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1. Introduction 
 The ejection of blood from the heart is 

influenced by its filling, physiologic status, and 

the receiving arterial system (load), aspects 

recognized since [1]. Furthermore, the contractile 

properties of the ventricle represent good 

diagnostic tools for many heart diseases [2, 3]. 

Consequently, hemodynamic variables, such as 

ventricular pressure and flow, are outcomes of or 

represent the pump properties [4, 5 , 6]. Over the 

years several models were developed that describe 

the ventricular properties; this is described next. 

1.1 Time Domain Models: 

The Guyton, Coleman, and Granger model [7], is 

arguably the most popular and comprehensive 

circulatory-system model. Guyton’s very 

extensive model has been in some sense the 

pioneer of the whole investigation into 

mathematical modelling of the circulation. It 

consists of many equations addressing most 

relevant aspects of total-body cardiocirculatory 

compensation by concentrating on specific 

subsystems (renal, haemopoietic, thirst, cardiac 

pump, etc.). In this report, the focus is on the 

modeling and estimation of the cardiac pump 

time-varying parameters. 

Two compliances were utilized by [8] to model a 

simple ventricle: one compliance for diastole and 

a lesser value for systole. More recently, time-

varying compliance was estimated from a 

parametric model [9]. Time-varying heart 

(myocardial) properties were also estimated using 

mechanical models [10]. These studies 

demonstrated that both a time-variant compliance 

and a time-variant resistance are manifested 

during the cardiac cycle. The theory proposed by 

[11] encompassing the concepts of ‘time-varying 

elastance’, ‘pressure-volume area’ and 

‘isoefficiency’, has been widely applied in cardiac 

research. Recently it has been criticized from the 

point of view of metabolic balance. 

Approximate, closed form relations between left 

ventricular time-varying resistance, compliance, 

and pressure and volume were derived using 

optimality principle [12]. Inertial properties as 

well as losses of both the blood and ventricle are 

often ignored on the assumption that at particular 

sites or conditions either may represent only small 

fractions of total energy. Although kinetic energy 

may constitute a small part of myocardium 

mechanical energy, flow and its derivative may 

achieve appreciable values particularly during 

systole where blood accelerated at the onset of 

ejection is appreciable. Consequently, a 
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comprehensive study of myocardial behavior 

during ejection suggests inclusion of all time-

varying parameters [12, 6]. These may be related 

as: 
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Where L(t), R(t), and C(t) denote time-varying 

inertance, resistance, and compliance, 

respectively, Q(t), p(t) are ventricular volume and 

pressure respectively at time t.   In [6] a 

polynomial in time model was assumed for each 

unknown time-varying parameter. The 

coefficients of the polynomials were estimated 

using methods of the Ito calculus. The estimated 

time-varying parameters , L(t), R(t), and C(t), 

describing the cardiac properties seemed to be in 

line with what we know from Physiology. A 

problem with this approach is that we have 

assumed a shape (polynomial in time) for the 

time-varying parameters. One could argue that 

another polynomial shape such as Hermite or 

Laguerre polynomials might be more 

representative. In the current work we drop these 

assumptions about the shape and estimate the 

parameters as time-varying functions. The only 

constraint we impose are that the cardiac 

parameters, L(t), R(t), and C(t) are nonnegative 

and slowly varying over time. The technique we 

use is based on the martingale optimality principle 

[13]. The results are in agreement with that of 

[6].We use the martingale based method because 

it has proven its superior performance, with 

minimum assumptions, in the estimation of the 

time-varying shares of stock in financial 

engineering [14, 15].  

 of the time-varying shares of stock in financial 

engineering [14, 15].  

in agreement with that of [6].We use the 

martingale based method because it has proven its 

superior performance, with minimum 

assumptions, in the estimation of the time-varying 

shares of stock in financial engineering [14, 15]. 

L(t), R(t), and C(t) are nonnegative and slowly 

varying over time. The technique we use is based 

on the martingale optimality principle [13]. The 

results are in agreement with that of [6].We use 

the martingale based method because it has 

proven its superior performance, with minimum 

assumptions, in the estimation of the time-varying 

shares of stock in financial engineering [14, 15].  

, L(t), R(t), and C(t), describing the cardiac 

properties seemed to be in line with what we 

know from Physiology. A problem with this 

approach is that we have assumed a shape 

(polynomial in time) for the time-varying 

parameters. One could argue that another 

polynomial shape such as Hermite or Laguerre 

polynomials might be more representative. In the 

current work we drop these assumptions about the 

shape and estimate the parameters as time-varying 

functions. The only constraint we impose are that 

the cardiac parameters, L(t), R(t), and C(t) are 

nonnegative and slowly varying over time. The 

technique we use is based on the martingale 

optimality principle [13]. The results are in 

agreement with that of [6].We use the martingale 

based method because it has proven its superior 

performance, with minimum assumptions, in the 

estimation of the time-varying shares of stock in 

financial engineering [14, 15]. 

1.2 Estimation Methods of Time-Varying 

Parameters: 

 

The problem of the estimation of time-varying 

parameters has, in general, four different ways of 

solving it: 

(1) Assuming that the system coefficients are 

varying sufficiently slowly, they can be tracked 

using the localized (weighted or windowed) 

versions of the least squares or maximum 

likelihood estimators [16-18]. 

(2) Approximation of the time-varying 

coefficients by a weighted combination of a 

certain number of known functions (basis 

functions). If the unknown weights are assumed to 

be constants, a number of the well known 

identification techniques could be used [19, 20]. 

(3) Assumption that the time-varying coefficients 

evolve as Markov processes. In this case, the 

Kalman filter technique and its modifications 

could be used for the estimation of the time-

varying parameters [21, 22]. 

(4) The time-varying coefficients could be treated 

as unknown controllers to be estimated to track 

the observed data. The method of Pontryagin 

maximum principle could be used to find the 

desired values [5, 23]. 

 In this report we introduce another method that is 

based on the stochastic and the martingale 

optimality principle [13, 14, 24, 25]. A model is 
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developed for each of the measured ventricular 

volume, cardiac flow, and the derivative of the 

cardiac flow. A polynomial in time model to 

describe each of the measured variables. The 

reason for using the polynomial models is 

numerical tractability and are also easy to 

manipulate. Assuming nonnegative and slowly 

time-varying cardiac parameters L(t), R(t), and 

C(t), we estimate their values using a method 

based on the Black-Scholes model used in 

financial engineering [26, 27, 28, 14]. The 

approach is to setup the problem such that the 

martingale optimality principle [13] could be used 

to estimate the unknown time-varying parameters. 

An approximate approach was also developed. It 

is based on the Malliavin calculus. It has the 

advantage of being numerically tractable and thus 

more accurate results were obtained. 

 The estimated time-varying parameters were 

compared to that estimated in [6]. It was found 

that the differences between both estimates lie 

within 20%. Thus, it is argued that assuming time 

polynomial shape for the cardiac parameters is not 

far from reality.  

In section 2, existing methods are described for 

the estimation of time-varying parameters  L(t), 

R(t), and C(t). In section 3, we introduce the 

proposed method that is based on the martingale 

optimality principle. In section 4, the equations 

for the estimates of the time-varying parameters 

L(t), R(t), and C(t) are described and a summary 

of the estimation algorithm is given. Also in 

section 4, results, summary and conclusions are 

presented. The derivations of the method are 

shown in the appendix. 
  

2. Problem Formulation: 
The measured pressure at the root of the 

Aorta, p(t), is composed of the weighted sum of 

(d-1), where d=4, stochastic processes where the 

weights are the unknown parameters L(t), R(t), 

and C(t). The objective is to estimate, from p(t), 

the unknowns L(t), R(t), and C(t). To solve the 

problem, we embed the sum of the processes (the 

observations) into another signal; )(tp , termed the 

augmented observations. The augmented 

observations consist of the original observations 

plus a deterministic component. The addition of 

the known deterministic component is needed to 

facilitate the analysis as shown in the appendix. 

The augmented observed signal, )(tp , 

with (d=4) components, could be modeled as  

follows: 





d

i

ii tSttSttp
2

11 )()()()()(  (2) 

)(ti , i>1, is the ith unknown time-varying 

coefficients they are defined as: 

)(/1)(2 tCt  , )()(3 tRt  , )()(4 tLt   

We also define the stochastic processes or signals 

as: ventricular volume =  tQtS )(2 , 

ventricular flow = dttdQtS /)()(3  , and 

22

4 /)()( dttQdtS   

with 

)(1 t = known constant 

dttStdS )()( 111    (3) 

where )(1 tS is a reference signal and both 1 and 

)(1 tS are known. Usually we set 1  close to zero 

such that it has minor or no effect on the results. 

 

2.1 Commonly Used Models of the Signals: 
Several models are commonly used that represent 

different physical situations [29].  

The signal )(tSi  could be modeled as an OU 

process with no trend: 

(1) )()()( tdWedttSctdS iiiii  i>1  

  (4) 

i.e. 




t

i
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i
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ii sdWeeeeStS iii

0

)()0()(  

where ic , and ie are unknown constants. 

Or an OU form that has a stochastic differential 

equation (SDE): 

(2)   )()()()( tdWedttStactdS iiiiii  ,

 i>1   (5) 

i.e.
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where )(tai  is a polynomial in time that 

represents the trend or the base data, and 

)(tSi bounces around )(tai .  

Or as the form that has a stochastic differential 

equation (SDE) [30]: 

 

 

 

(3)
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  )()()()()()( tdWtedttStactdatdS iiiiiii 

, i>1  (6) 

where the trend, )(tai , and the diffusion 

parameter )(tei could be modeled as a sum of 

frequencies i.e. 

 

 
j

ijijiji tftta )2sin()( 10   

   (7) 

and  
j

ijijijii tgte )2sin()( 0

2   

    (8) 

Using the Ito formula [31], the explicit solution is 

given as: 
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    (9)  

Or as Geometric Brownian motion which has the 

stochastic differential equation (SDE): 

(4) )()()()( tdWtSedttSctdS iiiiii  (10)  

which has a solution: 

 


















 )(

2

1
exp)0()( 2 tWetecStS iiiiii  

In this paper each signal (the ventricular volume 

and its derivatives) is modeled as a Brownian 

process with a time-varying trend. We will 

consider the circumstances where each unknown 

time-varying parameter )(1 t , )(tLv , )(tRv , and 

)(/1 tCv , changes slowly over time i.e. 

 



d

i

ii tdSttdSttdp
2

11 )()()()()(   

    (11) 

One could find, via the martingale optimality 

principle, a closed form expression for the SDE  

of p(t) and for each time-varying parameter as 

clarified in section 3. First we describe the 

conventional methods for the estimation of the 

unknown time-varying parameters  )(ti  1i . 

 

 

2.2 Conventional Method for Time-

Varying Parameter Estimation: 

 
2.2.1 Chow's Method: 

The familiar scalar regression format with time-

varying coefficients is: 

)()()()( kkkSkp
T

   (12) 

Where T represents transpose, the mx1 vector 

)(kS could have the lagged values of p(k), the 

exogenous variables and their lagged values. 

)(k is an mx1 vector of the unknown time-

varying coefficients. 

The most common method to estimate the 

coefficients )(k  is Chow’s method, which is 

based on a maximum likelihood approach. 

The key is to assume a Markov model for 

the time-varying parameters. That is, the set of 

unknown parameters, )(k , could be modeled as 

a vector autoregressive (VAR) process as follows 

[21]: 

)()1()( kkMk    (13) 

Where )(k  is a column vector of m unknown 

values, M is an unknown matrix of dimensions m 

x m, and )(k is an m-variate column vector 

normally distributed with zero mean and 

covariance matrix  = I 
2

 
, and I is the unity 

matrix. 

Note that when M=I and  =0, this model is 

reduced to the standard constant coefficient 

model. When M=0 and   0, we have a pure 

random model. When M=I, and   0, we have 

the random walk model. 

Chow’s method begins by assuming that M is 

diagonal and with initial estimated entries M̂ . 

The initial estimate of )0( is taken to be the 

time-invariant estimate. Thus, an estimate for the 

sequence )}(),...,2(),1({ k , and consequently 

an estimate for the sequence {p(0), p(1), …, p(k)} 

are obtained via the equations: 

)1(ˆˆ)(ˆ  kMk    (14) 

)(ˆ)()(ˆ kkSkp
T

   (15) 

The values of M̂  are updated, for example by 

means of the gradient method, where one seeks to 

minimize the squared difference between the 

estimated observations, )(ˆ kp , and the measured 

observations p(k).  
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2.2.2 Polynomial Model for the Time-Varying 

Coefficients/Amplitudes [6]: 

Each of the unknown time-varying parameters can 

also be modeled as a polynomial in time. For 

example: 

 ...)()()( 2

1211101  kkk   

   
i

i

i k )(1    

   (16) 

Thus, the estimated time-varying coefficients 

become: 

 
i

i

jij kk )(ˆ)(ˆ    (17) 

where ji̂ is the estimate of ji . 

An SDE is developed for the pump equation (I. 1) 

and the values of ji̂  are found through the 

maximum likelihood method and the stochastic 

calculus techniques. 

 

3. The Martingale Optimality 

Principle for the Estimation of the 

Unknown Time-Varying 

Coefficients/Amplitudes: 
In this section we introduce the martingale 

optimality principle and use it to determine the 

estimates of the time-varying parameters )(tLv , 

)(tRv , and )(/1 tCv . We first consider the 

general case of the sum of several signals without 

restrictions on the shape of the stochastic 

differential equation (SDE) that generates each 

signal. The only requirement is that the time-

varying parameters vary slowly with time. The 

martingale optimality principle is used to find the 

unknown quantities. A derived SDE for the 

observed signal p(t) is obtained. A closed form 

expression is then obtained for each of the 

unknown time-varying parameters/amplitudes. 

 

3.1 The Martingale Optimality Principle: 
In this report we use the martingale optimality 

principle [13, 24] to find the optimal value of the 

cardiac parameters. The main idea of the 

martingale approach is to decompose the 

optimization problem into a static optimization 

(determination of the optimal pressure) and a 

representation problem (find the time-varying 

cardiac parameters that lead to this optimal 

pressure). The steps involve finding two equations 

for the pressure p(t). The first is obtained from the 

system dynamics. The second equation is obtained 

through the optimization process. Equating both 

formulae will yield the unknown cardiac 

parameters. 

 

3.2 Sum of Signals with slowly time varying 

parameters; the General Case: 
We shall first consider the estimation of time-

varying parameters for a general model of the 

observations. We then specialize the results to the 

cardiac parameters. Let the augmented signal 

)(tp be defined as: 





d

i

ii tSttp
1

)()()(    (18) 

It is assumed that the unknown coefficients 

)(ti vary slowly with time i.e. : 

0)( td i    (19) 

or more precisely )()( tdStd ii   

The signals, )(tS i , each has an SDE of the 

general form: 

 

1                  )())(,())(,()(  itdWtStedttStctdS iiiiii  

   (20)  

Where ))(,( tStc ii and ))(,( tSte ii  are to be 

determined according to the signal model and the 

physical situation under study [see Section 3]. 

)(tSi has the solution: 

 

1                  )())(,(
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



iudWuSue

duuSucStS
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iii
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(21) 

and dttSdttStatdS )())(,()( 11111   

    (22) 

In such an analysis, the presence of a 

deterministic component makes it easier for the 

analysis. In this case the component is )(1 tS  and 

it is known. This component acts as a reference 

signal or numeraire. Thus, the original problem is 

embedded into a larger problem. The observed 

signal does not usually come with a known 

deterministic component but in this case we add a 

known deterministic component and proceed to 

the analysis. We now attempt to find an 

expression for the SDE that describes the 

evolution of )(tp .  This expression will be a 

function of the unknown stochastic time-varying 

parameters )(ti . Using the martingale optimality 

NTERNATIONAL JOURNAL OF APPLIED MATHEMATICS, 
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2023.5.10 Ahmed S. Abutaleb

E-ISSN: 2766-9823 119 Volume 5, 2023



principle, we will be able to find a closed form 

expression for the time-varying parameters, 

)(ti , as function of the observations p(t) [see the 

Appendix]. 

Following the derivations shown in the appendix 

we find the closed form expression for the 

estimates of the unknown time-varying 

parameters as:  


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3.2 Estimation Equations for the Cardiac 

Parameters : 

We now specialize the previous general results to 

the case under study; the estimation of the 

ventricular parameters. We shall use a polynomial 

for the drift of the Brownian motion model as a 

model for the ventricular volume and its 

derivatives. Specifically we have: 

 1                  )())(,()(  itdWedttStctdS iiiii

   (23)  

Where )())(,( tctStc iii  is a polynomial in time 

and ie  is a constant estimated value. Recall that: 

ventricular volume =  tQtS )(2 , ventricular 

flow = dttdQtS /)()(3  , and 

22

4 /)()( dttQdtS  . 

The augmented observations, p(t), are given by 

the equation: 

  





d

i

ii tSttp
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and we need to find an estimate for each )(ti . 

Remember that )(/1)(2 tCt  , )()(3 tRt  , 

)()(4 tLt  . 
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After some manipulations [see the appendix], an 

estimate for the unknowns is obtained as:  
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Where 





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d is the change in 
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This is a closed loop estimate of the cardiac 

parameters and yields good estimates. Recall that 

   )()( tptpt oU  where )(tpo is the 

observed pressure and 



d

i

ii tSttp
2

)()()(  . 

Another open loop estimate is obtained by 

substituting for the SDE of  tU ; Viz: 
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,i>1 (A.39)  

Where )(/1)(2 tCt  , )()(3 tRt  , 

)()(4 tLt  . 

Equation (A.39) is a closed form expression for 

the estimate of the ith time-varying cardiac 

parameter )(ti . Equation (A.39), however, is not 

easy to solve and one must resort to numerical 

methods or to some mathematical approximations.  

 

3.3 Summary of the Algorithm: 

(1) Find the parameters of the time polynomials 

describing the SDE for each of the  observed 

values: ventricular volume =  tQtS )(2 , 

ventricular flow = dttdQtS /)()(3  , and 
22

4 /)()( dttQdtS  . 

(2) Equation (A.37) is utilized as a parametric 

model for each unknown time-varying cardiac 

parameter )(ti , where 

)(/1)(2 tCt  , )()(3 tRt  , )()(4 tLt  . 
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(3) Minimize sum of squared error, 

  

T

o dttptp
0

2
)()(  with respect to the initial 

conditions of the cardiac parameters (L(0), 

R(0), and C(0)). Where )(tpo is the observed 

ventricular pressure at the root of the Aorta. 

The estimated pressure, p(t), is obtained from 

eqn. (IV.2) and by numerically solving eqn. 

(A.37). Eqn. (A.37) is used to find each of the 

unknown time-varying coefficients, )(ti . 

 

4. Conclusions 

Figure 1 shows the raw data with duration  

0.2 seconds and the sampling interval is 0.004 

second. 

  

 

 

Using the proposed martingale based method we 

were able to find estimates for the cardiac 

parameters. The estimates using the martingale 

optimality principle and the stochastic calculus-

based approach [6] are shown in Figs. 2-4. The 

jaggedness in the estimates using the martingale 

approach is due to the presence of the Wiener 

process in the estimation equations.  
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The advantage of the proposed approach is that no 

initial shape (polynomial in time or Hermite 

polynomial or other polynomials) was assumed 

for the cardiac parameters. The only assumptions 

used were that the cardiac parameters are 

nonnegative and slowly varying over time. The 

resultant estimates were within 20% from the 

estimates obtained in [6]. The following 

comments are applicable: 

1) The Left Ventricle )(tC  as estimated for 

the ejection period agrees, both in magnitude and 

in its general time course, with compliance 

derived by other methods, specifically, with 

instantaneous )(/)( tptQ . 

2) Similar to )(tC , the resistive parameter, 

)(tR , agrees with the lower values reported 

elsewhere [32, 33, 34]. [35] reported higher values 

for the resistance parameter, but concludes that 

the resistance values agree with those reported 

previously, a conclusion based on differences of 

ventricular chamber  volumes between dogs 

(lower )(tR  values) and rabbits (higher )(tR  

values. 

3) The jaggedness in the estimates of the 

time-varying parameters is due to the noisy data. 

We expect the estimates to be smoother. 
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Appendix A: Derivation of the 

Estimates 

 

Let the signal p(t) be defined as: 





d

i

ii

d

i

ii tSttSttp
21

)()()()()(    

   (A. 1) 

Where 1)(1 t , )(/1)(2 tCt  , 
)()(3 tRt 

, 

)()(4 tLt 

 

)()(2 tQtS  , dttdQtS /)()(3  , and 

22

4 /)()( dttQdtS   

It is assumed that the coefficients )(ti  vary 

slowly over time i.e. : 

0)( td i    (A. 2) 

or more precisely )()( tdStd ii   

The signals, )(tS i , each has the general form of 

the SDE as: 

 

1                  

)())(,())(,()(





i

tdWtStedttStctdS iiiiii  

   (A. 3)  

which has a solution: 

1    )())(,(

))(,()0()(

0

0









iudWuSue

duuSucStS

t
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t

iiii

  

   (A. 4) 

also )(1 t = known constant 

1  ,)())(,()( 111111   dttSdttStatdS  

   (A. 5) 

With the assumption of slowly varying parameters 

we have:  


i

ii tdSttdp )()()(    (A.6) 

Substituting for )(tdSi we obtain an expression 

for the SDE of )(tp as:  

)(tdp = 






i

iiii

i

iii

tdWtStet

dttStct

)())(,()(

 ))(,()(





 (A. 7) 

and since
)(

)()()(
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1

1
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   (A. 8) 

then
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   (A. 9) 

We need to find an SDE for )(tp that is function 

only of )(tp  and the parameters of )(tS i . First 

we find )(ti  as function of )(tp and )(tS i  or 

)(tWi . For this we do some mathematical 

manipulations such as a change of the probability 

measure. This will enable us to find an expression 

for )(ti  as function of )(tp and )(tS i .  

Define 
))(,(

)())(,(
)( 1

tSte

tStStc
t

ii

iii

i





  

  

   c         
))(,(
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tSte

tStc

ii

ii  

  (A. 10) 

 

Let  ))(,()(),,( tStettSv iiiiii   , 

  
T

d tStStS )](),...,([)( 2 , 

T

d ttt )](),...,([)( 2   , 

 
T

d tvtvtv )](),...,([)( 2 ,  

     

 
T

d tWtWtW )](),...,([)( 2 , a (d-1)-dimensional 

Brownian motion, 
T

d ttt )](),...,([)( 2    is a 

(d-1)-dimensional adapted process and Tt 0  

   (A.11) 

Define: 

)()()(
0

tWduutW j

t

jQj    (A.12) 

 i. e.  )()())(( tdWdttttdW jjQj  , j=2,…, 

d     
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    (A. 13) 

With )()()()( tWdttZtdZ
T

  

and define the new probability measure: 

dPTZdQ )(    (A. 14) 

where P is the old probability measure and Q is 

the new probability measure. 

Using Ito lemma we get an SDE for 1/Z(t) as: 
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Substitute )()()( tWddtttWd Q  , we 

obtain: 
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1
tWdt

tZtZ
d Q

T
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(A.16) 

Thus 1/Z(t) is a martingale under the measure Q 

when )()()()( tWdttZtdZ
T

  

Girsanov's theorem states that )(tWQj is a Wiener 

process with respect to the probability measure Q. 

In addition )(tWQj is an tF  martingale with 

respect to Q [Oksendal; 1998]. Substitute 

equations (A. 13) into equation (A. 12) we get: 
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   (A. 17) 

this has the form 
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    (A. 18) 
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   (A. 19)  

 

The Estimates for the Stochastic time-varying 

coefficients; )(ti : 

The martingale optimality principle [13] is now 

used to find an estimate for the unknown time-

varying coefficients )(ti as function of )(tp and 

)(tS i . 
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   (A. 20) 

Or equivalently
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   (A.21c) 

Since U(t) is a martingale under the measure Q, 

we get: 
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(A.22)

 This is the first equation in the unknowns

 

)(ti . 

The second equation is obtained through the 

optimization process. 

Using eqns. (A.21) we get: 

   )0()( UTUEQ 

  

(A.23a) 

Or   )0()( UtUEQ 

 

(A.23b) 

and    

TT

Q dtUdttUE
00

)0()(  

This is a constraint on the final value U(T) or 

U(t). 

 

The Optimization Problem:

  
The objective is to minimize the log of the 

squared difference between the pressure p(t) and 

the observed pressure )(tpo  subject to the 

constraint   tUtUEQ   ),0()( . The reason we 

used the log function is mathematical tractability 
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and to ensure concave objective function [Bjork; 

2009]. Recall that: 
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For constrained optimization, we use the method 

of the Lagrange multipliers. Thus,  
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 where 

 is the Lagrange multiplier. In terms of the 

probability measure P, we need: 
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   (A.24) 

Taking the derivative w.r.t. U(t) we get: 
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where )(* tU is the optimal value of U(t). 

Since 1/Z(t) is a martingale under the measure Q, 

then  )()(* tUtU o is also a martingale under Q. 

Thus, 
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This is the second equation in the unknowns. 

Recall from (eqn.A.22) that: 
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which could be written as: 
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 Equating equations (A.26) and (A.27), we

 

get: 
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Then 
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From eqn. (A. 16), we know that: 
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Comparing eqns. (A.29) and A(30), we get: 

 

  )()()(
2

)(
2

*1 ttUtUtve
T

o

Tt


 

















 
                                         

(A.31)  

For small values of 1 we get: 
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This is an equation in the unknowns )(tv
T

as 

function of the observations and the unknown 

quantity )(* tU . Recall that 
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which is reduced to: 
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In order to find and SDE for )(ti , we need to 

find an SDE for  )()(* tUtU o  

 

An SDE for the estimated )(ti : 
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and from eqn. (A.32), 
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is obtained as: 
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In eqn. (A.34) we used 
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Thus,  tU  has the solution: 
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From eqn. (A.33) and using Ito lemma we get an 

SDE for )(ti  as: 
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Since the mathematical models for the signals are 

all having a polynomial in time drift term and 

constant diffusion coefficient, then eqn. (A.36) is 

reduced to: 
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Collecting terms and substituting for 
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 , we get: 
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    (A.37) 

This is a closed loop estimate i.e. the cardiac 

parameters are estimated as function of the 

observed pressure, the estimated pressure, and the 

flow models. 

Substitute eqn. (A.33b) into eqn. (A.37), we get: 
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   (A.38a) 

Which is reduced to: 
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Which is reduced to: 














































































j

j

j

j

j j

ji

ii

i

i

i

tdW
e

tc

dt
e

tc

dt

tdc

ee

tc

t

td

)(
)(

)()(1)(

)(

)(

2

2

222



   , i>1 (A.39)  

This the desired SDE for the unknown parameters 

but the initial conditions, )0(i , i>1, are 

unknown. They are next estimated. Equation  

(A.39) is an open loop estimate of the cardiac 

parameters. The accuracy of the resulting 

estimates are less than that of the closed loop 

equation (A.37). 

 Recall that: 
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    (A. 1) 

We numerically solve eqn. (A.39) and find the 

initial values , )0(i , i>1, that minimize the sum 

of squared error ,   

T

o dttptp
0

2
)()( , where 

)(tpo is the observed pressure and T is the 

observation period. 
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