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Abstract: - In this paper the algorithm for constructing the discrete (0,1)-sequent functions constituting the whole 

symmetric systems of orthogonal equidistant functions on the example of the eighth-order systems developed. 

Discrete sequential functions form by replacing their piecewise constant values +1 or -1 in the time domain (from 

the original space) with numerical values 0 and 1 in the image space. We refer to Walsh-like functions as (0,1)-

sequent functions in which the number of zeros and ones in each half of the definition interval is not necessarily 

the same as in classical Walsh functions. By the directed search method, each of the 30 formed whole groups of 

equidistant sequent functions unfolds, like the group of classical Walsh functions of the eighth order, into 28 

symmetric systems of sequent functions. The main result achieved in this work should consider an expansion of 

the set of Walsh-like systems of the eighth order by more than an order of magnitude. The algorithm's simplicity 

for synthesizing such systems of sequential functions and the high speed of spectral processing of discrete signals 

provided by the proposed bases open the Walsh-like systems for broad prospects of application in various fields 

of science and technology. 
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1 Introduction  

The theory and technique of spectral analysis of 

signals mainly focus on signals of sinusoidal forms. 

Also, non-sinusoidal signals (functions) use in 

information transmission systems, radiolocation, 

and other applications [1-3]. A typical example of 

non-sinusoidal functions is the Walsh function [4]. 

Their distinctive feature is that the Walsh functions 

take piecewise constant values to equal 1  or 1  in 

the original space.   

Spectral analysis of discrete signals is usually 

performed based on discrete exponential functions 

formed by temporal discretization of complex-

valued harmonic signals. It knew [5] that discrete 

Fourier transform (DFT) bases have some 

requirements, the most important of which are the 

following. First, it is desirable in the form of basic 

transform functions to be as close as possible to the 

state of the analyzed signal. And secondly, the basis 

function systems must support such a speed of the 

DFT processors that enables real-time signal 

processing.  

Thus, the choice of a system of basic functions 

determines by the requirements of convenience 

calculations. And finally, by the labor intensity of 

algorithms of realization of the sought 

transformation. Based on these considerations, the 

use of fundamental bases of Walsh systems and their 

extension, Walsh-like sequential systems (the 

definition of such systems is given further in the 

text), seems relevant and promising for the digital 

processing of broadband signals. 

Put together and numbered orthogonal Walsh 

functions of different orders form a system. Let us 

introduce the notation ( )k, tW  for discrete Walsh 

systems, where k  is the function’s order and t   is 

the normalized time (argument), whereby 

, 0, 1k t N  . An example of the Walsh functions 

( )k, th  ordered by Adamar depict in Fig. 1. 
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Figure 1.  Walsh-Adamar function systems 

Replacing the piecewise constant functions 

( )k, tw  with their discrete values 1  and 1 , we 

arrive at the matrix forms of Walsh systems in the 

original space. Below is a sequence of matrices NP  

of Paley’s first (degenerate), second, and fourth 

orders of Walsh systems. 

     1 2 4

0 1 2 3

0 1 0 1 1 1 1

0 1 1 1 1 1 1 1
1 ; ( , ) ; ( , ) .

1 1 1 2 1 1 1 1

3 1 1 1 1

t

t

p k t p k t

k

k

    
 

                      
 
    

P P P                           (1) 

A more convenient way to represent systems of 

Walsh functions is to represent them as square 

matrices in which each row is a Walsh function. For 

simplicity, instead of element values 1  and 1 , 

write only their signs   and  . So, for example, a 

system of Walsh-Paley functions of the eighth order 

looks like this: 

 8

0 1 2 3 4 5 6 7

0

1

2

3
( , ) .

4

5

6

7

t

p k t

k

        
 
       
 
        
 
         
        
 
        
        
 
         

P                                               (2) 

The Paley matrices NP  (1) or (2) at an arbitrary 

but binary-degree ordering 2 nN  , 1, 2,n  , can 

construct directly using a simple mnemonic rule [6], 

the essence of which reduce to the following 

transformations. At the initial formation stage NP , 

each row of the previous Paley matrix /2NP  writes 
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twice. Then to the first of them (row), the same 

elements are attributed to the right, i.e., the details of 

the right half of the row repeat the elements of the 

left half of the row, and of the second one, the 

opposite (complementary) elements attributed. The 

above method of forming Walsh-Paley systems is 

implemented in the image space using the code tree 

shown in Fig. 2. 

 

Figure 2.  Repeatedly-complementary algorithm  

synthesis of Walsh-Paley function system 

We come to the image space by replacing the 

discrete values of the Walsh functions 1  and 1  in 

matrices (1) or the   and   signs in matrices (2) 

with numbers 0 and 1. The matrix Walsh-Paley 

system of the eighth order in the space of images is 

represented below by the following relation 

 8

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 1 1 0 0 1 1

3 0 0 1 1 1 1 0 0
( , ) .

4 0 1 0 1 0 1 0 1

5 0 1 0 1 1 0 1 0

6 0 1 1 0 0 1 1 0

7 0 1 1 0 1 0 0 1

t

p k t

k

 
 
 
 
 
  
 
 
 
 
 
  

P                                                    (3) 

The translation of Walsh matrices from the 

original area, for example, matrix (2), into the space 

of images, matrix (3), is accompanied by a change 

in the operation of element-by-element 

multiplication of the two discrete Walsh functions 

 iuu  and  jvv , , 0, 1i j N  , to the 

operation of their element-by-element addition 

modulo 2. Such operations perform, in particular, 

when calculating the scalar product of these 

functions ( ),u v  to confirm their orthogonality, 

given by condition ( ) 0, u v . 

Sequent analysis, a generalization and alternative 

to spectral harmonic analysis, was formed as an 

independent discipline at the turn of the 1970s-80s, 

primarily due to the actual results obtained in the 

works of H. Hartmut [7, 8]. The success of 

sequential analysis basis on the fact that instead of 

sinusoidal signals, Walsh functions and other non-

sinusoidal waves use. To date, a sufficiently large 

number of publications devoted to the theory and 

application of sequential analysis in various fields of 

science and technology have appeared, among 

which we will distinguish a textbook [9], 

dissertations [10, 11], journal articles [12, 13], etc. 

This paper aims to develop algorithms for 

synthesizing Walsh-like discrete sequential 

functions that form complete symmetric systems of 

orthogonal equidistant functions ( , )k ts , 
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0, 1, Nk t  , on the example of the eighth-order 

systems, i.e., for 32N  . 

The completeness of a system of discrete 

sequential functions means that it cannot augment 

with any new function that would be orthogonal to 

all other system functions simultaneously. An 

equidistance of N  bit sequential functions means 

that any pair of functions of the system, such as the 

functions 1s  and 2s , is at a Hamming distance d  

equal to / 2N , i.e., 1 2( , ) / 2d Ns s . 

2 General ratios 

We will refer to Walsh-like functions such that the 

number of zeros and ones in each half of the 

definition interval is not necessarily the same as, for 

example, in representations of classical Walsh 

functions. In the future, for brevity, we will also call 

sequent function sequences. Thus, apart from zero 

bytes, the only type of binary (binary) code 

combinations (codes) considered in this paper are 

uniform (codes of the same length) eight-bit sequent 

functions (sequents) with a weight (number of units 

in a code) equal to four. 

 Let us form a complete set of sequent functions of 

the eighth order, including into the set only those 

functions which begin with zero. It means that the 

number 0 is placed in the senior (left) bit of each 

sequent, and three zeros and four ones place in the 

remaining minor seven bits. Hence, the complete set 

of such non-zero functions 8L  contains 35 

sequences of the eighth order. All these functions are 

summarized (together with the zero sequent) in 

Table 1. 

Table 1. The set of sequent functions of the eighth order 

Number of 

sequent 

 

Number of the digit  Number of 

sequent 

 

Number of the digit 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 18 0 1 0 1 1 0 0 1 

1 0 1 1 1 1 0 0 0 19 0 0 1 1 1 0 0 1 
2 0 1 1 1 0 1 0 0 20 0 1 1 0 0 1 0 1 

3 0 1 1 0 1 1 0 0 21 0 1 0 1 0 1 0 1 
4 0 1 0 1 1 1 0 0 22 0 0 1 1 0 1 0 1 

5 0 0 1 1 1 1 0 0 23 0 1 0 0 1 1 0 1 

6 0 1 1 1 0 0 1 0 24 0 0 1 0 1 1 0 1 
7 0 1 1 0 1 0 1 0 25 0 0 0 1 1 1 0 1 

8 0 1 0 1 1 0 1 0 26 0 1 1 0 0 0 1 1 
9 0 0 1 1 1 0 1 0 27 0 1 0 1 0 0 1 1 

10 0 1 1 0 0 1 1 0 28 0 0 1 1 0 0 1 1 

11 0 1 0 1 0 1 1 0 29 0 1 0 0 1 0 1 1 
12 0 0 1 1 0 1 1 0 30 0 0 1 0 1 0 1 1 

13 0 1 0 0 1 1 1 0 31 0 0 0 1 1 0 1 1 
14 0 0 1 0 1 1 1 0 32 0 1 0 0 0 1 1 1 

15 0 0 0 1 1 1 1 0 33 0 0 1 0 0 1 1 1 

16 0 1 1 1 0 0 0 1 34 0 0 0 1 0 1 1 1 
17 0 1 1 0 1 0 0 1 35 0 0 0 0 1 1 1 1 

Let us compare each non-zero sequent function 

ˆ
is , 1,

N
i L , from Table 1 with a set of sequents 

,j i j
s S , distant from ˆ

is  the Hamming distance d , 

equal to / 2N , i.e., in our case ( , ) 4i jd s s . Let us 

summarize the functions ˆ
is  (called forming 

sequents) and the sets 
,i j

S  in Table 2.  The left 

column of Table 2 shows the numbers of functions 
ˆ
is , and the top row shows the numbers of the 

sequents that form the sets 
,i j

S . Each set 
,i j

S  also 

includes the zero sequent 0 {0,0,0,0,0,0,0,0}s , 

not shown in Table 2.  

Let us pay attention to such features in Table 2. 

First, Table 2 is symmetric to the main diagonal. 

Second, each row of Table 2 includes, in addition to 

the forming sequent (the light diagonal element 

highlighted by the bold frame), 18 sequents js  

distant from the forming element at the Hamming 

distance ˆ( , ) 4k jd s s . Finally, thirdly, the whole set 

  of Table rows iS  can be divided into 10 non-

intersecting subsets l , 1,10l  . At the same time, 

the l  th subset includes consecutive rows iS , 

containing the same number ln  of sequents 
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arranged on the left side of the ˆks  forming sequents.  

For example, subset 1  generated by the sequents 

ˆ
js , 1, 5j  , with 1 0n  . The second subset 2  is 

formed by the sequents ˆ
js , 6, 9j  ,  for which 

2 4n  , etc. Information about the numerical 

characteristics of the subsets gives in Table 3.  

 

Table 2. The set of sequent functions distant from the forming sequents at the Hamming distance 

Table 3. Composition of Subsets l  of Sequential Functions 

 
Sequent subset number ( )l  

1 2 3 4 5 6 7 8 9 10 

Sequents ˆks  1-5 6-9 10-12 13-15 16-19 20-22 23-25 26-28 29-31 31-35 

ln  0 3 5 6 9 11 12 15 16 18 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

1                    

2                                

3                                    

4                                    

5                                    

6                                    

7                                    

8                                    

9                                    

10                                    

11                                    

12                                    

13                                    

14                                    

15                                    

16                                    

17                                    

18                                    

19                                    

20                                    

21                                    

22                                    

23                                    

24                                    

25                                    

26                                    

27                                    

28                                    

29                                    

30                                    

31                                    

32                                    

33                                    

34                                    

35                                    
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As the results of elementary calculations have 

shown, the forming sequents ˆ
ks , together with the 

zero-sequent function 0s  and 18 sequents, which are 

in the rows of Table 2, form six complete equidistant 

code combinations (we will call them groups for 

brevity). Each row in Table 1 corresponds to six 

groups with eight equidistant sequents. The groups 

of Sequent equidistant functions ,i jSF  formed by 

the forming, for example, sequents ˆis  of the subset 

1 , are given in Table 4.    

Table 4. Composition of groups formed by the forming sequents of a subset 1  

Group

s ппы 
Sequents of groups 

1, j
SF  0 1 10 11 12 13 14 15 20 21 22 23 24 25 26 27 28 29 30 31 

1                     

2                     

3                     

4                     

5                     

6                     

2, jSF  0 2 7 8 9 13 14 15 17 18 19 23 24 25 26 27 28 32 33 34 

1                     

2                     

3                     

4                     

5                     

6                     

3, jSF  0 3 6 8 9 11 12 15 16 18 19 21 22 25 26 29 30 32 33 35 

1                     

2                     

3                     

4                     

5                     

6                     

4, jSF  0 4 6 7 9 10 12 14 16 17 19 20 22 24 27 29 31 32 34 35 

1                     

2                     

3                     

4                     

5                     

6                     

5, jSF  0 5 6 7 8 10 11 13 16 17 18 20 21 23 28 30 31 33 34 35 

1                     
2                     
3                     
4                     
5                     
6                     

Sequents js  included groups ,i jSF  marked by 

gray cells in the rows of Table 4. And their 

corresponding numbers of sequential functions are 

in the black rows of Table 4 located directly above 

the sequents, and the row element containing the 

number i  of the forming sequents ˆis  lightened. The 

left column of Table 4 shows the numbers 1,6j   of 

groups ,i jSF  formed by the sequents of ˆis , 1,5i  , 

that make up the subset of 1 . 

Table 4 contains all groups SF  of equidistant 

functions generated by formative elements ˆis  of the 

first subset of sequents 1 , which characterizes by 

the peculiarity that in the rows of Table 2 to the left 

of the sequents 1 5
ˆ ˆs s , there are no other sequents 
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s . The 30 groups, summarized in Table 3 and 

corresponding to a subset of sequential functions 

1 , constitute a complete set of sequential 

equidistant byte functions. That means — the group 

of functions formed by any ˆ js , 6 35j  , absorbed 

by one of the groups ,i jSF  subset 1 .     

Let us confirm this statement with concrete 

examples. For this purpose, let us choose, for 

example, the sequents forming 17ŝ  and 33ŝ , and 

their corresponding complete groups of equidistant 

functions presented in Table 5. 

 

Table 5. Composition of groups of sequential functions formed by the elements 17ŝ  and 33ŝ  

Groups The sequential of groups 

17, jSF  0 2 4 5 6 8 9 10 13 14 17 21 22 25 27 28 31 32 33 35 

1                     
2                     
3                     
4                     
5                     
6                     

33, jSF  0 2 3 5 6 7 9 11 13 15 16 17 19 21 23 25 27 29 31 33 

1                     
2                     
3                     
4                     
5                     
6                     

From the data comparison, we can easily see that 

any group in Table 5 is in one of the rows of Table 

4. The correspondence between groups  

17, j
SF , 

33, j
SF , 1, 6j  , and group ( , )i j  subset 

1
  

showed in Table 6. 

Table 6. Composition of sequent function groups, 

formed by the elements 17ŝ  and 33ŝ  

17, j
SF  1 2 3 4 5 6 

( , )i j  2,3 2,5 4,1 4,6 5,1 5,6 

 
33, j

SF  1 2 3 4 5 6 

( , )i j  2,2 2,5 3,2 3,5 5,1 5,3 

In the same way, the redundancy of groups 

generated by sequences ˆ
ks  for all 6 35k   

establish. 

Let us pay attention to the mosaic of rectangular 

squares in Table 3. The coloring of all the sites turns 

out to be the same. And this provides an opportunity 

to significantly reduce the labor intensity of 

calculating the composition of groups A of subset В. 

Suppose a site mosaic maiden for group 1, jSF , in 

which the sequent is 1̂s . To calculate the sequences 

of any group ,i jSF  generated by ˆ
is , 1i  , replace 

the top string 1S  in group ,i jSF  with the string iS .    

 

3 Synthesis of symmetric sequential  

systems 

In applications, it often may be interesting not the 

complete systems of sequent functions themselves,  

but some orderings of them, such as, for example, 

systems of functions forming symmetric bases. Such 

bases are particularly interesting for spectral 

analysis of signals or solving other problems of 

discrete signal processing. In this section of the 

work, we consider the problem of construction 

(synthesis) of symmetric sequential bases from the 

complete set of equidistant sequential groups , .i jSF

. 
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Different approaches to the solution of the 

problem are possible. The synthesis of a symmetric 

system based on sequent functions basis on the 

method of direct enumeration [14, 15]. This method 

allows you to discard unacceptable options in 

advance. Let us choose from Table 3 as the initial set 

of sequences for the complete eighth-order group 

 1,1 0 1 10 15 21 24 28 29
ˆ, , , , , , ,SF s s s s s s s s . 

Using the data in Table 1, we compose a matrix 

of group elements 1,1SF , denoting it by ( , )k tS , 

which is not symmetric. 

 
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0

2 10 0 1 1 0 0 1 1 0

3 15 0 0 0 1 1 1 1 0
( , ) .

4 21 0 1 0 1 0 1 0 1

5 24 0 0 1 0 1 1 0 1

6 28 0 0 1 1 0 0 1 1

7 29 0 1 0 0 1 0 1 1

t

k t

k n

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

S
                                             (4) 

In matrix (4), the parameter k  is the basis of 

function order, coinciding with the order number of 

the functions in the system; t  the function's 

argument (discrete normalized time); n is the 

number of the sequent in Table 1. 

In any sequential system in image space, the 

basis of the zero-order function cannot be rearranged 

on any other line. The reason is that such a 

permutation leads to the loss of the symmetry of 

matrix ( , )i k tS . Since all sequents begin with zero, 

the left column of the matrix is zero by definition, 

i.e., it consists of only zeros. For this reason, the zero 

rows of a matrix are "doomed" to occupy its top row. 

Otherwise, the symmetry condition is violated: each 

column must coincide with the corresponding matrix 

row (by the number) in any symmetric matrix.  

The following (first) row of matrix ( , )i k tS  can 

contain any of the remaining rows (basis functions) 

of the matrix (4). Let us choose such a basic function 

of the first order, i.e., a sequent 1s , which results in 

the first two rows and two columns of the matrix to 

formed 1 ( , )k tS , namely  

1

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0

2 ,21,29 (0 1)

3 0 1
( , ) .

4 0 1

5 0 0

6 0 0

7 0 0

t

k t

k n



 
 
 
 
 
 
 
 
 
 
 
  

 

10

S                                              (5) 

The possibility of choosing the next (second) row 

is limited by the condition of maintaining the 

symmetry of the matrix. To observe this condition, 

from the remaining rows of the matrix (4), we need 

to choose only those whose initial elements coincide 

with the initial elements of the second row of the 

matrix (5), enclosed in parentheses. The bracketed 

elements correspond to sequents 10s , 21,s  29s  and 

matrices (4), whose numbers (10, 21, and 29) write 

in (5) to the left of the parentheses. Placing in the 

second row of the matrix 1 ( , )k tS  the basis function 

(sequent) 10s  (the number of this sequent marked in 

bold in matrix 1 ( , )k tS ) and continuing the 
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synthesis procedure similarly, we come to a 

symmetric basis 

1

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0

2 ,21,29 0 1 1 0 0 1 1 0

3 ,29 0 1 0 1 0 1 0 1
( , ) .

4 29 0 1 0 0 1 0 1 1

5 28 0 0 1 1 0 0 1 1

6 24 0 0 1 0 1 1 0 1

7 15 0 0 0 1 1 1 1 0

t

k t

k n



 
 
 
 
 
 
 
 
 
 
 
  

 

10

21
S                                     (6) 

Let us turn to the matrix (6). In this matrix, in 

place of the third row, we can use not only the 
sequent 21s  but also the sequent 29s  and, as a result 

of further substitutions, we obtain   

2

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0

2 ,21,29 0 1 1 0 0 1 1 0

3 29 0 1 0 0 1 0 1 1
( , ) .

4 21 0 1 0 1 0 1 0 1

5 24 0 0 1 0 1 1 0 1

6 28 0 0 1 1 0 0 1 1

7 15 0 0 0 1 1 1 1 0

t

k t

k n



 
 
 
 
 
 
 
 
 
 
 
  

 

10

S                                              (7) 

By the example of matrices (6) and (7), we 

convince that in the binary image space, the set of 

sequent functions of the basis closed under the 

operation of digit addition modulo 2. In contrast, in 

the original area, the sequent functions of basis 

matrices are closed under the operation of the 

element-by-element multiplication of functions. 

If a deadlock occurs at any stage of synthesis, 

proceed as follows. In the row of the synthesized 

matrix containing at least two alternative sequent 

numbers 
i

s , the nearest to the "deadlock" row, the 

left sequent replaces by its neighbor to the right, 

which may (or may not) resolve the emerging 

deadlock. If the "deadlock" problem persists with 

the proposed substitution, select another possible 

sequent substitution, or go to another first-order 

sequent function. 
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0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

1 10 0 1 1 0 0 1 1 0

2 ,29 0 1 0 1 0 1 0 1

3 28 0 0 1 1 0 0 1 1
.

4 (0 0 0 0)

5 0 1 1 0

6 0 1 0 1

7 0 0 1 1

t

k n



 

21

 

In the example under consideration, the deadlock successfully resolves, which leads to a symmetric basis 

8

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

1 10 0 1 1 0 0 1 1 0

2 29 0 1 0 0 1 0 1 1

3 15 0 0 0 1 1 1 1 0
( , ) .

4 28 0 0 1 1 0 0 1 1

5 21 0 1 0 1 0 1 0 1

6 1 0 1 1 1 1 0 0 0

7 24 0 0 1 0 1 1 0 1

t

k t

k n



 
 
 
 
 
 
 
 
 
 
 
  

 

S  

Based on the considered algorithm of the directed 

search of basic functions, we come to the complete 

set consisting of 28 permutations of the sequent is  

group 1,1SF  (Table 7), each of which generates a 

symmetric system of sequent functions (an 

orthogonal basis that has the property of 

completeness). 

Table 7. Transpositions of equidistant sequents of a group 1,1SF , generating a symmetric basis 

Number 

of basis 
Sequent number 

Number 

of basis 
Sequent number 

1 0 1 10 21 29 28 24 15 15 0 21 24 29 28 10 15 1 

2 0 1 10 29 21 24 28 15 16 0 21 28 1 15 29 24 10 

3 0 1 21 10 29 28 15 24 17 0 24 1 28 10 29 15 21 

4 0 1 29 21 10 15 24 28 18 0 24 10 15 21 1 28 29 

5 0 10 1 24 28 21 29 15 19 0 24 21 28 29 10 15 1 

6 0 10 1 28 24 29 21 15 20 0 24 29 15 1 21 28 10 

7 0 10 21 24 15 1 29 28 21 0 28 1 10 24 15 21 29 

8 0 10 29 15 28 21 1 24 22 0 28 10 29 15 24 1 21 

9 0 15 24 21 10 1 29 28 23 0 28 21 1 15 24 29 10 

10 0 15 24 29 1 10 21 28 24 0 28 29 21 24 15 10 1 

11 0 15 28 1 21 29 10 24 25 0 29 15 24 1 28 10 21 

12 0 15 28 10 29 21 1 24 26 0 29 15 28 10 24 1 21 

13 0 21 15 1 28 10 24 29 27 0 29 24 15 1 28 21 10 

14 0 21 15 10 24 1 28 29 28 0 29 28 24 21 15 10 1 
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The classical Walsh functions occupy the last 

row in Table 4, forming the 30-th group of 

sequential functions 5,6SF . Group 5,6SF , as well as 

all other groups belonging to the subset 1 , has its 

own 28 symmetric bases. Hence, there exist a total 

of bases of Walsh-like sequent byte functions.                                     

4 Spectral applications 

Let's call the input frequency scale of the DFT 

processor the abscissa axis X  of the Cartesian 

coordinate system on which the normalized 

frequencies m  of the input complex-exponential 

signal locate 

2
( ) expmx t j mt

N

 
  

 
; , 0, 1m t N  ; 2 kN  . (8) 

Let's call the output frequency scale the Y  

ordinate axis intended for placing the numbers of 

k  th output channels of the processor, from which 

the k  th complex harmonic takes 

1

0

( ) ( ) ( , )
N

m m
t

k x t k t




 X .             (9) 

We will say that some basis provides the 

frequency scales of the DFT processor with linear 

connectivity if the harmonics (9) of the discrete 

signal (8) with maximum amplitude located on the 

bisector of the right angle formed by the coordinates 

m and k. As an example of a basis delivering linear 

connectivity to the frequency scales of a DFT 

processor, we can cite the basis of discrete 

exponential functions (DEF). Similar bases also 

exist in Walsh systems [16]. In particular, in the set 

of classical Walsh systems, they are called Walsh-

Cooley bases (C ), and in the set of sequent Walsh-

like systems, they are the Walsh-Tukey bases (T ). 

Below are the 16-order matrices corresponding to 

the systems C and T, respectively. 

16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 1 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0

1

2

3

4

5

6

7
( , )

8

9

10

11

12

13

14

15

t

c k t С

1 0 1 0 1 0 0 1 0 1

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

, (10)

k

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
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16

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

2 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

3 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0

4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

5 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1

6 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1

7 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1
( , )

8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

9 0 0 1 0 1 0

10

11

12

13

14

15

t

k t T (11).

1 0 1 1 0 1 0 1 0 1

0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1

0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

k

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The amplitude and phase characteristics of the 16-point DFT processor in the Walsh-Cooley and Walsh-Tukey 

function bases calculated by formulas (8)-(11) are shown in Fig. 3 and in Table 8, respectively. 

 

Figure 3. Amplitude-frequency characteristics of complex 16-point DEFs in Cooley and Tukey bases 
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Table 8. Phase-frequency characteristics of complex 16-point DFTs in Cooley and Tukey bases 
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The above data shows that the amplitude 

spectra of signals in the Walsh-Cooley and 

Walsh-Tukey bases coincide, while the phase 

spectra are opposite. If in some m-output channel 

of the DFT point processor, the response phase in 

the Walsh-Cooley basis is equal to ( )c k , then in 

the Walsh-Tukey bases ( ) ( )ck N k   . 

5 Results and discussion 

The main results achieved by this study are as 

follows. First, the set of groups ,i jSF , 1, 6j  , of 

arbitrary degree order N , is replenished only by 

those sequents ˆ is , to the left of which there are 

no other sequents (except for 0s ), and this rule 

does not depend on N . Second, for a subset of 

sequent 1  of the eighth order, the young 

sequent 1ŝ  is eight digits apart from the sequent 

closest s  to its right; the next sequent 2ŝ  is apart 

by the sequent nearest to its right at four digits, 

and so on. And finally, thirdly, the following 

feature of Walsh-like systems of sequential 

functions is noticed. As it turned out, each of 29 

equidistant sequent groups, not taking into 

account the 30-th group, which unites the 

classical Walsh functions, corresponds to 28 

symmetric systems, i.e., to the same number as 

the set of classical Walsh functions of length 

8.N   It knows [14, 15] that Walsh systems of 

order 2 nN  , where n is a natural number, are 

uniquely defined by the so-called indicator 

matrices (IM) of norder. IM is right-sided 

symmetric binary matrices in the ring of 

subtractions modulo 2 (i.e., symmetrical to the 

auxiliary diagonal). But if one-to-one mappings 

exist between IMs and their corresponding 

systems for classical Walsh systems (of arbitrary 

order), then such correspondence for sequent 

systems should specify. 

6 Future research  

Briefly formulated above, the main results of the 

work predetermine, at least, such directions for 

further research: 

1. Generalize the results for sequent systems 

of arbitrary binary degree order exceeding eight. 

2. Confirm (or disprove) the hypothesis about 

the existence of a relationship between indicator 

matrices and their corresponding symmetric 

Walsh-like systems of sequential functions. 

3. Evaluate the feasibility of using one-

dimensional (as well as two-dimensional) FFTs 

on the bases of sequential functions for various 

applications. 

 

7 Conclusions 

The main result achieved by this paper should be 

considered an expansion by more than an order of 

magnitude (more precisely, by a factor of 30) of 

the set of Walshe-like systems of the eighth order. 

The algorithm's simplicity for synthesizing 

Walshe-like systems of sequential functions and 

the high speed of spectral processing of discrete 

signals provided by the proposed bases open up 

to such systems (bases) a broad prospect of 

application in various fields of science and 

technology.  
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