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Abstract: We consider the discrete-time stochastic process {Xn, n = 0, 1, . . .} defined by Xn+1 = Xn − ϵn+1,
where ϵn+1 is a non-negative random variable. The aim is to compute the mean first-passage time to zero for this
process, which can be used as a model for the remaining lifetime of a machine. Particular cases are solved exactly
and explicitly.
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1 Introduction
Let {ϵn, n = 1, 2, . . .} be an infinite set of indepen-
dent and identically distributed (i.i.d.) non-negative
random variables. We consider the discrete-time
Markov process {Xn, n = 0, 1, . . .} defined by

Xn+1 = Xn − ϵn+1. (1)

This stochastic process could be used to model the
remaining lifetime of a machine.
Remark. If we define

Xn+1 = Xn + ϵn+1 (2)

instead, then {Xn, n = 0, 1, . . .} could be awear pro-
cess.

Our aim is to determine the expected value of the
first-passage time

T (x) = min{n ≥ 0 : Xn ≤ 0 | X0 = x ≥ 0}. (3)

In theory, the random variables ϵn could be of dis-
crete, continuous or even mixed type. In this paper,
we consider the case when they are continuous. Then,
to obtain the mean

m(x) := E[T (x)], (4)

one possibility is to solve an integral equation. This
integral equation can sometimes be transformed into
a differential equation. Another possibility is to first
compute the Laplace transform of the function m(x)
and then try to invert this transform. We assume that
m(x) exists (and is finite), which should be the case
because ϵn ≥ 0.

Remark. A related model that could be used for the
remaining lifetime is

Xn+1 = µ+Xn + Zn+1, (5)

where µ < 0 and {Zn, n = 1, 2, . . .} is a white noise
process, such that E[Zn] = 0, E[Z2

n] = σ2 and
E[ZnZm] = 0 for any m ̸= n. Then, {Xn, n =
0, 1, . . .} would be a random walk process with drift
µ or an autoregressive process of order 1, which is
denoted by AR(1). First-passage-time problems for
this type of stochastic processes have been consid-
ered, in particular, by, Novikov [1] and, [2], Lar-
ralde [3], Basak and Ho [4], Novikov and Kordza-
khia [5], Di Nardo [6] and, Baumgarten [7]. In
these papers, the authors often assume that the ran-
dom variable Zn+1 has a Gaussian distribution, so
that {Zn, n = 1, 2, . . .} is a (discrete)Gaussian white
noise. Moreover, they generally try to compute nu-
merical solutions to the appropriate integral equations
and/or obtain bounds on E[T (x)] or other quantities.
Recent papers on related problems are, Rahimov et
al. [8] and, Aliyev et al. [9].

2 Mean first-passage time to zero
Assume that the set Sϵ1 of possible values of the ran-
dom variable ϵ1 is the interval [0,∞). Then, for any
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x > 0, we can write that

m(x) = 1 + E[m(x− ϵ1)]

= 1 +

∫ ∞

0
m(x− z)fϵ1(z)dz

= 1 +

∫ x

0
m(x− z)fϵ1(z)dz

y=x−z
= 1 +

∫ x

0
m(y)fϵ1(x− y)dy. (6)

Therefore, to obtain the functionm(x), one can try to
solve the above integral equation, which is an inho-
mogeneous Fredholm integral equation of the second
kind (see, for instance, Arfken [10], p. 865 or, Arfken
et al. [11], p. 1047).

Next, we can also write that

m(x) = 1 +

∫ x

0
m(x− z)fϵ1(z)dz

= 1 +

∫ ∞

0
uz(x)m(x− z)fϵ1(z)dz, (7)

where uz(x) is the Heaviside step function defined by

uz(x) =

{
0 if x− z < 0,
1 if x− z ≥ 0. (8)

LetL(s) denote the Laplace transform of the func-
tionm(x):

L(s) :=
∫ ∞

0
e−sxm(x)dx, (9)

where we assume that s ∈ (0,∞). Then, taking the
Laplace transform of both sides of Eq. (7), we obtain
that

L(s) =
1

s
+

∫ ∞

0
e−sx

[ ∫ ∞

0
uz(x)m(x− z)

fϵ1(z)dz

]
dx

=
1

s
+

∫ ∞

0

[∫ ∞

0
e−sxuz(x)m(x− z)dx

]
fϵ1(z)dz

=
1

s
+

∫ ∞

0
e−szL(s)fϵ1(z)dz. (10)

Hence, we can state the following proposition.
Proposition 2.1. If the moment-generating function

Mϵ1(s) :=

∫ ∞

0
e−sz fϵ1(z)dz (11)

of the random variable ϵ1 exists, then we can write
that

L(s) = 1/s

1−Mϵ1(s)
. (12)

Remark. Proposition 2.1 gives us another possibility
to determine the mean first-passage timem(x), if we
are able to invert the Laplace transformL(s). It might
actually be easier to proceed this way than trying to
solve the integral equation (6). Moreover, in the case
when we are not able to solve Eq. (6) or to invert the
Laplace transform, the function L(s) at least gives us
some information aboutm(x).

A third possibility is to try to transform the integral
equation (6) into a differential equation. Differentiat-
ing both sides of Eq. (6) with respect to x, we deduce
from Leibniz integral rule that

m′(x) = m(x)fϵ1(0) +

∫ x

0
m(y)

dfϵ1(x− y)

dx
dy.

(13)
As will be seen in the next section, it is sometimes
possible to express the above integral in terms of the
functionm(x).

3 Particular cases
In this section, we will consider various particular
cases for which we are able to computem(x) explic-
itly and exactly.
Case I. Assume first that ϵ1 has an exponential distri-
bution with parameter λ, such that

fϵ1(z) = u0(z)λe
−λz. (14)

The integral equation (6) becomes

m(x) = 1 +

∫ x

0
m(y)λe−λ(x−y)dy. (15)

With the help of the mathematical software program
Maple, we find that the solution to the above equation
is

m(x) = 1 + λx. (16)

Next, the moment-generating function of ϵ1 is
given by

Mϵ1(s) =
λ

λ+ s
, (17)

provided that s > −λ, which holds true because we
assumed that s > 0. Substituting this expression into
Eq. (12), we get

L(s) = λ+ s

s2
. (18)

We find that the inverse Laplace transform of L(s) is
indeedm(x) = 1 + λx.

Finally, we have, for x− y ≥ 0,

dfϵ1(x− y)

dx
= −λfϵ1(x− y). (19)
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Therefore, making use of Eq. (6), we can rewrite
Eq. (13) as follows:

m′(x) = m(x)fϵ1(0)− λ [m(x)− 1] . (20)

That is,
m′(x) ≡ λ. (21)

Hence, since
lim
x↓0

m(x) = 1, (22)

we conclude thatm(x) = 1 + λx.
Remark. Notice that there is a discontinuity at the
boundary, because m(0) = 0, but if x > 0 then
m(x) ≥ 1.

Thus, when ϵ1 ∼ Exp(λ), the three techniques
considered to calculate the mean first-passage time
m(x) enable us to obtain this function.
Case II. Suppose now that

fϵ1(z) = u0(z)
λ(λz)α−1e−λz

Γ(α)
, (23)

where α, λ > 0 and Γ(·) is the gamma function. That
is, ϵ1 has a gamma distribution with parameters α and
λ. This time, Maple is not able to provide a solution
to the corresponding integral equation for any α and
λ. If we let α = 2, Maple gives us the following
solution:

m(x) =
N(x)

λ4x4 + 12
, (24)

where

N(x) := λ4x4 − 4λ3x3 + 6λ2x2 + 24− 2e−λx

(λ3x3 + 3λ2x2 + 6λx+ 6). (25)

Since the moment-generating function of ϵ1 ∼
G(2, λ) is

Mϵ1(s) =

(
λ

λ+ s

)2

, (26)

the Laplace transform ofm(x) is given by

L(s) = 1/s

1−
(

λ
λ+s

)2 . (27)

The inverse Laplace transform of L(s) is found to be

m(x) =
1

4
e−2λx +

1

2
λx+

3

4
, (28)

which is different from the expression in Eq. (24).
Figure 1 presents the functions m(x) defined in
Eq. (24) and Eq. (28) in the interval [0, 1], when
λ = 1.

Figure 1: Functions m(x) defined in Eq. (24) (solid
line) and in Eq. (28) (dashed line) when λ = 1, for
0 ≤ x ≤ 1.

The integral equation that we must solve when
ϵ1 ∼ G(2, λ) is

m(x) = 1 +

∫ x

0
m(y)λ2 (x− y)e−λ(x−y)dy. (29)

We can transform it into an ordinary differential equa-
tion (ODE). We have

m′(x) =

∫ x

0
m(y)λ2e−λ(x−y)dy (30)

− λ

∫ x

0
m(y)λ2 (x− y)e−λ(x−y)dy,

which can be rewritten as follows:

m′(x) =

∫ x

0
m(y)λ2e−λ(x−y)dy − λ [m(x)− 1].

(31)
Notice that, since m(0+) := limx↓0m(x) = 1, this
equation implies thatm′(0+) = 0.

Differentiating a second time, we get

m′′(x) = m(x)λ2 − λ

∫ x

0
m(y)λ2e−λ(x−y)dy

− λm′(x)

= m(x)λ2 − λ
{
m′(x) + λ [m(x)− 1]

}
− λm′(x). (32)

That is,

m′′(x) + 2λm′(x)− λ2 = 0. (33)

We can easily obtain the general solution of
this second-order ODE with constant coefficients.
The solution that satisfies the boundary conditions
m(0+) = 1 and m′(0+) = 0 is the function defined
in Eq. (28). If we substitute this function into the inte-
gral equation (29), we find that it does indeed satisfy
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this equation. However, Maple does not seem able
to compute the right-hand side of Eq. (29) with the
functionm(x) given in Eq. (24). Therefore, we must
conclude that the solution of the integral equation pro-
vided by Maple is not correct.
Remark. When Maple is unable to give us the ex-
act solution to a certain integral equation, we can use
the option Neumann. This option yields an approx-
imate solution (which is actually sometimes the ex-
act one) known as a Neumann series solution (see,
Arfken [10], p. 879). In the case of the integral equa-
tion (29), the Neumann series solution mN (x) is of
the form

mN (x) = 7− e−xP (x), (34)
where P (x) is a polynomial of degree 11. When
we plot the function m(x) defined in Eq. (28) and
mN (x), we find that they practically coincide in the
interval [0, 1]. The largest difference between the
two functions is near x = 1, and it is smaller than
5× 10−12; see Figure 2.

Figure 2: Difference between the function m(x) de-
fined in Eq. (28) and the Neumann series solution
mN (x) given in Eq. (34) when λ = 1, for 0 ≤ x ≤ 1.

Case III. Assume next that ϵ1 = |Z0|, where Z0 ∼
N(0, 1), so that

fϵ1(z) = u0(z)

√
π

2
e−z2/2. (35)

Maple is unable to solve the integral equation ex-
actly with this density function. Using the option
Neumann, it gives us a very complicated expression.
We are however able to plot the Neumann series so-
lution. It is shown in Figure 3 for x ∈ [0, 1].

The moment-generating function of ϵ1 is given by

Mϵ1(s) = es
2/2 erfc(s/

√
2), (36)

where “erfc” is the complementary error function.
Unfortunately, it seems very difficult to invert the
Laplace transform of m(x) obtained by substituting
the functionMϵ1(s) into Eq. (12).

Figure 3: Neumann series solution when fϵ1(z) is the
function defined in Eq. (35), for 0 ≤ x ≤ 1.

Similarly, it does not seem possible to transform
the integral equation into an ODE, like we did in the
two previous cases. Therefore, in this case we must
content ourselves with the approximate solution pro-
vided by Maple, which can at least be evaluated nu-
merically.

Case IV. In the last example that we present, we relax
the assumption that Sϵ1 = [0,∞). What is important,
is that Sϵ1 = [0, d], with d > X(0) = x. Suppose that
ϵ1 ∼U[0, x+δ], where δ > 0. That is, ϵ1 is uniformly
distributed over the interval [0, x+ δ], so that

fϵ1(z) =
1

x+ δ
for 0 ≤ z ≤ x+ δ. (37)

We must then solve the integral equation

m(x) = 1 +

∫ x

0
m(x− z)

1

x+ δ
dz

= 1 +
1

x+ δ

∫ x

0
m(y)dy. (38)

We find that

m(x) = 1 + ln
(
x+ δ

δ

)
. (39)

This solution can also be obtained by differentiating
Eq. (38):

m′(x) = − 1

(x+ δ)2

∫ x

0
m(y)dy +

1

x+ δ
m(x)

=
1

x+ δ
. (40)

The solution of this simple first-order ODE that satis-
fies the boundary conditionm(0+) = 1 is indeed the
function given in Eq. (39). Notice that if δ decreases
to zero, then E[T (x)] tends to infinity.
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Remarks. (i) This example can be generalized by
defining

Tγ(x) = min{n ≥ 0 : Xn ≤ γ | X0 = x ≥ γ},
(41)

where γ ≥ 0. We then find that

m(x) = 1 + ln
(
x+ δ − γ

δ

)
. (42)

(ii) If we assume instead that ϵ1 ∼ U[0, d], where d >
X(0) = x, the integral equation becomes

m(x) = 1+

∫ x

0
m(x−z)

1

d
dz = 1+

1

d

∫ x

0
m(y)dy.

(43)
It is easy to check that

m(x) = ex/d. (44)

4 Conclusion
In this note, a first-passage-time problem for stochas-
tic processes related to autoregressive processes of
order one, denoted by AR(1), has been considered.
While in the case of AR(1) processes the noise term
ϵn is assumed to have zero mean, here we assumed
instead that ϵn is a non-negative random variable, so
that E[ϵn] > 0. Moreover, by definition, the stochas-
tic process {Xn, n = 0, 1, . . .} is non-increasing and
could therefore be used as a model for the remaining
lifetime of a device or an engineering structure, such
as a dam.

In Section 2, we gave three ways to calculate the
average value of the first-passage time T (x) to zero,
from X0 = x. Then, in Section 3, we presented ex-
plicit and exact solutions to important particular prob-
lems.

Because we assumed that ϵn is a continuous ran-
dom variable, oneway to obtainE[T (x)] is by solving
an integral equation. When ϵn is a random variable of
discrete type, Eq. (6) will become a difference equa-
tion instead.

We also assumed that either Sϵn = [0,∞) or
Sϵn = [0, d], with d > X0 = x. If d < x, the possi-
bility that E[T (x)] does not exist (that is, is infinite)
becomes much more likely.

Finally, it would be interesting to compute the
moment-generating function and/or the distribution
of T (x).
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