  (𝑣)
𝔾[𝜇]

+
1

𝜑𝛼  (𝑣)
𝔾[𝜌0(𝑚𝑥𝑥 + 𝑚𝑦𝑦)]

−
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑚𝑥 + 𝑚𝑚𝑦].    (45) 

Taking inverse Gamar transform to Eqs.(44) and 

(45),we get 

𝑤(𝑥, 𝑦, 𝑡) = − sin(𝑥 + 𝑦) +
𝜇𝑡𝛼

Γ(𝛼 + 1)

+ 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝜌0(𝑤𝑥𝑥 + 𝑤𝑦𝑦)]]

− 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝑤𝑤𝑥

+ 𝑚𝑤𝑦]].    (46) 

𝑚(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦) −
𝜇𝑡𝛼

Γ(𝛼 + 1)

+ 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝜌0(𝑚𝑥𝑥

+ 𝑚𝑦𝑦)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝑤𝑚𝑥

+ 𝑚𝑚𝑦]].     (47) 

substituting Eq.(20) and Eq.(21) into Eq.(46) and  

Eq.(47) , we have 

𝑤0(𝑥, 𝑦, 𝑡) = − sin(𝑥 + 𝑦) +
𝜇𝑡𝛼

Γ(𝛼 + 1)
,

𝑚0(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦) −
𝜇𝑡𝛼

Γ(𝛼 + 1)
.

  (48) 

and, 

𝑤𝑛+1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (𝑤𝑛𝑥𝑥

+ 𝑤𝑛𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝐴𝑛

+ 𝐵𝑛]] ,           𝑛 ≥ 0.   (49) 

𝑚𝑛+1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (+𝑚𝑛𝑦𝑦

)]]

− 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[𝐶𝑛

+ 𝐷𝑛]] ,           𝑛 ≥ 0.   (50) 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.8 Abdelilah Kamal. H. Sedeeg

E-ISSN: 2766-9823 94 Volume 6, 2024



Putting 𝑛 = 0 into Eq.(49) and Eq.(50) and using 

Eqs.(27-30), we get 

𝑤1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑤0𝑥𝑥

+ 𝑤0𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝑤0𝑤0𝑥

+ 𝑚0𝑤0𝑦]] 

= 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[2𝜌0 sin(𝑥 + 𝑦)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[sin(𝑥 + 𝑦) cos(𝑥

+ 𝑦) − sin(𝑥 + 𝑦) cos(𝑥 + 𝑦)]] 

= 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[2𝜌0 sin(𝑥

+ 𝑦)]] = 2𝜌0𝔾−1 [
𝓊(𝑣)𝓅(𝑟)𝓆(𝑠)[𝒲(𝑟) + 𝜓(𝑠)]

𝜑𝛼+1 (𝑣)(𝒲2(𝑟) + 1)(𝜓2(𝑠) + 1)
] 

= 2𝜌0

𝑡𝛼

Γ(𝛼 + 1)
sin(𝑥 + 𝑦). 

in the same way, we get 

𝑚1(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [𝜌0 (𝑚0𝑥𝑥

+ 𝑚0𝑦𝑦
)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝑤0𝑚0𝑥

+ 𝑚0𝑚0𝑦]] 

= −𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[2𝜌0 sin(𝑥 + 𝑦)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[sin(𝑥 + 𝑦) cos(𝑥

+ 𝑦) − sin(𝑥 + 𝑦) cos(𝑥 + 𝑦)]] 

= −2𝜌0𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾[sin(𝑥

+ 𝑦)]] = −2𝜌0𝔾−1 [
𝓊(𝑣)𝓅(𝑟)𝓆(𝑠)[𝒲(𝑟) + 𝜓(𝑠)]

𝜑𝛼+1 (𝑣)(𝒲2(𝑟) + 1)(𝜓2(𝑠) + 1)
] 

= −2𝜌0

𝑡𝛼

Γ(𝛼 + 1)
sin(𝑥 + 𝑦). 

Similarly if  𝑛 = 1, 

𝑤2(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑤1𝑥𝑥 + 𝑤1𝑦𝑦)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝐴1 + 𝐵1]] 

= 𝔾−1 [
1

𝜑𝛼 (𝑣)
𝔾 [

−(2𝜌0)2𝑡𝛼

Γ(𝛼 + 1)
sin(𝑥 + 𝑦)]]

= −(2𝜌0)2
𝑡2𝛼

Γ(2𝛼 + 1)
sin(𝑥 + 𝑦). 

and, 

𝑚2(𝑥, 𝑦, 𝑡) = 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [𝜌0 (𝑚1𝑥𝑥 + 𝑚1𝑦𝑦)]]

− 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾[𝐶1 + 𝐷1]] 

= 𝔾−1 [
1

𝜑𝛼  (𝑣)
𝔾 [

(2𝜌0)2𝑡𝛼

Γ(𝛼 + 1)
sin(𝑥 + 𝑦)]]

= (2𝜌0)2
𝑡2𝛼

Γ(2𝛼 + 1)
sin(𝑥 + 𝑦). 

In the same manner, we have 

𝑤𝑛(𝑥, 𝑦, 𝑡) =
(−2𝜌0)𝑛 𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
sin(𝑥 + 𝑦) ,

   𝑚𝑛(𝑥, 𝑦, 𝑡) =
(−2𝜌0)𝑛 𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
sin(𝑥 + 𝑦) .

 ∀𝑛 ≥ 1. 

Therefore, the solution of Eq.(41)  is given by 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤0 + 𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛 + ⋯, 

𝑚(𝑥, 𝑦, 𝑡) = 𝑚0 + 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛 + ⋯. 
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𝑤(𝑥, 𝑦, 𝑡) = 

− sin(𝑥 + 𝑦) ∑(−2𝜌0)𝑛
𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
+

𝜇𝑡𝛼

Γ(𝛼 + 1)

∞

𝑛=0

 

𝑚(𝑥, 𝑦, 𝑡) = 

sin(𝑥 + 𝑦) ∑(−2𝜌0)𝑛
𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
−

𝜇𝑡𝛼

Γ(𝛼 + 1)

∞

𝑛=0

 

By taking 𝛼 =  1 and 𝜇 =  0, then the exact solution 
of the classical Navier–Stokes Equation for the 
velocity is 

𝑤(𝑥, 𝑦, 𝑡) = − sin(𝑥 + 𝑦) 𝑒−2𝜌0𝑡, 

𝑚(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦) 𝑒−2𝜌0𝑡. 

The above figures, Fig.3 illustrates the 3D graph of 
exact solution of Example 5.2, for  𝜇 =  0 , 𝛼 =  1 
, 𝑡 =  2 and  𝜌0 = 0.4. 

 

Thee above figures, Fig.4 illustrates the 3D graph of 
exact solution of Example 5.2, for  𝜇 =  0 , 𝛼 =  1 
, 𝑡 =  2 and  𝜌0 = 0.4. 

5. Concluding Remarks 

     General triple transform Adomian decomposition 

method is proposed in this paper as a solution to 

multi-dimensional fractional Navier-Stokes Eqution. 

Adopting this powerful method, fulfills the dual goal 

of managing fractional order partial differential 

equations, while maintaining high levels of 
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mathematical accuracy. We merely need to change 

the number of iterations. Hence, it can plausibly 

obtaining argued that GTTADM is a powerful 

method in exact and numerical solutions to multi-

dimensional Navier-Stokes Equation. 
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