
References:
[1] Abd-Elrahman A.M. and Sultan K.S.,
Reliability estimation based on general
progressive censored data from the Weibull
model: Comparison between Bayesian and
Classical approaches. METRON-International
Journal of Statistics, LX2, 2007, pp.239-257.
[2] Ahsanullah M., Maswadah M. and Seham
A.M., Kernel Inference on the Generalized
Gamma Distribution based on Generalized
Order Statistics. Journal of Statistical Theory
and Applications, Vol.12, No. 2, 2003,
pp.152-172.
[3] Almheidat M., Lee C. and Famoye F. A.,
generalization of the Weibull Distribution
with Applications. Journal of Modern Applied
Statistical Methods, Vol. 15, No. 2, 2016,
pp.788-820.
[4] Alzaatreh A., Famoye F. and Lee C., Gamma-
Pareto distribution and its applications,
Journal of Modern Applied Statistical
Methods, Vol. 11, No.1, 2012, pp.78-94.
[5] Alzaatreh A., Lee C. and Famoye F., A new
method for generating families of continuous
distributions, METRON-International Journal
of Statistics, Vol. 71, No. 1, 2013a, pp. 1:63-
79.
http://dx.doi.org/10.1007/s40300-013-0007-y
[6] Alzaatreh A., Famoye F. and Lee C., Weibull-
Pareto distribution and its applications,
Communications in Statistics-Theory and
Methods, Vol. 42, No. 9, 2013b, pp. 1673-
1691.
http://dx.doi.org/10.1080/03610926.2011.599
002
[7] Alzaatreh A., Famoye F. and Lee C., The
gamma-normal distribution: Properties and
applications, Journal of Computational
Statistics and Data Analysis. Vol.69, No. 1,
2014, pp. 67-80.
[8] Alzaatreh A., Lee C., Famoye F., On
generating T-X family of distributions using
quantile functions, Journal of Statistical
Distributions and Applications. Vol. I, No. 2,
2014, pp. 1-17.
[9] Balakrishnan N, and Aggarwala R.,
Progressive Censoring: Theory, Methods and
Applications. Birkhãuser Publishers, Boston,
2000.
[10] Balakrishnan N. and Cramer E., The art of
Progressive Censoring: Applications to
Reliability and Quality, Statistics for Industry
and Technology. Springer, New York, 2014.
[11] Bhaumik D.K. and Kapur K., Gibbons RD.
Testing Parameters of a Gamma Distribution
for Small Samples, Technometrics, Vol. 51,
No.3, 2009, pp. 326-334.
[12] Bush J. G., Woodruff B.W., Moore A., H.,
and Dunne, E. J., Modified Cramervon Mises
and Anderson-Darling tests for Weibull
distributions with unknown location and scale
parameters. Communications in Statistics,
Part A-Theory and Methods, Vol. 12: 1983,
pp. 2465-2476.
[13] Chandra M., Singpurwalla N., D. and
Stephens M., A., Kolmogorov statistics for
tests of fit for the extreme-value and Weibull
distribution, Journal of the American
Statistics Association, Vol. 76, No. 375. 1981,
pp. 729-731.
[14] Cho Y., Sun H., and Lee K., An estimation of
the entropy for a Rayleigh distribution based
on doubly generalized Type-II hybrid
censored samples, Entropy, Vol. 16, 2014, pp.
3655–3669.
[15] Cho Y, Sun H, Lee K. Exact likelihood
inference for an exponential parameter under
generalized progressive hybrid censoring
scheme, Stat. Method. 2015a; 23:18–34.
[16] Cho Y., Sun H. and Lee K. Estimating the
Entropy of a Weibull Distribution under
Generalized Progressive Hybrid Censoring,
Entropy., Vol. 17, 2015b, pp.102-122.
doi:10.3390/e17010102.
[17] Gurney J., E. and Cramer E., Exact likelihood
inference for exponential distribution under
generalized progressive hybrid censoring
schemes, Statistical Methodology, Vol. 29,
2016, pp. 70- 94.
[18] Guillamon A. J., Navarro J. and Ruiz J., M.,
Kernel density estimation using weighted
data. Commun. Statist. -Theory Meth., Vol.
27, No. 9, 1988, pp. 2123-2135.
[19] Guillamon A. J., Navarro J. and Ruiz J., M., A
note on kernel estimators for positive valued
random variables, Sankhya: The Indian
Journal of Statistics. Vol. 6, No. A, 1999,
pp.:276-281.
[20] Kundu D. and Joarder A., Analysis of Type-II
progressive hybrid censored data, Comput.
Stat Data Anal., Vol. 50, 2006, pp. 2509–
2528.
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.1