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Abstract: We introduce an improved Newton scheme to solve the nonlinear Troesch problem; which is a 
nonlinear parameter-sensitive differential equation applied to model plasma confinement in a column.. A 
predictor-corrector scheme based on a modified backward Euler method was adopted for the Newton’s 
update. The hyperbolic sine component of the governing equation was converted to its logarithmic analog 
in order to handle high gradients and discontinuities. This was also found to be useful when the initial 
position values are not very close to the projected equilibrium. The proposed algorithm is straightforward 
and offers a relatively high degree of accuracy for a remarkably wide range of values of the sensitivity 
parameter. The trade-off is a slightly more computation time than the classical Newton’s approach.  
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1. Introduction  

      Consider the following nonlinear boundary 
value problem (BVP): 
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Equations (1) subjected to Equation (2) is known 
as the Troesch problem. It arises from the 
confinement of plasma column by radiation 
pressure as well as in the theory of gas porous 
electrodes. The numerical rigor that accompanies 
the solution is connected with the  
fact that the larger the sensitivity parameter , 
the more difficult it is to determine the solution. 
In such a case, the dependent variable remains 
almost constant   0u x   for 0x  , but 

rapidly fulfils the boundary condition at 1x  . 
Hence we have a boundary layer close to the right 
end of the problem domain characterized by a 
high gradient of the dependent variable.  
The closed form solution of this problem in terms 
of the Jacobi elliptic function is given as: 
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where  ' 0u  is the derivative at 0u  and is 

expressed as:  ' 0 2 1u m   where m  is 
the solution of an implicit transcendental 
equation: 
 

        sinh 2 1 4m sc m    
  
 The elliptic Jacob function is defined as:
  tansc m   Both and   are related by 

the integral equation:  

 
0

1 cosh m d



     . For more details of 

these derivations see [1 ,2]. From equation (1), it 
can be noticed that  u x  has a singularity 

located at     'ln 8 0sc x m or at x u   . 

It can therefore be deduced that  ' 10 8u e    
lies within the integration range. Consequently, 
the Troesch problem constitutes a considerable 
challenge to many numerical techniques 
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especially as the value of   gets bigger [3,4,5]. 
A closed form solution was obtained by Robert 
and Shipman[6]. This was followed by several 
attempts [7,8,9,10]. More recent application 
includes the so called homotopy methods. They 
belong to a family of continuation methods and 
essentially involves a way of finding a solution to 
a problem by constructing another simpler 
problem which is developed stepwise into the 
original one until the final stage of the 
deformation process leads to the desired  solution. 
[11-15].  
 In the work reported herein we adopt a finite 
difference discretization of the governing 
differential equation after converting the 
nonlinear hyperbolic sine term to its logarithmic 
equivalent. We then deploy a predictor-corrector 
implicit approach involving the first two terms of 
the Taylor’s expansion to facilitate convergence 
of the  dependent variable update.    The ease with 
which the high gradient of the scalar profile 
resulting from large values of the sensitivity 
parameter   was efficiently handled is a notable 
attractive feature of this numerical technique. The 
resulting system of  nonlinear algebraic equations 
is then solved iteratively. Finally the accuracy of 
the proposed technique is demonstrated by 
comparing the numerical results with those 
available in literature.   

 
2. Mathematical Formulation 
The classical Newton’s method for solving 
nonlinear operator equations can be viewed as a 
discrete dynamical system that seeks a 
convergence which is as close as possible to a 
root. For example if we consider an open subset 
Ω X   and a continuos operator represented as 
: F Ω Y ; we seek zeros ofx F  of a  matrix 

equation given by :  
   : 0 5 x F x   

In order to initiate an iterative procedure, 
Equation (5) requires a guessed solution or a 
starting vector that is as close as possible to the 
solution.. A sequence of iterates    0n

x



 is then 

computed by the formula:  
 61 nn




x =x Δx   

where  nΔx X   the increment or correction vector  
is obtained by solving the following matrix 
equation. 

      1 71 xn nnn


 
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x x J F   

where  x xn n J F  is the Jacob matrix and 

 nxF  is obtained by substituting the computed 
values into the function F .  Once the initial guess 
is properly specified, then the solution tends 
towards convergence in such a way that    F x0  
will be smallut  Most attempts to improve on the 
method have centered on ways of better handling 
the Jacob matrix  as well as guaranteeing that the 
final determination of the solution vector as 
suggeted by equation (6) not only avoids a 
chaotic behavior, but at the same time quarantees 
guarantees quadratic convergence and stability.  
     Blankeevoort et al. [16] implemented an 
explicit  forward Euler scheme:  
 

   81 nnn
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
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 where   is the step size. Though equation (8) 
has the advantage of being computationally 
inexepensive, more often than not, it exhibits  
instability especially when the first guess is 
outside of the proximity of the solution vector.  
As a result,  a predictor-corrector approach was 
adopted to give a more reliable update as 
indicated in the following equations:  
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where I is the identity matrix, 0 1  , after some 
numerical experiments,  the value of    was 
found to be  0.65 
  
 polynomial type equations resulting from the 
logarithmic equivalence of the  sinh u  term 
have been found to cope with boundary layers 
efficiently [17]. Hence,  equation (1) and its finite  
difference discrete analog can be written as:  

      1 2sinh ln 1 11x x x a      
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Next, the Jacob matrix is easily determined and 
should be tridiagonal because each  iF u  

depends on 1 1,i i iu u and u    
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3. Numerical Results and Discusion  
In this section, we verify the level of accuracy and 
convergence of the proposed algorithm. In all the 
examples unless otherwise stated, the grid size is

.025h   and the allowable convergence error is 
610e   Tables 1-4  show the numerical results 

obtained herein compared with some existing 
literature results [18-23]. In  Figures 1 and 2, we 
display the graphical results for moderate 
 3,5,8,10   
 
 

 
 
Fig.1 Numerical solution profiles 
 
 

 
 
 
Fig. 2 Convergence trends for Newton updates 
 as well as the converging trends of their updates. 
Next, we tested for much larger values of  . 
Convergence was achieved after a relatively 
small number of iterations. Figs. 3-4 display the 
numerical solutions for 40 60and  .  
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Fig. 3 Numerical solution for 40    
 
 
 

 
 
Fig. 4 Numerical solution for 60    
 
The boundary layer effect as well as 
accompanying high gradients can be seen as   they 
all approach 1x  . The accuracy of the proposed 
algorithm was further confirmed by comparing 
the absolute errors between the numerical results 
and the semi-analytic results of [18]. Fig. 5 shows 
little or no error for a significant section of the 
problem domain where the numerical solution 
lies on top of the x-axis and has a zero gradient.  
 
The magnitude of the errors confirms that the  
proposed method is highly accurate and can 
provide faithful results. 
 
 

 
 
 
Fig. 5 : Absolute error plot for 10    
 
4. Conclusion 
In this work, we have presented a modified 
Newton’s approach  for solving the Troesch’s 
problem in plasma physics. After some 
modifications, the problem was finally reduced to 
an iterative solution of algebraic equations. 
Comparison of  numerical results with those 
available in literature demostrates the utility and 
the applicability of the proposed algorithm. Most 
importantly both the formulation  and the 
magnitude of the errors obtained when compared 
with literature results demonstrate that the 
method is simple and accurate because by 
selecting a relatively small number of grid points 
and a stringent error tolerance highly acceptable 
numerical results were obtained.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2022.4.6 Okey Oseloka Onyejekwe

E-ISSN: 2766-9823 47 Volume 4, 2022



 
 
 
References 

[1] Weibel, E.S. On the confinement of a 
plasma by magnetostatic fields. Physics of 

Fluids Vol. 2(1) 1959 pp. 52-56  

[2] Gidaspor, D., Baker, B.S. A model for 
the discharge of storage batteries. Jnl. 

Electrochemical Society Vol. 120(8) 1973 
pp.1005-1010 

[3] Roberts, S.M., Shipman, J.S. On the closed 
form solution of Troesch Problem. Journal of 

Computational Physics, Vol. 21(3) pp.1976 
291-304 

[4] Chang, S.-H. Numerical solution of 
Troesch’s  problem by simple shooting 
method. Applied Mathematics and 

Computation, Vol. 216(11) 2010 pp. 291-304 

[5] Troesch, B.A Intrinsic difficulties in the 
numerical solutions of a boundary value 
problem. Internal Report 142, TRN Inc. 
Redondo Beach Ca. USA. . 1960 

[6] Roberts, S.M.  and Shipman, J.S. Solution of  
Troesch’s two-point boundary value problem 
by a combination of techniques. Journal of 

Computational Physics , Vol. 10 1972 pp. 232-
241 

[7] Roberts, S.M. and Shipman, J.S. On the 
closed form solution of Troesch’s problem. 
Journal  of Computational Physics Vol. 21(3) 
1976 pp.291-304 

[8] Bougoffa, L. and Al-khadi, M.A.  New 
explicit solutions for Troesch’s boundary 
value problem. Applied Mechanics and 

Information Sciences Vol. 3(1) 2009  pp. 89-
96 

[9] Nasab, A.K. Atabakan, Z.P. Kilicman, A. An 
efficient approach for solving nonlinear 
Troesch’s  and Bratu problems by wavelet 
analysis method. Mathematical Problems in 

Engineerfing, Article ID 825817 2013 

[10] El-Gamel, M.  Numerical solution of 
Troesch problem by Sinc-Collocation 
method. Appld Math. Vol. 4  2013 pp.707-
712 

[11] He, J.H.  Homotopy perturbation method 
for solving boundary value problems. Phys. 

Letters A Vol. 350 2006 pp. 87-88 

[12] He, J.H. A coupling method of homotopy 
technique and perturbation technique for 
nonlinear problems,. Int. Jnl. Nonlinear 

Mechanics, 2000 35 (1) pp.115-123 

[13] He, J.H. Some asymptotic methods for 
strongly nonlinear equation,Int. Jnl. Mod. 

Phys. Vol. 20 (20) 2006  pp. 1144-1199  

[14] He, J. H. Comparison of homotopy 
perturbation method and homotopy analysis 
method. Appld. Math. Comput. Vol. 151 2004 
pp. 287-292 

[15] He, J. H.  Homotopy perturbation technique 
Computer Methods  in Applied Mechanics 

and Engineering  Vol. 178(3-4) 1999 pp. 257-
262 

[16] Blankevoort, T.P.F. , Blankevoort, L. A, 
Koren B. differential equation approach to the 
solution of nonlinear equations of a static 
physical system. BA Thesis Universiteit 
Leiden 2011 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2022.4.6 Okey Oseloka Onyejekwe

E-ISSN: 2766-9823 48 Volume 4, 2022



[17] Ismail, M.S. and Al-Basyoni, K.S.  A 
logarithmic finite difference for Troesch’s 
problem, Applied Mathematics Vol. 9, 2018 
pp. 550-559 

[18] Vazquez-Leal, H., Khan, Y. Ferandez-
Anaya, G., Herera-May, A., Sarmiento-
Reyes, A., Fillobello-Nino, U., Jimenez-
Fernandez, V-M., Pereyra-Diaz, D.  A general 
Solution for Troesch’s problem. 
Mathematical  Problems in Engineering, 

2012, Aricle ID 208375 14 pages, 
doi:10.1155/2012/208375   2012 

 [19] Deeba,  E. Khuri, S.A. and Xie  (2014) S. 
An algorithm for solving boundary value 
problems. Jnl. Computational physics, 

Vol.159  2014 pp. 125-138 

[20] Doha, E.H. Beleanu, D. Bhrawi, A.H. 
Hafez, R.M.  A Jacobi collocation method for 

Troesch’s problem in plasma physics. 
Proceedings of the Romanian Academy, 

Series A, 15 (2) 2014 pp. 130-138   

[21] El-Gamel, M.  Numerical solution of 
Troesch problem by Sinc-Collocation 
method. Appld Math. Vol. 4 2013 pp. 707-
712 

[22]Khuri. S.A. and Sayfi. A.  Toesch’s 
problem. A-B-splie collocation approach, 
Math. Comput. Model, Vol.54  2011 pp.1907-
1918 

[23] Temimi, H., Korkcu, H. (2012) A 
discontinuous Galerkin finite element  
method for  solving the Troesch’s problem. 
Applied Mathematics and Computation Vol. 
235, 2012 pp. 253-260 

 

 

 

 
 
 
 
 
Table 1.  Troesch problem 0.5    

X Exact  HPM [18] ADM [21] This work 

0.1 0.0959443493 0.0959443155 0.0959383534 0.0959444533 

0.2 0.1921287477 0.1921286848 0.1921180592 0.1921228901 

0.3 0.2887944009 0.2887943176 0.2887803297 0.2887946900 

0.4 0.3861848464 0.3861847539 0.3861687095 0.3861852045 

0.5 0.4845471647 0.4845470753 0.4845302901 0.4845475568 

0.6 0.5841332484 0.5841331729 0.5841169798 o.5841336653 

0.7 0.6852011483 0.685201943 0.6851868451 0.6852015406 

0.8 0.7880165227 0.7880164925 0.7880055691 0.7880168436 

0.9 0.8928542161 0.8928542059 0.8928480234 0.8928544098 
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Table 2.  Results of Troesch problem 1.0    
X Exact  HPM [18] ADM [21] This work 

0.1 0.0846612565 0.0846607585 0.084248760 0.0846627550 

0.2 0.1701713582 0.1701704581 0.169430700 0.1701742936 

0.3 0.2573939080 0.2573927827 0.256414500 0.2573981530 

0.4 0.3472226551 0.3472217324 0.346085720 0.3472282606 

0.5 0.4405998351 0.4405989511 0.439401885 0.4406059971 

0.6 0.5385343980 0.5385339413 0.537365700 0.5385409594 

0.7 0.6421286091 0.6421286573 0.641083800 0.6421350055 

0.8 0.7526080939 0.7526085475 0.751788000 0.7536135539 

0.9 0.8713625196 0.8713630450 0.870908700 0.8713659843 
 
 
 
  
Table 3.  Results of Troesch problem 5.0    

X Doha [20] Collocation [21] B-spline [22] This work 

0.1 --------------- ----------------- -------------------  

0.2 0.01078872 0.00762552 0.01002027 0.0108758430 

0.3 --------------- --------------- ---------------------  

0.4 0.03338672 0.03817903 0.03099793 0.0335619889 

0.5 --------------- ---------------- --------------------  

0.6 --------------- ----------------- -------------------  

0.7 --------------- ------------------ -------------------  

0.8 0.25956596 0.23252435 0.24170496 0.2607581400 

0.9 0.45706638 0.44624551 0.42461830 0.4594727833  
 
 
 

Table 4.  Results of Troesch problem 10.0    
X Temimi [23] This work 

0.1 0.0000421119 0.0000477583 

0.2 0.0001299641 0.0001132381 

0.3 0.0003589784 0.0003153550 

0.4 0.0009779027 0.0008580085 

0.5 0.0026590204 0.0029869420 

0.6 0.0072289310 0.0080996144 

0.7 0.0196640631 0.0171214972 

0.8 0.0537303294 0.0599571693 

0.9 0.1521140764 0.1705875017 
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