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1 Introduction Scholars exerted great efforts to obtain solutions to

. . . . . fractional partial differential equations. In principle,
Fractional partial differential equations are P q princip

. . . . . finding exact solutions to fractional partial
essentially manifestation of classical partial

: . ifferential ti tail h effort. Hence,
differential equations. They have been developed and differential equations entails much effort. Hence

. . ) ) . scholars have focus on numerical methods,
applied to a wide range of physical and engineering

. . . . . . particularly the perturbation method. However, these
disciplines, including visco-elasticity, acoustics,

. . methods suffer from some limitations. For instance,
electromagnetic and electro-chemistry. More

. the fact that th imate soluti i i
recently, both double and triple Laplace e fact that the approximate solution requires a series

" . . of small parameters is puzzling because the majorit
decomposition methods were utilized to obtain P P £ jortty

solutions of fractional partial differential equations of nonlinear problems lack such parameters. While

[1-9]. Other methods have been equally successfully optimal choices of small parameters occasionally

. . result in ideal solutions, in the majority of cases
employed to solve linear and nonlinear problems

) serious flaws in solutions ensue form unstable
natural Sciences [ 10,11].

choices. The homotopy perturbation method was first
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developed in 1998[12-14] and was further studied by
a host of authors in order to handle linear and
nonlinear problems arising in scientific domains [15-
20]. Recently, many researchers have attempted to
find solutions of linear and nonlinear partial
differential equations using a variety of methods in
combination with all integral transform. Examples of
these are Laplace decomposition method and

homotopy perturbation transform method [21-27].

In a recent work, Kamal [28] suggested a novel
general triple integral transform known as Gamar

Transform, which is defined as follows:

T3 [W(X, Y, t): (T, S, U)] = G[W(X, Y, t); (T', S, ’U)]
= Tx [Ty [Tt [W(X, Y, t); t

> v]y - slx > r],r,s5,v >0,

=p() jowe_w(r)x a(s) -[Oooe_w(s)y u(v)jo¢

=p)g(s)u(v) e~ Wx—p(s)y=emty,(
1]
=W(r,s,v). (1)

provided that all integrals exists for some
W(r),Y(s) and ¢ (v), where W(r),y(s) and
@ (v) are transform functions for x,y and t
respectively. This transform can generate
virtually all triple integral transform through
changing the values of W(r),y(s) , ¢ (v),
W(r),Y(s) and ¢ (v).For examples:
o Ifp(r)=q(s)=u()=1and
W(r) =ry(s) =s,9(v) = v, then
this new transform turns into the triple

Laplace transform [38-41].
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=fffe‘rx‘sy‘”t[w(x,y,t)]dxdydt.
00 0

o Ifp@) =W =1,a() =) =1

r N
and u(v) = p(v) = %, then this new
transform turns into the triple Sumudu

transform[42].

1 v _x_y_t
= — e r s v
rsv ffe (w(x,y, t)]dxdy dt.
0 0

) If;ﬂ(ﬁ) =r,q(s) =s,u(v) =vand

1 1 1
W(r) = ;,1/1(5) = ;,ga(v) =, then
the new transform turns into the triple

Elzaki transform[43].

o Ifp() =7,4() = ;,u() = ;and

T
W(r) =r,(s) =s,p() = v, then
this new transform turns into the triple

Aboodh transform[44].

AAyAcw(x,y, t)]

00 ©O0 ©o
1

= _f f f e~ ™ TSV w(x,y, t)]dxdy dt.

rsv
0 0 0

o Ifp(r)=1,q() = %,u(v} = % and
r)=nrys) =s,0oW) = % , then this

new transform turns into the triple
Laplace-Sumudu-Aboodh

transform[45].
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o Ifp(r)=1,4q()=1u(w)=1and
(r) = %,1/}(5) = %,(p(v) = % , then this
new transform turns into the triple

Kamal transform[46].
Ky Ky Ke[w(x, y, )]
O O ©o L ) L
=fffe_?x_Ey_Ft[w(x,y,t)]dxdydt.
000
o Ifp(r)=1,49()=sul) = %and

W(r) =r,(s) = 5,p(v) =+, then
this new transform turns into the triple

Laplace- ARA - Sumudu transform[47].

LyGySe (w(x,y,t)]

1
fffe_”_Sy_?t[w(x,y,t)]dxdydt.
000

R

We note that the inverse Gamar transform is
defined by

T, W (r,s,v)] = G HW(r,s,v)]

=T, 1,7 1, W s )| = w0

a+ioco b+ioco
_ L f 1 weg, L f 1 v
2ni ) p() 2ni ) g(s)
a—ico b—ico
ER. (2)

where G = T, T, T; is the general triple transform
with respect to x, y and t , and the inverse of general
triple transform denoted by G™! = ']I'T_l']I's_l']I',,_1

is with respect to 7, s and v.

A well-known equation controlling the motion of
viscous fluid flow designated Navier-Stokes
Equation has been derived in the 19th century [29].
This equation is viewed as the equal to Newton's

second law of motion as far as fluid substances are
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concerned and it is a fusion of the equations of
momentum, continuity and energy. This equation
covers many physical phenomena such as blood flow,
liquid flow in tubes and air flow in the proximity of
aircraft wings. The fractional modelling of Navier-
Stokes Equation was first carried out by El-Shahed
and Salem [30] who applied the classic Navier-
Stokes Equation using Laplace and the finite Hankel
and Fourier Sine transforms combining homotopy
perturbation method and Laplace decomposition
method. Kumar et al [31] have analytically solved a
fractional model

nonlinear of Navier-Stokes

Equation. Furthermore utilizing the homotopy
analysis method, Ragab et al and Ganji et al solved
nonlinear time-fractional Navier-Stokes Equation
[32,33].In contrast, Birajdar [34] and Momani and
Odibat [35]

decomposition method for numerical computation of

have employed the Adomian
time-fractional Navier-Stokes Equation. Kumar et al
used both Adomian decomposition method and
Laplace transform algorithm to find the analytical
solution of time-fractional Navier-Stokes Equations
[36]. Morever, Chaurasia and kumar solved the same
problem by combining Laplace and Hankel finite
transforms [37].In the current paper, we will study
the system of multi-dimensional Navier-Stokes

Equation of the following form:

e ow ow 2w 9w _ lor
tW+W6x+m6y_p0<6x2+6y2>__;6x'
e om om 0°m 9°m _lor
tm+w—ax +m_6y — Po <_6x2 +_6y2> = _E_ay'

Where x,y,t >0andn—1<a <n.

Subject to the condition

w(x,y,0) = k(x,y),

m(x,y,0) =h(ry). D
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The objective of this paper is to present an
approximate analytic of multi-dimensional solution
of Navier-Stokes Equation using Gamar transform

combined with Adomian decomposition method.

The remainder of the paper is structured as follows:
In Section 2, basic concepts and properties of Gamar
transformation are introduced. Some core definitions
and notations on fractional calculus are outlined in
Section 3. A succinct description of GTADM is
presented in Section 4. In Section 5, the approximate
analytical solutions of two elected examples of time-
fractional order Navier-Stokes Equation are obtained.

Section 6 concludes the study.

2 Fundamental Concepts of Gamar

Transform

This section is concerned with the presentation of the
Gamar transform in three-dimensional spaces. We
out line basic properties regarding the existence
conditions, linearity and the inverse of this transform.
Moreover, some essential properties and results are
used to compute the Gamar transform for elementary
basic functions. We introduce the triple convolution
theorem and the derivative properties of the new
transform.

2.1 Some Properties and Theorems of Gamar
Transform [28]

Property 2.1. (Linearity). If G[w(x,y,t)] =
Y(r,s,v)and G[h(x,y,t)] = H(r,s,v), then for

any constants A and B , we have

G[Aw(x,y,t) + B h(x,y,t)] = A¥(r,s,v) +
B H(r,s,v). (5)

Property 2.2. If w(x,y,t) = f(x)h(y)z(t) ,x >
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0,y >0andt > 0. Then
Glw(x,y, )] = T [f (OIT, [RO)IT:[z(®)]. (6)

where T,,T,, and T; are general integral transform

for f(x), h(y) and z(t) respectively.

Definition 2.1. If w(x,y,t) defined on [0, X] X
[0,Y] x [0, T] satisfies the condition |w(x,y, t)|

< Ke®™*+0y*At 3K >0, Vx > X, y >Yand t > T.

Then, w(x,y,t) is called a function of exponential

orders a,6 and Aas x,y,t - .

Theorem 2.1.The existence condition of Gamar
transform of the continuous function w(x,y,t)
defined on[0,X] X [0,Y] X [0,T]is to be of
exponential orders a ,6and A, for Re[W(r)] > a ,
Re[yY(s)] > & and Re[p (v)] > A

Theorem 2.2. Let G[w(x,y,t)] = W(r,s, v). Then,

Glwlx—a,y—6,t—VDHMKXx —a,y—§,t—1)] =
e~ Wma-p(s)s-p)a Y(r,s,v). (®)

where H(x,y,t) denotes the unit step function

defined by

Hx—a,y—96,t—21)
1, x>a,y>6t>A

0, otllerwise.

Theorem 2.3. (Triple Convolution Theorem).
Let Glw(x,y,t)] = ¥(r,s,v) and G[[)(x,y,t)]

= H(r,s,v) , then
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and G[[I(x,y,t)] = H(r, s,v) , then

Y(r,s,v)H(r,s,v)
»r)g(s)u(v)

G[(w *++ () (x, y, )] = (9

2.2. Gamar Transform of Some Elementary
Functions [28]

° G[xnyntn] —

»(1) a(s) u@)

3
Wn+1(T) Ipn+1(s) (pn+1(1.7) (F(Tl + 1)) *

»(r) q(s) u(v)

ax+by+ct] —
* Gle ] = 5t-0 oD oo

e G[cos(ax + by + ct)] =

g ()u@) (W) (s)pw)—abe(w)—bcW(r)—acp(s)]

W2(r)+a?)(WP2(s)+b2) (9?2 (v)+c?)

e @G[sin(ax + by + ct)] =

»(1)g(s)u@)[bW(r) e (v)+ap(s)e(v)+cW(r)p(s)—abc]

W2(@)+a?)(WP2(s)+b2) (92 (v)+c?)

e  Glcosh(ax + by + ct)] =

2()g()u@) W) (s)pw)—abe(w)—bcW(r)—acp(s)]

W2(r)—a®) (@2 (s)-b*)(p?(v)—c?)

e @G[sinh(ax + by + ct)] =

»(M)g(s)u@)[bW(r)(v)+ap(s)p(v)+cW(r)p(s)+abc].

W2(r)-a?)([P?(s)-b?)(p2(v)—c?)

2.3. Gamar Transform for Partial Differential

Derivatives[28]

In this section, we present some theorems related
to the new general triple integral transform of partial

derivatives.

Theorem2.3. (Derivative properties with respect to
x). Let W(r,s,v) is general triple transform of
double

w(x,y,t) and Gp(0,s,v) is general

transform of w(0, y,t), then

E-ISSN: 2766-9823
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a) G [—aw((;’cy’t)] =WmY¥Y(r,s,v) —

»()G(0,s,v).

92 w(x y, t)]

b) G[ W?2(r)¥(r,s,v) —

ﬂﬂ(r)W(T)G 0,s,v) -
ow(0,y,t)

PITyT, [
) G [‘3 wixy, ”] W)W (r, s, v) —

- —1—i atw(0,y,
P () SR W T, T, [ A2

oxt
Theorem 2.4. (Derivative properties with respect to
y). Let W(r, s, v) is Gamar transform of w(x,y,t)
and Gp(r,0,v) is general double transform of

w(x,0,t), then

)G [ 2528 = ()95, v) -
4(s)Gp (1, 0,v).
b) G[M] P2($)W(r,s,v) —

@(S)IP(S)GD (‘l", 01 17) -
()T, T, [ 2228

"w(x,y,t)

0 G| =

| =y )we,sv) -

aiw(x,o,t)]
oyt ’

() I3 T (S) TR T |

Theorem 2.5. (Derivative properties with respect to
t). If W(r,s,v) is general triple transform of
w(x,y,t) and Gp(r,s,0) is general double

transform of w(x,y,0), then

2) G[™220] = p@)¥(r,s,v) -
u(v)Gp(r,s,0).
b) G [—azvgfz'y't)] = p?(W)¥(r,s,v) —

u()p)Gp(r,s,0) —
w(@W)T, T [aw("y 0)]
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c) G [—6"\/2(;231 't)] = "(V)¥Y(r,s,v) —

_ dtw(x,y,0
’LL(U) l 0 (pn ! l(v)TxTy [%}

Theorem 2.6. Let W(r,s,v) is general triple

transform of w(x,y,t), then

a) G[x"w(x,y,t)] =
_ n p(r) i "P(r'SJU)
( 1) w'(r) 6r”( p()) )
b) Gly"w(x,y t)] =

n a(s) 0 Y(r,s,v)
=D P'(s) 65"( a(s) )

o) G[t"w(x,y,t)] =

n uw(@) 0" (P(rsyv)
(-1 (p(v)avn( w(v) )

3. Basic Facts of the Fractional
Calculus [38]

In this section, some definitions, and properties
of the fractional calculus, which will be used in this
work, are presented.

Definition 3.1. The left Riemann-Liouville
fractional integral operator of order a > 0 of a

function w € R™ is determined as

1
lEw(®) = r'n—a) dxnf (¢

- lw(r)dr, n—1<a
(10)

where the integral on the right is convergent point

<n,x>0.

wise defined over (0, ).
Definition 3.2. The Caputo time-fractional
derivative operator order & > 0 of a function w(t)

on (0, ) is defined as

E-ISSN: 2766-9823
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1 t

DEw(t) = F(m——a)fo (t
) 1WW(T)dT n—1
<a<n. (1D

where the integral on the right is convergent point
wise defined over (0, ).
Definition 3.3.The Mittag-Leffler function with two

parameters is defined as

(o] tn
E, s(t) = E S
as(t) ' (na + &)
n=0

> 0.

56 €C ,R(a)

(12)
General triple transform of some Mittag-leffler

functions are given by
o Glxyt* 'Egs(pt™)] =

p@) as) u@e*’w)
W2(r) Y2(s) (9*()-p)

° G[yztaEl,a+1(t)] =

2 a(s) u(v)
W) P3(s) ) (@w)-1)

i G[tzaEa,Z()Hl (t)] =

»() q(s) u(v)
W) P(s) 2%w)(p(w)-1)

Theorem 3.1: Let t,6,u> 0, p-1<71 <p,
m-1<éd<m,n-1<pu <nand pmne€N, so
f € CY{(R* x R* x R"),l = max{p, m,n},
w® € L,[(0,8) x (0,0) x (0,9)] for any positive
B,6and9 and let |w(x,y,t)| < Ke™+oy+ut 3K >
0, vx>B>0,y>6>0and t>19 >0 holds

that

for constant K, 7,8, 4 > 0 .Then the general triple
integral transforms of Caputo’s fractional derivatives
Diw(x,y, t),D;f w(x,y,t) and Df w(x,y,t) are
defined by
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a) G[Dxw(x,y,t)]
=W*(r)¥(r,s,v)

n-1

—p()

. o'w(0,y,t
W= )TJ,Tt [ W y )]
i=0

b) G[D{ w(x,y,t)]

=Y°()¥(r,s,v)

- -1 9'w(x,0,t)
a(s) ) VIO, [—a l

c) (G[Df w(x,y, t)]

= ptW)¥(r,s,v)

— w(v) Z: @t (W) T, T, [alngﬂy’ 0)]

4. The Gamar Transform Adomian

decomposition method

In this part of the paper, we give the fundamental
idea of the Gamar Adomian decomposition method
(GADM) for the two-dimensional time-fractional
Navier—Stokes Equations. In order to show the
fundamental plan of the general triple Adomian
decomposition method, we consider the following

system of two-dimensional time-fractional Navier—

Stokes Equations:

DEw+w—+m

D + 6m+ om 62m+62m _lor
e Wy may Po\ 9x2 ay2) pay’
x,y,t>0, n—-1<a<n. (13)

Subject to the conditions

w(x,y,0) = k(x,y),

m(x,7,0) = h(x,y). a5

E-ISSN: 2766-9823
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% . . o
where D = 5ca 18 fractional Caputo derivative , r

is the pressure, in addition if 7 is known . Put p =
10r 10r

;a and Tt = ;@
Applying the Gamar transform for Eq. (13), we

obtain

u ow ow ’w  0%w
th+wa+ ay p0<ax2 a—yz>=—u,
om om ’m 0°m
Dtm+wa—+ ay - Po (W-I_G_)IZ):_T’
x,y,t>0. (15)

By linearity property and partial derivative properties

of Gamar transform, we get

W(r,s,v)—% (r,s) + a()G[Wxx"'Wyy]

L Gww, +mwy] - ———Gl . (16

27 () wWwy + mw,, ) nl. (16)

M(r,s,v) =%H(r s)+ a( )(Gz[mxx+myy]
1

gy Slme + mmy ] - sl a7)

Taking inverse Gamar transform to Eqs.(16) and

(17),we get
e )
w(x,y,t) =Gt [ml((r, s)]

+ Gt

07 ( )G[Wxx + Wyy]]

1
_-1
G [(p () (G[WWx + mwy]

— Gt G[ u|. (18)

p* (v)
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m(x,y,t) = G?! [%H(n s)]

- Po =0 n=0
+G! () G[my, + myy]] )
- G ! G A
_ 1 - a (p Z n
-G 27 ) G[wm, + mmy]] ¢ ) =0
|2 Glt|. (19 + z Bn| (22)
_‘Pa (v) n=0
The Adomian decomposition method admits the = [
Zm (x,y,t) =G wv) H(r,s)
decomposition of w(x, y, t) and m(x, y, t) into P e o (v)
infinite series components as follows 1
© —-G! (pa (v) (G:r[ T]]
W(xlth)zng(ny't)J -
n=0 ] o
P (20) 1
+ Gt Glp Z m
m(x,y,t) = Z m, (x,y,t). * (v) | ° e o
n=0 )
and the nonlinear terms ww,, mwy, , Wi, and + Z mnyy) -1
n=0 i
mm,, be equated to an infinite series of polynomials ]
1
as follows -Gt G Z C
* @) | &
ww, = Ay, mw, = Z B, , ¢
* ; " o +ZDn . (23)
(21) n=0

[00] (00}
me=ZCn,my=ZDn.
n=1 n=1

where A, , B, , C, and D,, are He’s polynomial.

The various components wy(x,y,t) and m,(x,y,t)
of the solutions w(x,y,t) and m(x,y,t)
respectively can be easily determined by using the
substituting Eqs.(20) and (21) into Eqs.(18) and following recursive relations

(19),we have

_ -1 [r®) _ ut®
- wo(%,3,0) = G [ZEK (1, 5)| — s, o
Z W?'l (x’ y’ t) mo(x: y: t) = G_l I:;Z’((Z))H(rr S)] - rg:at-:tl) )
n=0
@) ] B ;
= K(r,s)|—G G and,
Lo ) P R
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Wn+1(xl Y, t) = G_l

(p“l(v) G [po (anx + WnYY)

)

1
-Gt G[A B, |1,
(pa (v) [ n + TL] n
=>0. (25
_ 1
mn+1(x:% t) =G ! (pa ('l]) G [po (mnxx
+ m"yy) N T]
—-G? ! G[C,, + D, ]
RO Rt
=>0. (26)

provided that the Gamar transform exist for

Eq.(24),(25) and (26).

Note that, the first few terms of the Adomian

polynomials A,, B,,, C,, and D,, are given by

Ap = wowy,, ,

Ay = wowy, + wiwg, (27)
AZ = WOWZx + W1W1x + W2W0x ’
By = moeWo,, »
B, = moeWy,, + m;Wo,, (28)
Bz = m()WZy + m1W1y + m2W0y 5
Co =womy, ,
E-ISSN: 2766-9823 90
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€1 =womy, +wimg, (29)

CZ == Womzx + Wlmlx + Wzmox

Dy = memy,, »
D, = memy,, +mymy,, , (30)

DZ == momzy + mlmly + mzmoy

Thus, the solutions are

w(x,y,t) = Z w, (x,y,t)
n=0

m(x,y,t) = Z m, (x,y,t).
n=0

5. Applications

In this section of this paper, we discuss the
achievement of our present methods and examine its

accuracy by using the decomposition method with

connection of the Gamar transform.

Example 5.1

Consider the time-fractional order two-dimensional

Navier—Stokes Equation

“w ow ow 62W 62W

T Wt me—py (GE+5E) =~

a 2 2 (31)
a_m+wa_m+ma_m_ a_m+a_m - _

At ax dy Po\ 5z a2 ) K-

where x,y,t >0andn—-1<a <n.

Subject to the conditions
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w(x,y,0) = —e**, ut?
32 — _—eXty 4 7
m(x,y,0) = e*tY, (32) w(x,y,t) ¢ +F(a+1)
, [ 1
Applying the Gamar transform for Eq. (31), we + Gt WG[PO(WH + wyy)]
obtain )
1
— G |——=G[ww,
G[DEW + wwy + mwy,| = G[po(Wyx + wyy) + 1], 33) ¥ ()
G[Dfm + wm, + mmy] = G[po(myx + myy) —ul.
+ mwy] . (36)
By linearity property and partial derivative properties
of Gamar transform, we get ut®
m(x,y,t) =e*V — ——
Wrsv) = u@)  p) a(s) [(a+1)
Y p() W) -1 @(s) - 1)
+ Gt G[po(Myx
+ Glu] p* (v)
p* (v)
+ ;G[po(wxx +wyy )] + myy)]]
(pa (U) yy
1
1
— G[wwx —-G! Glwm
9* (v) 0% (v) [
+ mwy] , (34)
M s, p) = 2@ 4 +mm,||. (37)
r,S,v) =
p() W) -1 @(s) - 1)
— 1 Glu] substituting Egs.(20) and (21) into Eqs.(36) and (37)
@* (v)
" ,we have
+ —— Gpo (Max + myy)]
p* (v) ut®
1 wo(x,y,t) = —e*V + ————,
L _Glwm, HatD (3g)
p* (v) ut®
mo(x,y,t) =e*V — —,
+mm,|. (35) I'(ax +1)
Taking inverse Gamar transform to Egs.(34) and Wnet(,y,6) = G2 ) G [ 0o (anx

(35),we get

)|

_gt |t G[A,, + B,]
) " "

)

n=>0. (39)
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1 1 — Zp Le x+y
My (x,y,1) = G % (v) G [po (m”xx T(a+1)
Similarly if n =1,
+ m"yy)]
B 1
gL e+ b, w0 =675 e (Wl’”‘wl”)]]
() "M
>0 40 . G[(Zp )Zieﬁy]
n = 0. (40) 0% (v) * Ta+1)
Putting n = 0 into Eq.(39) and Eq.(40) and using (v) () (s)
_ w(v pr Qs
Eqs.(27-30), we get Po P21 ()W) -1 @) — 1)
2a
__ 2 - L xty
1 = ~@p) F 1 ®
Wl(-xl Y, t) =G 1 (pa (V) G [pO (Woxx + WOJ’Y)]] ( )
and,
-G | ———=G |wyw,
0% (v) prowo. |t
my(x,y,t) = G 2% ) G [PO (mlxx + mlyy)]
+ m()WOy]]

- 1 t* x+
-6 1[<pa o7 e e vy y]]

= o7 (o) CL2Poc "*y]] = (2p0)*G™! [ () 2(r) 20) ]
PP )W) -1D @(s) - 1)
2a
[ ) 2@ a® - oo 1y
S P OICTOEENCTOREY
e In the same manner, we have
—2pp———— e X1V
Po INa+1) ¢ 20" £
(2po)
wy(x,y,t) = —me oy,
in the same way, we get (2po)™ t"® vYn=1.
M (%, Y, 1) = e XY,
1 I'(na +1)
) =Gt G +
ma (%, 6) % (v) ['DO (mo"x Moyy )]] Therefore, the solution of Eq.(31) is given by
-Gt 0 (v)G [Womox w(x,y,t) =wo +wy +wy + -+ wy + -,
+ mym, ]] m(x,y,t) =mo+my +my + -+ my, + .
y
Hta i tna
1 w(x,y,t) = Tas D © Xy Z(Zpo)"ﬁ
— —(G_l (pa (v) (G[Zpoe x+y]] (a + ) oy (na + )
u(v) p(r) 4(s) = —e VEq1(2pot®) + L
= 2p,G1 [ * INa+1)
Pt () W) —1) @(s) — 1)

E-ISSN: 2766-9823 92 Volume 6, 2024



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING

DOI: 10.37394/232026.2024.6.8 Abdelilah Kamal. H. Sedeeg
ut® chy © Lot The following figures, Fig.2 illustrates the 3D graph
m(x,y,t) — m te Z(ZPO) m of exact solution of Example 5.1, for 4 = 0,a =
n=0 1,t = 2and py = 0.6.
x+y a 'uta
=e " VEy1(2pot®) — at 1)

By taking @« = 1 and p = 0, then the exact
solution of the classical Navier—Stokes Equation for
the velocity is

w(x, y, t) — _ex+y+2p0t’

m(x,y,t) = eXtY+2pol,

The following figures, Fig.1 illustrates the 3D graph
of exact solution of Example 5.1, for u = 0,a =
1,t = 2and py = 0.4.

0.4.

1,t = 2and pg

Fig.2. The 3D graph of exact solution of EQ.(31) for ¢ = 0,a = 1,t = 2and p, = 0.6.

Example 5.2

Consider the time-fractional order two-dimensional

Navier—Stokes Equation

%w ow ow a%w | 9Zw\ _

ot T E-l'ma_po(axz ayZ)_'u’ 41
a%m om om 9%m | 9%m\ _ (41)
e W rman—po (GE o) =

where x,y,t >0andn—-1<a<n.

Fig.1. The 3D graph of exact solution of Eq.(31) for 4 = 0,a =
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Subject to the conditions

w(x,y,0) = —sin(x +y),

m(x,y,0) = sin(x + y). (42)

Applying the Gamar transform for Eq. (41), we

obtain

(G[Dtaw +ww, + mwy] = G[po (Wxx + Wyy) + ,u],
(G[Df’m +wm, + mmy] = G[po (mxx + myy) — ,u].

By linearity property and partial derivative properties
of Gamar transform, we get

u@) p(r)g(s) W) +9Y(s)]

W(r,s,v)=— q)(l)) (WZ(T) + 1)(1!)2(5) +1)

+ Glu]

@* (v)
+ ﬁ(@[po(wﬂ +wyy)]

1
@* (v)
_u@) p(r)a ()W) + ¥ (s)]
p(w) W2(r) + D@2(s) + 1)

L Gy
p* (v) #

G[wa + mwy] . (44

M(r,s,v)

1
+ 0% (v) G[po(mxx + myy)]

- G|lwm, + mm,|. (45
(pa (17) [ X Y] ( )
Taking inverse Gamar transform to Egs.(44) and

(45),we get

a

ut

w(x,y,t) = —sin(x +y) + m

[ 1
+ (G_l Wﬁ[po (Wxx + Wyy)]

—g! 1

E T (v) (G[wa

+mwy]. (46)
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a

ut

m(x,y,t) = sin(x +y) — m

1
o* (v)

)|

—G1 1
4

+G™

G [.0 0 (mxx

substituting Eq.(20) and Eq.(21) into Eq.(46) and
Eq.(47) , we have

a

. pt
wo(x,y,t) = —sin(x + y) + ———,
F(a(;l— 1) (48)
) t
mo(x,y,t) = sin(x + y) — et D)
and,
Wnp1(x,y,t) = G™1 0% (v) G [Po (anx
t W”yy)]]
G1! 1 G[A
e (w) "
+B,1/, n>0. (49)
mn+1(x: Y, t) = G_l al v G [pO (+mnYY)]
o* (v)
1
-1
G 27 (0) G[Cy,
+D,11, n=0. (50)

Volume 6, 2024



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,

COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING

DOI: 10.37394/232026.2024.6.8

Putting n = 0 into Eq.(49) and Eq.(50) and using
Eqgs.(27-30), we get

wi(x,y,t) =G

1
O |

1

-1
“lorw

G [WOWO X

+ moWoy]]

G[2p sin(x + )]

—g! 1
P

“ ()

= G_l 1
%

* ()

G[sin(x + y) cos(x

+y) —sin(x + y) cos(x + y)]

= G_l

1
27 W) G[2p, sin(x

uW)p(r)g ()W) +(s)]

+ )]

=2poG™" [

a

= 2py————si .
Po Fa+D sin(x + y)

in the same way, we get

my(x,y,t) = G}

1
el ()|
1

_r-1
¢ p* (v)

G [womo X

+ momoy]]

=_G! G[2pg sin(x + y)]

1
p* (v)

-G G[sin(x + y) cos(x

1
p* (v)

+y) —sin(x + y) cos(x + y)]
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= —2p,G~! 27 () G[sin(x
~ [ w@p@a) W) +pis)]
]| = =2006 [q) W) + D) + 1)

a

—2pg=———=si .
PO+ D) sin(x +y)

Similarly if n =1,

wy(x,y,t) =Gt

1
7ol (e o )|

1
-Gt G[A{ + B
1 —(2pp)?t®
= (G,_l i
2% () F@+D) sin(x +y)
2a
= —(2pg)? ———si .
200t 1y S+ )
and,
my(x,y,t) = G al > G [Po (m1xx + m1yy)]
o* (v)
1
—G! = G[C, + D,]
o* (v)
1 (2pp)°t”
= G_l i
2= ¢ |Ta+ D sin(x + y)
2a
= (2p0)? ———si :
(2po) F2a+ D) sin(x +y)
In the same manner, we have
(=2pp)™ "%
wy(x,y,t) = msm(x +vy),
n ina vn = 1.
my,(x,y,t) —Msin(x+ )
ntX Y, C T(ha+1) Y-

Therefore, the solution of Eq.(41) is given by
W(X,y, t) = WO + Wy + Wy + e+ Wn + -,

m(x:y;t) =my +m1 +m2 + -|-mn + ...,
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w(x,y,t) =

na a

+ Ht
'ha+1) T'(a+1)

—sin(x +y) Z(—Zpo)"
n=0

m(x,y,t) =

na a

ut
(na+1) T(a+1)

sin(x +y) Z (=2p0)" 1
n=0

Bytakinga = 1and u = 0, then the exact solution
of the classical Navier—Stokes Equation for the
velocity is

w(x,y,t) = —sin(x + y) e~ 2Pot,

m(x,y,t) = sin(x + ) e~2Pot,

0.4.

Fig.3. The 3D graph of exact solution of Eq.(41) for ¢ = 0, = 1,t = 2and p,

E-ISSN: 2766-9823
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The above figures, Fig.3 illustrates the 3D graph of
exact solution of Example 5.2, for u = 0,a = 1
,t = 2and p, = 0.4.

0.6

2and py =

O,a =1,t

Fig.4. The 3D graph of exact solution of Eq.(41) for u

Thee above figures, Fig.4 illustrates the 3D graph of
exact solution of Example 5.2, for u = 0,a = 1
,t = 2and py = 0.4.

5. Concluding Remarks

General triple transform Adomian decomposition
method is proposed in this paper as a solution to
multi-dimensional fractional Navier-Stokes Eqution.
Adopting this powerful method, fulfills the dual goal
of managing fractional order partial differential
levels of

equations, while maintaining high
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mathematical accuracy. We merely need to change
the number of iterations. Hence, it can plausibly
obtaining argued that GTTADM is a powerful
method in exact and numerical solutions to multi-

dimensional Navier-Stokes Equation.
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