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Abstract: - The technology of modular enumeration is based on the minimizing of repetitive calculations - their 
results are stored in RAM and used as needed. While this technology can be used for different types of problems 
to be solved, optimal parameters of modular enumeration operating mode are known only in the case of solving 
discrete optimization problems with Boolean variables. The paper contains proofs of two theorems, permitting 
modular enumeration optimal operating mode determination in general case. The paper also contains examples 
of solution by modular enumeration optimal organization related to the two problems i. e. the search for the 
numerical value of multiple integral and that for a globally optimal solution to an extreme problem with Boolean 
variables, the last being based on knapsack problem solution. 
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1 Introduction 
All the numerical problems we deal with in the first 
approximation can be divided into two groups. The 
first group consists of problems solved by efficient 
algorithms with a polynomial dependence of the 
operating time on the size of the task data [1, 2], while 
for problems of the second group such algorithms 
have not been developed, and their solution time is 
known to be related to their data size according to the 
exponential law [3-5]. As examples of the second 
group of problems, we can also suggest the search for 
numerical values of multiple integrals, roots of 
equations, discrete programming problems, where 
the search for solutions in the general case is based 
on various enumeration procedures [6, 7, 10-16]. 
These leads to the efforts to reduce the running time 
when solving numerical problems of the second 
group which can be identified as either analytical or 
computer-based. The latter dominate either in 
relation to the use of parallel computing [8, 9], or in 
relation to special procedures for a single processor, 
permitting to reduce the enumeration time. Thus, in 
the 20-th century for solving discrete programming 
problems,  implicit enumeration methods were 

developed based on minimizing of enumeration 
volume, such as dynamic programming, branch-and-
bound (B&B) methods, backtracking [9-11] and their 
modifications [12] – [15]. The technology of modular 
enumeration [16-19] first proposed in 2021 also for 
solving discrete programming problems is based on a 
different ideology i. e. calculation time shortening is 
achieved not by reducing the amount of enumeration, 
but by minimizing repetitive calculations - their 
results are stored in RAM and used as needed. 
Both approaches though, have their drawbacks: 

 Using the implicit enumeration, it is 
impossible to predict a priori either the 
number of iterations, or its upper bound and, 
as a result, it is impossible to predict the gain 
in time as a result of these procedures using 
as compared to the brute force method.   

 Gain in running time by using modular 
enumeration as compared to the brute force 
method depends on its parameters, but 
optimal parameters of modular enumeration 
operating mode are known only in the case 
of solving discrete optimization problems 
with Boolean variables [17-20].  
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At the same time, unlike the implicit enumeration 
methods, modular enumeration permits us:  
a) to use this technology for the solution of 

different kinds of problems, such as 
numerical calculation of integrals and roots 
of equations [6]; 

b)  to predict the gain in time as result of its use 
as compared to the brute force method. 

   The paper aims at determination of modular 
enumeration optimal operating mode in general case, 
it contains description, mathematical modeling, 
analysis, and examples of modular enumeration 
optimal organization related to the two problems to 
be solved that is a search for the numerical values of 
multiple integrals [6] and search for a globally 
optimal solution to extreme problems with Boolean 
variables, the last being based on knapsack problem 
solving [21]. 

2 Designations and Assumptions 

Q – enumeration volume; 

m – the number of modules used (below we suppose 
that the value √𝑄

𝑚  is always integer); 

qi – size of the content of i-th module (1≤i≤m); 

V – used by modular enumeration software RAM 
size; 

V - computer free RAM size; 

ε – constant in the range 1÷ √𝑄
𝑚 ; 

kj – j-th coefficient.  

Below are used the following assumptions: 

                         Q=∏ 𝑞𝑖=𝑚
𝑖=1 i.                          (1) 

                        V= k1∑ 𝑞𝑖=𝑚
𝑖=1 i.                        (2) 

3 Basic Ideas of Modular Enumeration 
  The essence of solving any problem by modular 
enumeration technology is to implement its two 
stages:  the first stage includes the preparation for the 
enumeration minimization of its repetitive 
computations, at the second stage the actual 
enumeration is carried out. Each stage consists of two 
steps. The first, preparatory stage consists of the 
following two steps: 
 At the first step all different components of 
enumeration units are grouped and stored into “m” 

modules thus creating qi values (1≤i≤m) satisfying 
(1). At the second step of the first stage for each unite 
of each module, its’ part of the corresponding to the 
solved problem functions are calculated and stored as 
satisfying (2).  
    The second stage also includes two steps: 
The first step relates to the usage of contents of the 
modules to generate all the Q values which 
correspond to the solved problem functions.  
The second step includes processing of the data 
created at the previous step according to the specific 
of the problem solved. For example, their comparison 
in the case of extremum search and calculation of 
their sum in the case of integral value determination.  
It should be noted that if at the second stage of 
modular enumeration an extremum is sought, then at 
the first stage after the second step it is possible to cut 
off the obviously “unpromising” components of each 
module, which will reduce the duration of the second 
stage, but at the same time increase the duration of 
the first one. An example is given in Section 4. 

Example 1. 

By the use of fixed Q value and m=2 modules of 
modular enumeration the following problem:              

             S = ∬ [
𝑏 𝑑

𝑎 𝑐
f1(x1)+f2(x2)]dx1dx2,          (3) 

is substituted by the expression S1≈S:  

        S1=𝐺 ∙ ∑ ∑ [𝐹
√𝑄

𝑗=0

√𝑄

𝑖=0 1(i)+F2(j)],              (4) 

where G=(𝑏−𝑎)∙(𝑑−𝑐)

[√𝑄+1]2
;  F1(i)= f1{ a+(b-a)∙i/√𝑄};         

F2(j)= f2{c+(d-c)∙j/√𝑄}. 

During the first step of the first stage are created two 
modules, each i-th module containing 1 + √𝑄 
different values of xi (i=1,2) in the range presented in 
(3). During the second step values xg,h, (g=1,2; 
0≤h≤√𝑄)are substituted by the 1 + √𝑄 values of 
fg(xg,h). The latter are used at the first step of the 
second stage for sum W calculation:        
       W=∑ ∑ ∑ [

𝑔=2
𝑔=1 f√𝑄

𝑗=0
√𝑄
𝑖=0 g(xg,i)+f3-g(x3-g,j)].            (5) 

The last step of the second stage results in value S1 
determination: S1=

(𝑏−𝑎)∙(𝑑−𝑐)

[√𝑄+1]2
∙ 𝑊.         (6) 

It is easy to show that the upper bound of the gain η 
in the running time for calculating (4) when applying 
modular enumeration with m=2 and coinciding sizes 
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of modules if compared to the traditional 
enumeration scheme is equal to the ratio:  

                      η= [√𝑄+1]
2

2[√𝑄+1]
 = 0.5∙ [√𝑄 + 1].           (7)  

It is shown below that (7) corresponds to the optimal 
operating mode of modular enumeration in relation 
to the conditions for problem (3) solving if true is the 
following inequality: V ≥ k1∙2∙√𝑄. Experimental 
verification of this approach effectiveness for the 
case, when f1(x1)=x1

2, f2(x2)= √x2, a=c=0, b=d=1, 
m=2, is presented in [19].    

4   Optimal Operating Mode Search 

The description of modular enumeration presented 
above poses two questions about its optimal 
operating mode: 

 What is the optimal number of modules, 
minimizing the running time for a specific 
task? 

 What should be the optimal qi (i=1,2,…,m) 
values for fixed number of modules m and 
Q value, minimizing needed for any 
problem solving free RAM size? 

To answer the second question its formal statement 
using (1) and (2), where m and Q are constants is 
analyzed below: 
     ∑ 𝑞𝑖=𝑚

𝑖=1 i →min; 
                                ∏ 𝑞𝑖=𝑚

𝑖=1 i = Q;                         (8) 
                                Ɐi, qi ≥ 0. 
 
True is the following theorem, solving (8): 

  Theorem 1. Optimal solution of (8) should satisfy 
the following conditions: Ɐi, qi = √𝑄𝑚 .                 (9) 

  Proof. Obviously, if the theorem is true, then 
modules of which satisfies condition (9):  

                             V1 = k1∙ m∙ √𝑄𝑚 .                      (10)         

Let now determine a new amount of required RAM 
V2 with the following modules sizes: 

              

                       qi= √𝑄𝑚 − 𝜀;                                                   

                       qj=( √𝑄𝑚
)2/( √𝑄𝑚 − 𝜀);                       (11) 

                       Ɐt≠(iVj): qt = √𝑄𝑚 .                                                                   

Obviously, if the theorem 1 is true, then V2≥V1. (12) 

The value V2 corresponding to (11) is equal to: 

V2=k1∙[ √𝑄
𝑚

− 𝜀 + ( √𝑄
𝑚

)2/( √𝑄
𝑚

− 𝜀) + (m − 2) ∙

√𝑄
𝑚

].                                                                     (13)                                                   

We denote the difference V2-V1 as ΔV: ΔV= 
k1∙[ √𝑄

𝑚
− 𝜀 +  ( √𝑄

𝑚
)2/( √𝑄

𝑚
− 𝜀) − 2 ∙ √𝑄

𝑚
]. (14) 

After transformations on the right side of (14), we 
obtain: 

                 ΔV= k1∙[𝜀2/( √𝑄
𝑚

− 𝜀)].                  (15) 

As proportionality coefficient k1 as well as the 
expressions in the numerator and denominator (15) 
are non-negative, the following inequality is true: 
ΔV≥0. This implies (12). Q.E.D. 

Using Theorem 1 and equality (2), the mathematical 
model of the problem of minimizing the time of 
modular enumeration can be represented as: 

          T = k2∙m∙ √𝑄
𝑚  + k3∙m∙Q → min;              (16) 

           V = k1∙m∙ √𝑄𝑚 ;                                         (17) 

           V≤ V,                                                       (18) 

where ki (i=1,..3) are the proportionality coefficients, 
V is the amount of free RAM in the computer used. 

Solving system (16) - (18) theorem is presented 
below. 

Theorem 2. The number of equal size modules m, 
minimizing the value of upper bound of problem (16) 
- (18) goal function, coincides with the minimal 
integer value of m, satisfying (17), (18). 

Proof. From (17) follows: m∙ √𝑄𝑚 = 𝑉/𝑘1.        (19) 

We study two cases of system (16)-(18) upper bound 
of goal function value determination: in the first one 
for any integer m>1 true is inequality V≤ V, whereas 
in the second case this inequality is true only for a 
subset of integer m values.                                                                                      

1. Let us suppose that true is the following 
expression: Ɐm≥2, k1∙m∙ √𝑄𝑚 ≤ V.             (20)                   
Substituting the the right sides of (19) and (20) in 
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(16) we can get the expression for τ – the upper 

bound of T:  
                τ = k2∙ V /k1 + k3∙m∙Q.                (21) 

As, according to the definitions above, in (21) 
values of V, Q and of all the proportionality 
coefficients are nonnegative constants, value of 
dτ/dm is also nonnegative. It means, that 
minimal value of τ is determined by the 
minimal value of m, satisfying (20): in this case 
m=2.  

2. Let us now suppose that instead of (20) being true 
the following conditions: Ɐm>2, Ɐm>i≥0: 

a) k1∙(m+i)∙ √𝑄
𝑚+𝑖 ≤ V;                   (22) 

b) k1∙(m-i)∙ √𝑄
𝑚−𝑖 ≥ V.                     (23) 

If m’ is the root of equation k1∙m∙ √𝑄
𝑚  = V,    satisfying 

conditions (22) and (23), then τ – the upper bound of 
modular enumeration time looks as follows:  

                        τ = k2∙ V /k1 + k3∙m’∙Q.                (24) 

Repetition of speculations above permits us to prove, 
that optimal value of m, minimizing the upper bound 
of T, is equal to m’.  

    Thus, the number of equal size modules m, 
minimizing the value of upper bound of modular 
enumeration running time, coincides with minimal 
integer value of m, satisfying (17), (18). Q.E.D. 

The results above are illustrated by two examples: by 
an example1 above of using modular enumeration for 
integral (3) computing, and by the example 2 below 
of using modular enumeration to solve the knapsack 
problem, where m=3 is the root of equation k1∙m∙ √𝑄𝑚  
= V, satisfying conditions (22) and (23). 

Example 2. 

Using m=3 modules of modular enumeration the 
following knapsack problem is solved: 

F=2z1+7z2+4z3+6z4+3z5+8z6 → max            
R=9z1+3z2+8z3+5z4+7z5+4z6 ≤10;                       (25)      
ꓯi, zi=1,0.  

1. Results of the first two steps of the first stage of 
modular enumeration are presented bellow in the 
Tables 1-3: each i-th table corresponds to the i-th 
module mi (i=1,2,3). 

                                                     Table 1 
m1 
z1 z2 F(m1) R(m1) 

0 0 0 0 
0 1 7 3 
1 0 2 9 
1 1 -∞ 12 

                                                     Table 2 
m2 
z3 z4 F(m2) R(m2) 
0 0 0 0 
0 1 6 5 
1 0 4 8 
1 1 -∞ 13 

                                                     Table 3 
m3 
z5 z6 F(m3) R(m3) 
0 0 0 0 
0 1 8 4 
1 0 3 6 
1 1 -∞ 11 

 
2 The “unpromising” components of each i-th 

module are presented by the vectors belonging 
to the third and fourth lines of Table i, 1≤i≤3, 
since the vector in the second line of each 
module corresponds to the values F and R, 
which are simultaneously “better” than those 
located below: the value F is greater, and the 
value R is less. After elimination of un-
promising vectors of variables, Tables 1-3 are 
below transformed into Tables 4-6, each i-th 
Table (i=4,5,6) corresponding to module mi-3: 

                                                    Table 4 
m1 
z1 z2 F(m1) R(m1) 
0 0 0 0 
0 1 7 3 

                                                     Table 5 
m2 

z3 z4 F(m2) R(m2) 

0 0 0 0 

0 1 6 5 

                                                     Table 6 
m3 

z5 z6 F(m3) R(m3) 

0 0 0 0 

0 1 8 4 

 
3 The Table 7 below illustrates the first step of 

the second stage of modular enumeration: each 

line contains different vectors of all modules 

presented in the Table 2 and the corresponding 

values of the system's (25) objective function F 

and the sum R of the components on the left 

side of this system's inequality. 

                                                                Table 7 
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# z1 z2 z3 z4 z5 z6   F R 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 8 4 

3 0 0 0 1 0 0 6 5 

4 0 0 0 1 0 1 14 9 

5 0 1 0 0 0 0 7 3 

6 0 1 0 0 0 1 15 7 

7 0 1 0 1 0 0 13 8 

8 0 1 0 1 0 1 -∞ 12 

 
4 It is easy to see, that the optimal problem (25) 

solution is presented by the 6-th vector of 

variables in the Table 7. The gain η in running 
time when applying modular enumeration is 
compared with the brute force usage includes 
the following factors:  

a)  the number of arithmetical operations 
when calculating the values of F and R 
during the first step of the second stage 

of modular enumeration was two times 

less than in the case of the brute force; 

b)  due to the elimination of “unpromising” 

vectors of variables, the number of 
analyzed by modular enumeration 

different vectors of variables (Table 3 

above) was eight times less than their 

total number in (25); 

c) the latter does not guarantee a gain in time 

to find a solution compared to exhaustive 

modular search due to the time spent for 

searching and removing unpromising 

vectors of variables. 

Statistical results of experimental verification of the 
effectiveness of knapsack problem solving by 
modular enumeration are presented in [5, 17-20]. 

5 Conclusions                                                

1. The efficiency of modular enumeration is a 
predicted value, which increases with 
increasing search volume, regardless of the 
specifics of the problem being solved. 

2. Optimal modular enumeration operating 
mode minimizing the value of upper bound 
of this procedure running time is 
characterized by:  

• a uniform distribution of 
components of enumerated objects among 
modules;  

• the number of equal size modules, 
coinciding with their minimal integer value, 
satisfying the free RAM restrictions. 

Further development of modular enumeration can be 
associated with the following:  

 shortening the running time for the first stage 
of this procedure i. e. preparation for the 
enumeration minimizing its repetitive 
computations by applying modular 
enumeration also for each module; 

  verification of the effectiveness of 
composite algorithms using modular 
enumeration in relation to not yet 
investigated functions and the extension of 
this approach to new subject areas. 
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