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Abstract  In the work reported herein, we adopt a Newton-Richtmeyer iterative scheme to arrive 
at solutions describing heat transfer in a longitudinal rectangular fin. Both the thermal 
conductivity and heat transfer coefficients are assumed to be temperature dependent and the 
governing partial differential equation highly nonlinear.  In order to validate the numerical 
formulation, we consider some analytical results for this class of problems at steady state 
.Comparisons show convergence to exact solutions as demonstrated by local and global error 
indicators. In addition,various fin parameters which play a key role for efficient fin operation and 
design are investigated by carrying out a comprehensive dynamical qualitative study.  
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1. Introduction 
Many significant phenomena in continuum 
physics are nonlinear;  and  defy closed form 
or analytical solutions except in a few cases 
[1]-[3]. For nonlinear problems, many 
numerical approaches  usually linearize the 
governing differential equation  before 
applying iterative procedures built around 
numerical approximations. Variations of 
thermal conductivity in fins  and the 
accompanying nonlinearity for these types 
of models have been extensively studied [4]-
[8]. Progress in this field, is reflected by the 
development of the so called semi-exact 
analytical techniques or hybrid numerical 
and analytic techniques [9-12]. The 
homotopy analysis method (HAM)  is a 
utilitarian approximate analytic technique 
used for obtaining solutions for strongly 
nonlinear problems [12]. The choice of 
some initial approximations and auxiliary 
linear operators facilitates the conversion of 
a complicated nonlinear differential equation 
into an infinite number of linear sub-

problems which are finally handled by 
summation. 
A lot of work involving the application of 
optimization techniques to nonlinear fin 
problems has been ongoing in literature. We 
refer the reader to [13]-[15]. Further efforts 
include applications to annular fins [16]-
[17].  More recently formulations involving 
function  approximating ability of  Legendre 
polynomials based on artificial neural 
networks (ANN) have come into the picture. 
These comprise the global search 
optimization  ability of Whale optimization 
algorithm (WOA), and local search 
convergence  technique of Nelder-Mead 
algorithm [18]. 
 
 Most of these methods , especially semi-
analytic techniques can provide reliable 
results only when the nonlinearities are 
weak. Apart from involving complex 
mathematical analysis, they are also 
encumbered by relatively large number of 
terms, and implicit expressions which 
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oftentimes involve rigorous computations. 
Hence they have not been found useful in 
large scale design and analysis. On the other 
hand domain based numerical techniques 
like the finite element FEM) and especially 
finite difference methods ( FDM), have been 
widely applied with significant success to 
transient nonlinear problems. While the 
FEM relies on the characterization  of the 
governing boundary value equations by 
minimization principle involving integral 
equations, FDM is more straightforward,  
and less complicated [19]-[21].  
 
In this work we deploy an implicit finite 
difference Newton-Richtmeyer scheme to 
compute the one- dimensional, nonlinear, 
heat transfer process in a longitudinal 
rectangular fin with temperature dependent 
thermal properties. In addition, we carry out 
a qualitative study in order to investigate 
how the solution behaves for various 
parameter changes. Subtle changes, produce 
different trajectories of the given system 
known as phase planes. The shape of these 
paths, the direction of the trajectories and 
their characterizations close to the critical 
points  are the essential features of this 
approach. Except for  [22] this approach has 
often been neglected .   
 
2. Mathematical Formulation 
We consider a rectangular longitudinal one 
dimensional fin with cross-sectional area 

cA . Fin perimeter is given by P, and the 
length denoted by L. The fin is attached to a 
fixed base of temperature bT  and extends 
into a fluid whose temperature is denoted by 

aT . From conservation of energy, the 
governing equation for the heat transfer 
process in the fin is given as: 

 

    1

v c

a

T T
c A K T

t X X

PH T T T


   

  
   



 

where K and H are non-uniform thermal 
conductivity and heat transfer coefficient 
and are both dependent on temperature .  We 
adopt the procedure in [23] for 
nondimentionalization of equation (1).  

 
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b

a b

T T
H T h

T T

 
  

 
, 

   1a aK T k T T       
where    is the thermal conductivity 
parameter, 

aT  is the ambient temperature, 

ak  is the thermal conductivity of the fin at 
ambient temperature, bh  is the fin 
temperature coefficient at fin base,   is the 
density, n , the convective heat transfer 
power, is an exponent that accounts for the 
heat transfer mode ranging from nucleate 
boiling to thermal radiation, vc  is the 
volumetric heat capacity, T is the 
temperature, t is the time variable while X is 
the spatial coordinate. Equation (1) is a 
transient, one- dimensional, nonlinear partial 
differential equation. To be tractable 
numerically, it requires initial and boundary 
conditions. Initially, the fin is kept at the 
temperature of the fluid (the ambient 
temperature). 
 
   0, 2aT X T                   

The model problem is specified in such a 
way that at the fin base a temperature is 
specified explicitly, while there is insulation 
at the other end. This situation admits a 
Dirichlet and Neumann types of boundary 
conditions given as: 
 

   
0

, 0 3b

x

T
T t L T and

X 


 


                

In order to further facilitate the numerical 
solution of the model equations, we 
introduce the following dimensionless 
variables: 
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These reduce equation (1) into the following 
dimensionless form 
  

     2 , 0 1 5k h
 

    
  
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   , , , , ,h k      are defined as 

dimensionless distance, time, temperature, 
heat transfer coefficient, thermal 
conductivity and thermo-geometric fin 
parameter respectively. For practical 
purposes, the heat transfer coefficient is 
often chosen as a power law representation 
of the temperature variable;   nh   , 
where n is the power law coefficient of the 
heat transfer variable and for practical 
purposes takes on values within the range of 

3 3n . For this study the thermal 
conductivity varies linearly with temperature 
and is given as 
    1k     , where, 

 b aT T   and is a measure of thermal 
conductivity heat with temperature. 
Equation (5) can now be recast to read 
 

 
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  where the thermal conductivity parameter 
 is non-zero. The associated initial and 
boundary conditions of equation (6) are 
restated as follows: 

   
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3. Newton-Richtmyer scheme 

  
To allow for a more robust treatment, 
equation (6) is represented generically as  
                                                                 

1
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(8) 

where    u f u  represent nonlinear 
conduction and  sink  terms.  Equation (8) is 
represented implicitly as: 

 
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f
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Where k is the notational time variable for 
old and new time steps. The RHS is key to 
the development of this scheme in the sense 
that if it signifies the new  values, then it is 
proper we have an idea of what the old  
values are in the first place. We initiate this 
procedure, by considering one of the terms 

in the bracket  


 


 
 

 
 . For the purposes 

of this analysis we refer to it as  the  pseudo 

convection term and is expressed as:  

 

 
1
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i i i
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t
t
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Applying the product rule of derivatives on 
the second term of equation (10) yields: 
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(11) 

Hence 
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    (12)    

The temporal term in equation (9) is simply 
approximated with a forward difference 
scheme: 
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Introduce equation (13) into (12) to yield: 
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or 
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(15) 

The RHS of equation (9) can be written as: 
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(16) 

Now we substitute equation (16) into equation (9)  to give: 
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 The derivative terms are approximated 
discretely a 
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The discrete analog of the governing 
differential equation 

 after some non-trivial algebra is given as  
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(19) 

The Newton-Richtmeyer scheme has been 
adopted to carry out linearization involving 
the nonlinear source and the conduction 
terms. The resulting  equation (19) is in 
delta form  

 1k

i
u


 . And t can be expressed 

in a tridiagonal matrix form as 
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where ,  ,A B  and C   are coefficients of the 
tri-diagonal matrix and D  the ‘known’ ing 
to equation (20). Let 2r t    , then 
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                                                                                    (21) 

The dependent variable is finally obtained as : 

1( , ) ( , ) ( , )i k i k i kt t t                                                                                 (22) 

 

3. Results and Discussion 
 

3. 1 Linear Case 

We convert equation (6) to steady-state  and 
test for linear and nonlinear scenarios in 
order to facilitate comparison with available 
literature results. 
 

When 0,







 0, 0n    ; equation (6) 

becomes time invariant and linear. The 
thermal conductivity parameter is no longer 

under consideration. Together with  the 
boundary conditions; the analytical solution  
is:  

 
 

 
 

cosh
23

cosh
x

x





                                                                                                 

 Tables (1) and (2) are in excellent 
agreement with those shown in [24] for the 
same fin parameters.    
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 Table 1 : Linear Solution for 0.5   

0   

X 
0.5

current

   0.5
Exact

   0.5
LMM

   0.5
HAM

   0.5
DTM

   

0.00 0.886819 0.88681 0.886819 0.88681 0.88681 

0.05 0.887096 0.88709 0.887096 0.887096 0.88709 

0.10 0.887928 0.88792 0.887928 0.88792 0.88792 

0.15 0.889314 0.88931 0.889314 0.88931 0.88931 

0.20 0.891257 0.89125 0.891257 0.89125 89125 

0.25 0.893756 0.89375 0.893756 0.89375 0.89375 

0.30 0.896814 0.89681 0.896814 0.89681 0.89681 

0.35 0.900433 0.90043 0.900433 0.90043 0.90043 

0.40 0.904614 0.90461 0.904614 0.90461 0.90461 

0.45 0.909361 0.90936 0.909361 0.90936 0.90936 

0.50 0.914677 0.91467 0.914677 0.91467 0.91467 

0.55 0.920564 0.92056 0.920564 0.92056 0.92056 

0.60 0.927026 0.92702 0.927026 0.92702 0.92702 

0.65 0.934068 0.93406 0.934068 0.93406 0.93406 

0.70 0.941693 0.94169 0.941693 0.94169 0.94169 

0.75 0.949907 0.94990 0.930411 0.94990 0.94990 

0.80 0.958715 0.95871 0.958715 0.95871 0.95871 

0.85 0.968123 0.96812 0.968123 0.96812 0.96812 

0.90 0.978135 0.97813 0.978135 0.97813 0.97813 

0.95 0.988758 0.98875 0.988758 0.98875 0.98875 

1.00 1.000000 1.000000 1.000000 1.000000 1.000000 
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Table 2: Linear Solution for  1.0   

0   

X 
1.0

Current

   1.0
Exact

   1.0
LMM

   1.0
HAM

   1.0
DTM

   

0.00 0.648054 0.64805 0.648054 0.64805 0.64805 

0.05 0.648865 0.64886 0.648865 0.64886 0.64886 

0.10 0.651297 0.65129 0.651297 0.65129 0.65129 

0.15 0.665359 0.65535 0.665359 0.65535 0.65535 

0.20 0.661059 0.66105 0.661059 0.66105 0.66105 

0.25 0.668412 0.66841 0.668412 0.66841 0.66841 

0.30 0.677436 0.67743 0.677436 0.67743 0.67743 

0.35 0.688154 0.68815 0.688154 0.68815 0.68815 

0.40 0.700594 0.70059 0.700594 0.70059 0.70059 

0.45 0.714785 0.71478 0.714785 0.71478 0.71478 

0.50 0.730763 0.73076 0.730763 0.73076 0.73076 

0.55 0.748568 0.74856 0.748568 0.74856 0.74856 

0.60 0.768246 0.76824 0.768246 0.76824 0.76824 

0.65 0.789844 0.78984 0.789844 0.78984 0.78984 

0.70 0.813418 0.81341 0.813418 0.81341 0.81341 

0.75 0.839025 0.83902 0.839025 0.83902 0.83902 

0.80 0.866730 0.86670 0.866730 0.86670 0.86670 

0.85 0.896603 0.89660 0.896603 0.89660 0.89660 

0.90 0.928718 0.92871 0.928718 0.92871 0.92871 

0.95 0.963155 0.98875 0.963155 0.98875 0.98875 

1.00 1.000000 1.000000 1.000000 1.000000 1.000000 
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Figure 1: Linear Solution for various values of   

 
 
Fig. 1 displays the temperature profiles for 
the linear solution. It can be observed that  
larger values of the thermogeometric 
parameter   , produce higher  temperature 
profile gradients. This is in consonance with 
the definition of   as found in  

equation (4). Assuming we keep to the same 
geometric characteristics for all the runs, 
higher values of   results in higher 
convection at the base of the fin or lower 
heat conductivity.  
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3. 2 Nonlinear Case  0   

Results obtained from the steady state 
analog of the governing differential equation 
allows for direct comparison with those 
found in literature .  

 

 

 
 

2 12 2

2 24
1 1

n
d d

dx dx

    

 


  

  
  

 

where     1D    ; it follows that   : 

    

 
 

12 2

2

ln
25

nd Dd d

d d dx D

   

  

   
      

 
where 

   

  
 

2

1 1

ln
26

d d d

d d d

d D d

d d

    

    

 

 

       
               

   
     

  
 
 

We compare  numerical results obtained by 
solving equation (24)   with those solved  by 
Leibnitz-MacLaurin’s method (LMM) and 
the homotopy analysis method (HAM)  [24]. 
Table 3 confirms the closeness of the results 
for all the cases tested. Overall, the results of 
the tests not only satisfy the boundary 
conditions but also confirm the validity of 
the problem formulation. 
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Table 3: Nonlinear Solution for various values of   

x  
0.2

Current

 
  

0.2
LMM

 
 

0.2
HAM

 
 

0.00 0.903447 0.903447 0.90344 

0.05 0.903687 0.903686 0.90348 

0.10 0.904405 0.904404 0.90440 

0.15 0.905600 0.905599 0.90559 

0.20 0.907277 0.907276 0.90727 

0.25 0.909431 0.909429 0.90942 

0.30 0.912064 0.912063 0.91206 

0.35 0.915179 0.915178 0.91517 

0.40 0.918776 0.918774 0.91877 

0.45 0.922853 0.922853 0.92285 

0.50 0.927416 0.927416 0.92741 

0.55 0.932466 0.932464 0.93246 

0.60 0.93800 0.937998 0.93799 

0.65 0.944023 0.944021 0.94402 

0.70 0.950533 0.950533 0.95053 

0.75 0.957538 0.957537 0.95753 

0.80 0.965033 0.965034 0.96503 

0.85 0.973026 0.973026 0.97302 

0.90 0.981516 0.981517 0.98151 

0.95 0.990505 0.990507 0.99050 

1.00 1.0000 1.0000 1.0000 
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To further confirm the numerical accuracy 
of this work,  dimensionless temperature 
profiles for different values of fin 
parameters are investigated.   

 

 

Fig. 2  Dimensionless temperaure profiles 
for   variation ,  

 0, 1n    

 

Fig. 3  Dimensionless temperaure profiles 
for   variation , 0, 0.5n     

  

As expected, Fig. 2 shows that higher values 
of conduction parameter  yield 
higher magnitudes of temperature. 
On the other hand,  higher values of 
thermo-geometric fin parameter 
 produce lower temperatures (fig.3) 
( see equation 4). 

 

 
Fig. 4 Dimensionless temperture profiles for  
convective heat transfer parameter  

(n) variation, 0.1, 0.3    

 

Fig.4 displays the effect of different values 
of the convective heat transfer 
parameter ' 'n  on the dimensionless 
temperature profiles .  The typical  
heat transfer modes for different fin 
operations   covers a considerable 
portion of fin heat transfer operation 

6.6 5n   .  However for  practical 
purposes 3 3n     is considered ,  
For nucleate boiling, n=2, and  n =3 .  
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For radiation and constant heat 
transfer n=0 [21]. Higher values of 
the parameter ' 'n  facilitates 
convection. This basically explains 
the shapes of the profiles. 

The effect of  an increase of the thermal 
conductivity parameter  , on the 
dimensionless temperature profiles, 
keeping all the other parameters the 
same is shown  in Fig. 5. As can be 
seen, higher temperatures were 
recorded  for all values of n  
considered.  Higher values of the 
parameter   facilitates conduction  
and according to its definition, 
implies  higher differences  between 
the temperature at the base of the fin 
and the ambient.     

Fig. 6 shows  a  reverse change in 
temperature  for an increase in the 
thermogeometric parameter  .  
Higher   value,  results in lower 
conductivity assuming that the 
geometery of the fin is kept constant. 

On the whole, the overall shapes of the 
profiles for the various fin 
parameters considered are in 
consonance with the fin differential 
equation. 

 

 

Fig5 Dimensionless temperture profiles 

 for convective heat transfer parameter  

 (n) variation, 0.8, 0.3    

 

 

Fig. 6 Dimensionless temperture profiles 

 for convective heat transfer parameter   

' 'n  variation, 0.1, 0.5    

 

The significance of these computations are 
further enhanced by relating them to  fin 
efficiency  . 

 Assuming the total length of the fin is at the 
same temperature as that at the base,  and 
the fin efficiency is defined  as the ratio of 
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the actual heat rate through the fin base to 
the ideal heat flow, then 

 

 
   

1
10

max 0

27

L

f n

b b

Ph T T dx
Q

d
Q PLh T T

  









  





Table 4 shows that lower fin efficiencies are 
recorded for an increase in   for various fin 
heat transfer modes for a fixed value of 

0.1  . On the other hand , column 2 of 
Table 4 shows a relatively higher value of 
efficency  when  is increased.  The reason 
for this is not far fetched. A relatively  low 

efficiency,implies   a high maxQ  or  a high 
heat transfer coefficient 

bh a t the base of the 
fin. In either case, the difference between 
the temperature of the fin base and  the 
ambient is high as well. Assuming the fin 
geometry is kept contant, a high value of 
thermogeometric parameter will correspond 
to a high value of heat transfer coefficent  at 
the fin base.   

 

 

 

Table 4   Efficiency for changes in fin parameters for different heat transfer modes 

 n  values efficiency   

0.1, 0.3    

efficiency   

0.8, 0.3    

 

efficiency   

0.5, 0.1    

0 0.9736 0.9836 0.9303 

1 0.9495 0.9681 0.8756 

2 0.9274 0.9535 0.8306 

3 0.9070 0.9396 0.7931 

 

Fig.7 displays the total heat flux Tq   

at nucleate boiling  2n    

for different Biot numbers. It is given in  [25]  as        

 

 
   

1 1 1 28n

T

k d d
q

Bi h d Bi d

  
 

  

    

The higher the Biot numbers the lower the 
Tq . The relative importance of conduction 

and convection with regards  to the total heat 
flux at the base of the fin is confirmed by the 
shapes  of the profiles.  As can be observed, 

lower values of Biot number indicate  that 
the conductive resistance of  the fin is 
comparatively lower than its external 
resistance. 
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Fig. 7  Total heat flux Tq  at nucleate boiling  

 2n   for Biot number variation  0.5, 0.5    

Figs 8a and 8b show the dimensionless 
transient temperature histories for different 
fin parameter values. There is progress 
towards steady state as  dimensionless 
time   increases. The dimensionless 
temperature profiles are in conformity with 
our earlier observation for steady state 
solution ( see fig. 4). 

 

Fig. 8a Transient temperature profiles 

 for 0.1, 0.5, 0n     
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Fig.8b Transient temperature profiles 

for 0.1, 0.1, 0n     

 

 

 

 

4. Qualitative Analysis 
  A better insight into fin operation and 
design can  be obtained by implementing a 
dynamical analysis in a phase space. By so 
doing, we can visually appreciate the 
dynamically changing behavior of a system 
in the vicinity of  points of equilibrium. This 
offers a less costly avenue of gaining an 
insight into the systems performance which 
otherwise would have been very difficult to 
obtain by solving the governing differential 
equations via a different route. Not only are 
meaningful references obtained for design 
purposes, the effects of certain parameters 
which significantly influence fin operation 
can also be identified. 
 
If for example a nonlinear system of 
differential equations possesses   an 
equilibrium, the dynamical behavior of the 
orbits in the vicinity of that point is 
displayed by a linear system obtained  by 
getting rid of the nonlinear terms. The 

eigenvalues  of the associated linear system 
provide further insight related to the 
properties of the nonlinear sytem. This 
approach which is often referred to as  
qualitative analysis or local stability 

analysis is fast becoming a reliable method 
for obtaining the general behavior of 
solutions depending on their initial 
conditions. 
                                                                                     
  We demonstrate this procedure  by 
rewriting Equation (24)  as a system of first-
order ordinary differential equations through 
the transformations '

1 2,y y     
which in turn yield ' ' ''

1 2',y y   . We 
then arrive at: 
 

'
1 2y y                (29a)  

 
 

2' 2
2 2 1

1

1
1

y y y
y

 


   
 

         

(29b) 
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The fixed points or equilibrium points are 
points where ' '

1 2 0y y  . These yield steady 
state solutions. For this particular problem, it 
can straightforwardly be verified that we 
have a (0, 0) fixed point. To be able to 
ascertain the nature of this fixed point, we 
need to linearize the system. The Jacobian 
matrix is computed as:     
 
 

 

 
   

1 2

2 22
2 1 2

2
1 11

,

0 1

2
1 11

J y y

y y y

y yy

   

 



 
 
     

            

            (30) 
 The linearization at the equilibrium point is 
implemented by direct substitution into the 
Jacobian matrix.  
 

  2

0 1
0,0

0
J



 
  
 

                (31) 

This is followed by the computation of the 
eigenvalues 
 

2

1
0



 

 
 

 
                        (32) 

The characteristic equation yields: 
2 2 2

1 2

0
,

   

   

     

  
. 

Hence the  critical point is saddle.  The 
above analyses set the stage for a more 
robust qualitative analyses using the 
MATLAB pplane9 software. 
 
There always exists different modes of  
operations indexed by a parameter  whose 
range of values may be bound by a limit of 
physical interest.  A good example for a fin 
is the convective heat transfer exponent ' 'n . 
For such cases, dynamical analysis 
supplements  a vague operational 
information with a visual picture on a plane. 

In other words, it provides a particular mode 
of fin operation with a unique identity.  
 Fig. 9a  shows the phase plane sketch of the 
trajectories. There is a fixed point  saddle  at  
critical point (0,0) for the following  fin 
parameters: 
 0.1, 0.5 0n    . The computed 
Jacobian matrix is 

0 1
0.01 5 07

J
e

 
  

  
;   

The eigenvalues and eigenvectors are 
 

 

0.1 0.99504, 0.99504 ;

0.1 0.99504, 0.99504 
  

The eigenvalues are real positive and 
negative , there are two incoming and 
outgoing trajectories as well.  For the values 
of fin parameters chosen, this confirms an 
unstable saddle  close to the critical point. 
 

 
Fig. 9a  Phase plane trajectories  for the 
following fin parameters   

0.1, 0.5, 0n     
 

 
Fig. 9b  Phase planr trajectories  for the 
following fin parameters  
 0.1, 0.5, 1n     
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For Fig. 9b all the fin parameters remain the 
same but there is an increase in the 
convective exponent to ' 1'n  . Results for 
phase plane analysis shows that the 

equilibrium   is located at  0.0073498,0 . 
The following  dynamical features are 
computed: 
 
Jacobian matrix  

 
0 1

0.0001478 5.0184 07
J

e

 
  

   
  

  Eigenvalues and eigenvectors   
 

 

 

2.5092 07 0.012157
0.99993, 2.509 07 0.012156
2.5092 07 0.012157
0.99993, 2.509 07 0.012156

e i

e i

e i

e i

  

  

  

  

  The dramatic change in phase profiles for 
an increase in  the power exponent  in 
addition to a different characterization of the 
equilibrium point  show how sensitive and  
important ' 'n is in fin design. The  
equilibrium point is  stable spiral sink   
which is characterized by complex 
eigenvalues with negative real parts. 
 
The next experiment  displayed by Fig. 9c, 
involves a further increase  of the convective 
index to ' 3'n  (radiation mode) while 
keeping the other fin parameters the same,   
The critical point   is located 
at  0.02163,0  

 

Fig. 9c  Dynamical analysis  for the 
following fin parameters   

0.1, 0.5, 3n     

The accompanying dynamical features are 
computed as: 
 
Jacobian matrix   

0 1
1.0146 05 1.0022 07

J
e e

 
  

    
  

The eigenvalues and   eigenvectors are :   

 

 

5.0108 08 0.0031853
0.99999, 5.0108 08 0.0031853
5.0108 08 0.0031853
0.99999, 5.0108 08 0.0031853

e i

e i

e i

e i

  

  

  

  

     

Again, the behavior near the critical point                       
is that of a stable spiral . It can be observed 
that a slight perturbation in the exponent ' 'n  
provides sudden changes in the dynamical 
features of the phase plane profiles . These 
changes may indicate  a close proximity to 
the death or birth of fixed points , changes in 
orbits or a tendency towards bifurcation.  
  
5. Conclusion 
In the work presented herein, heat transfer in 
a longitudinal rectangular fin  with 
temperature dependent thermal properties 
has been analyzed using a Newton-
Richtmeyer scheme. The numerical 
solutions were validated  by  comparing 
with steady state exact solutions for the case 
of the linear problem and by benchmark 
literature results for the nonlinear problem. 
Further investigations were carried  out to 
generate  transient solution profiles as well 
as  study  the effects  of various fin heat 
transfer parameters on temperature profiles.  
Fin efficiencies for various combinations  of 
fin parameters were  also studied to provide 
valuable information for design. An insight 
into the dynamical effects of  convection 
power exponent  on the numerical solution 
was carried out with the MATLAB pplane9 
software.  Changes in  the control parameter 
provided sudden changes in the orbit 
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structure of the profiles. This may be  
indicative of  an impending bifurcation . 
 

            It is  observed that many studies involving 
engineering design often neglect the phase 
plane analysis component to the extent that 
misleading information can often pass 
unrecognized. Hence careful attention needs 
to be paid to changes in qualitative behavior. 
Despite the fact that numerical solutions  
often display results that are physically 
realistic, dynamical systems on the other 
hand can lead to very complex and 
unpredictable outcomes. It is this realization 
that has contributed to the groundwork  
towards  efforts that involve comprehensive 
and better understanding of the universality 
of the interelatioships among many different 
branches of science .  

 
It is hoped that this useful trend will 
continue as computers grow more powerful 
and the required  software becomes more 
available.      
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