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Abstract—Localization and path planning is an essential 

elements of mobile robots but it relies on model availability. It is 

difficult to obtain robot dynamics/kinematics model due to lot of 

constants and variables. This paper proposes a highly adaptable 

and universal method for obtaining differential drive robot 

model by self-calibration. The obtained model is based on linear 

time invariant assumption and accepts sensor-less prediction as 

well as hybrid mode, where encoder’s data are filtered against 

the model. Theoretical background and experimental proof of 

model quality is included in this paper. The algorithms are 

implemented in software code and experimentally verified on 

physical robot. The experimental results confirm models 

accuracy by means of model based track following tests. 

Keywords—dynamics model; self-calibration; localization; 

robotics 

I.  INTRODUCTION 

Self-localization is the most important capability for a 
mobile robot to effectively perform its tasks. Without it, the 
task assigned to a robot cannot be completed, and provides the 
basis for development. This paper focuses on a model based 
approach to track the position within an indoor space.  

The pose estimation is a challenging field of research as 
there is no magic sensor to cover all needs. Even if GPS could 
be used in outdoor environment, its precision, refresh intervals 
and variance does not fit most of the practical application 
requirements. Existing research focuses on artificial landmark 
usage like short-range radio signals [1], infrared [2] or 
magnetic transducers [3]. The results look promising, but 
infrastructure requirements not always are rational to use 
outside laboratory environment. 

Recently significant progress is reached in computer vision 
[4] [5] and depth cameras with point cloud processing 
algorithms [6]. Unfortunately light conditions outside 
laboratories are variable and the process of computing is 
resource consuming. Since the frame rate on mobile solutions 
are limited by power consumption, CPU and memory 
resources, visual landmark identification can be used as a 
global localization, but it cannot be used as the only 
localization source. Obtained position from cameras is 
successfully used to reduce positioning errors while 
recognizable landmark is visible. Therefore most solutions 

focus on multiple sensor data fusion for better position quality 
estimation. 

Data fusion in robotics usually is performed with an 
Extended Kalman filter [7] or a Particle filter [8] [9] [16]. In 
each case a good robot kinematic and dynamics model is 
needed to make reasonable prediction. Noisy sensor data helps 
to correct the prediction keeping accumulated error within 
limits. Match with hardcoded constants could be used as a 
model to calculate the next robot position after given control 
signals, but in real-life good constants are not available since 
the surrounding environment is highly dynamic and uncertain. 

Significant part of mobile robots uses a differential drive 
system. The encoders capture wheel rotation and give feedback 
to motor controllers. Moreover, robot movement can be 
calculated using encoders. Unfortunately surface parameters, 
wheel wear, cargo, center of mass etc. affects distance 
travelled. Using average values leads to significant errors in 
position estimation specially angle estimate. It is better than 
nothing and can be utilized in modern data fusion mechanisms. 
However having better model would require not so frequent 
landmark updates and can save on other sensors, landmarks 
and CPU requirements. 

Existing research is focusing on error correction by data 
fusion leaving an open question about model suitability [1] [2] 
[5]. This paper discusses the use of a dynamic self-calibrating 
model. Proposed model is based on a linear time-invariant 
assumption that may mislead in the beginning as motors are not 
linear and parameters are time dependent. However in a small 
time interval, the approximation reaches acceptable precision. 
If parameters are obtained dynamically, model follows 
environment changes keeping error rate as low as possible. 
Obtained dynamics/kinematics model can be used as well for 
path planning, simulation or fault detection but it is not in the 
scope of this paper. 

Experimental tests are performed with a Roomba 560 
vacuum cleaning robot, which is programmed to follow closed 
loop trajectory estimating its position only using the model. 
After loop closure, the robot stops near starting position, where 
mismatch distance is measured and used for model evaluation. 
Results show the model ability to adapt to environment and are 
compared with the traditional odometry model [10]. 
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The paper is organized as follows. Section II explains linear 
models, their calibration, and application for different drive 
robot. Experimental setup, models testing method and main 
results are discussed in section III. Finally, Section IV gives 
conclusions and the directions of future work are highlighted. 

II. MATERIALS AND METHODS 

A. Linear time-invariant model 

A general technique for the design of non-linear system 
models does not exist and usually linear models are used 
instead [11]. Often non-linear models are linearized around a 
given operating point if possible otherwise methods, like 
artificial neural networks, genetic algorithms etc. can be 
applied. These methods can give a good solutions but result 
cannot be guaranteed. 

A linear system produces its output as a linear combination 
of its current and previous inputs and previous outputs. It is 
called as time-invariant if the system parameters do not change 
over a given time interval. This approach is successfully 
applied to different problems to automatically seek for the best 
models of unknown systems [12]. 

The linear time-invariant (LTI) system can be represented 
by (1), where output signal y and input signal x. The equation 
includes scalars    for       and    for       where 

the maximum of p and q is the order of the system. [13] 

  ( )   ∑    (   )  ∑    (   ) 
   

 
    

By re-arranging (1) and transforming into the s-domain, 
systems transfer function H(s) is obtained (2), where Y(s) is the 
system response to control signal X(s). 

  ( )   ( )  ( )  

The general linear system transfer function can have three 
different types depending on the form of transfer function H(s). 
[13] 

When the numerator of the transfer function is constant the 
model is autoregressive (AR) type. AR model attempts to 
predict an output of a system based on the previous outputs 
[13]. Because the model excludes control signals it is not 
applicable in applications addressed by this paper. 

The moving–average model assumes that the denominator 
of transfer function is a constant. This is nonrecursive system 
also called finite-impulse response (FIR). This type of systems 
has no stability problems as the impulse response is finite 
length. This model is appropriate for inertial systems 
(smoothing) [14]. 

Third and most general case is the mixed pole/zero model 
called autoregressive moving-average (ARMA) model. It is 
used to model systems with infinite-impulse response (IIR) 
[14]. ARMA is used to model systems with feedback like PID 
controllers. 

In the context of this research second and third model are 
applied. In the next subsections each of them is described in 
details. 

B. Moving-average model 

As previously mentioned the transfer function (2) is system 
output and input ratio. If we could pass Dirac delta function 
 ( ) (3) as an input to system, its response will be equal to the 
transfer function (4). This follows from Dirac delta function 
Laplace transformation (5) with is equal to 1. 

  ( )  {
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Unfortunately this is not useful case, because Dirac delta 
function having infinitely high and infinitely short impulse 
cannot be executed in physical system. Instead step function 
 ( ) (6) can be easily reproduced on physical system like 
robot. The step functions derivate (7) is Dirac delta function. 

  ( )  {
     
     

 


 

  
 ( )   ( ) 

The transition process should be captured and its derivate 
version of sensor readings will represent transfer function. 

In practice robot is not just a single motor. Even differential 
drive system (Fig.1) have separate control signal for each 
motor and at least two outputs namely linear speed  ( ) and 
angular speed  ( ). 

 

Fig. 1. Differential drive system. 

Relation (2) can be converted to matrix equation (8), where 
predicted output vector is transfer matrix multiplied by control 

signal   ( )  ( )  . The transfer matrix includes each output 
response for each input attribute, where    ( ) is left motor 
response to linear speed,    ( ) is left motor response to 
angular speed,    ( ) is right motor response to linear speed 
and    ( ) is right motor response to angular speed. 

 [
 ( )

 ( )
]  [

   ( )    ( )

   ( )    ( )
]  [

 ( )

 ( )
] 
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From here time domain model (9) can be obtained 
providing linear  ( ) and angular  ( ) speeds prediction. The 
equation (9) contains convolution operators (10) as a result of 
reverse Laplace transformation of function multiplication. 

 [
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Cartesian coordinate and angle represent the robot position 
          . Therefore repeating recursively differential 
drive update equation (11) with predicted speeds the following 
robot positions can be calculated. 
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In other words the model includes robot kinematics and 
dynamics obtained through calibration maneuver. If to provide 
model with empirical step response functions    ( ),    ( ), 
   ( ),    ( ) and planed control signals  ( ),  ( ) then the 
output is predicted robot position in time. 

See model implementation details and experimental results 
in results section. 

C. Autoregressive moving-average model 

ARAMA [12] has been used in second model. This model 
is more general approach and can be used in recursive mode. 
Therefore not just control inputs but also previous encoders 
reading have influence on next prediction. 

Determination of model order is important step for 
successful prediction. If the model has higher order then 
necessary than the impulse response estimates calculated from 
the resulting ARMA parameters will be overly sensitive to 
corruption by noise. If the model has lower order then 
necessary than the model will lack the degrees of freedom 
necessary to represent the dynamics of the corresponding 
physical system. 
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Once the ARMA model order is known the scalars    and 

   can be calculated from linear system of equations (12) 

where   
  is the system input in   run,   timeslot and   

  is 
measured system response in   run and   timeslot. The system 
ratios can be calculated from linearly independent equation 
system having the same number of equations as unknowns. 

D. Models evaluation method 

The models were tested by physical robots in laboratory 
environment. During the test robot have predefined route 
(Fig.2) to follow where numbers show checkpoint sequence. 
Route is a closed loop therefore robot should return to the 
starting position after completing its job. Distance between 
start and final positions was measured and processed by 
statistical methods to determine variance and mean error. As 
the loop is closed initial angular displacement caused by setting 
robot in starting position does not affect results. 

 

Fig. 2. Predefined route for model evaluation, where numbers mean 

sequence of checkpoints. 

For each model the robot performs 30 independent 
attempts. To compare models with odometry third test is 
performed with classic odometry model [10] where position is 
purely calculated from encoders (11). 

III. RESULTS AND DISCUSSION 

A vacuum cleaning robot Roomba 560 was modified by 
removing the cleaning unit and replacing with a mini ITX 
board (Fig.3). Algorithms are coded using C++. 

 

Fig. 3. Modified Roomba 560 robot for the evaluation of different models. 
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All parameters are obtained during calibration operations 
except distance between wheels. All other variables are derived 
from this constant during the calibration, therefore adapting to 
it as a distance unit. 

A. Encoder calibration 

Built-in light bumper sensors are used to calibrate the 
encoders. The robot is given instruction to rotate while light 
bumper signal is captured and processed. When robot makes 
more than one full rotation the signal becomes periodic (Fig.4). 
If robot is near single obstacle like wall or table, simple peak 
detector can be used to detect period. In more general case 
when surrounding environment is unstructured the captured 
signal should be processed with auto correlation function to 
detect repeating patterns. The x axis on graphic (Fig.4) is in 
encoder ticks, therefore relation between signal level and 
rotation period is time and speed independent. 

 

Fig. 4. Bumper sensor signal during rotation. 

Each wheel travel       meters during one full rotation, 
where L=0.33m is given distance between wheels. Therefore 
scale factor sc can be calculated from encoder delta      found 
during single rotation period (13). 

              

The    value depends on surface where the robot is 
operating. For example, on carpet robot move slower with 
same wheel rotation speed then on solid surface because of 
wheel slipping.  

B. Transfer calibration 

As it is mentioned before the transfer function of robot can 
be obtained by turning on drives (6). The transfer matrix 
includes each output response for each input attribute. In 
differential drive case calibration maneuver should include 
sequence of four actions. 

1. Left motor should be turned on while capturing linear 
   ( ) and angular    ( ) speeds. 

2. Left motor turns off and waits while robot fully stops. 

3. Right motor turns on and right motor response    ( ) 
and    ( ) is captured. 

4. Right motor turns off and waits while robot fully stops. 

If the built in PID control is switched off the falling of 
speed is significantly slower than acceleration due to the 
inertia. Since the transfer function capture only acceleration it 
is assumed then both parts are symmetric. The presence of 
closed loop PID control makes the system response 
symmetrical therefore supporting the use of linear 
approximation. 

Figure 5 depicts wheel speed response to step function. One 
can notice that the falling edge is different than regular 
damping. Robot controller performs PID control; therefore 
growing and falling edges are almost symmetric letting us to 
approximate it as a linear system. 

 

Fig. 5. Wheel step response with enabled PID control. 

The transfer functions (Fig.6) are obtained during 
calibration where all non-zero values are before 15th steps 
(step corresponds to sensor reading period that is 18ms for 
Roomba). It means that the response is finite and fit as a finite 
transfer function for moving-average model. 

 

Fig. 6. Empirical transfer functions obtained during the calibration. 
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C. ARMA calibration 

ARMA model order is determined experimentally as a 
balance between model accuracy and CPU consumption. The 
specific experiment with Roomba robot gave an order 9 as the 
best value. Its calculation took almost 2 seconds and the 
accuracy did not increase with order 10 and further. Therefore 
equation (12) includes ten      and nine      scalars. In 
general, model order depends on several factors including 
sensor capture interval, mechanical inertia, feedback 
controllers etc. Numbers given here reflect specific 
experimental robot configuration and should be considered as 
an example. 

As it mentioned before the linear system ratios can be 
calculated from linearly independent equation system having 
the same number of equations as unknowns. Equations should 
be independent to solve it but acquired data from sensors does 
not insure that. For initial calibration sequence normally 
distributed set of control signals are used. To accumulate 
sensor readings the system is over defined, therefore having 
more than needed equations in system. Such system can be 
solved by Singular Value Decomposition method (SVD).  

SVD is a method for transforming correlated variables into 
a set of uncorrelated ones that better expose the various 
relationships among the original data items. SVD method itself 
is not a topic of this research, therefore will not discussed here 
in details. OpenCV function ‘cv::solve’ is used to calculate 
over defined equation systems. [15] 

Fragment of such randomly distributed calibration sequence 
is shown in (Fig.7). Response is delayed because of software, 
hardware and communication that can be observed in response 
graphic as well as in calculated ratios. 

 

Fig. 7. Fragment of random LTI calibration sequence. 

After filling the matrix (12) and resolving the equation    

and    ratios (Table I) are ready to be used for prediction. 

Obtained    value shows that prediction mostly relays on the 

last value because of system inertia. The control influence   is 

delayed by 3-6 steps (50-100ms) that indicates to the presence 

of delay and jitter in control and communication circuits. 

Therefore obtained scalars confirm delays shown in response 

graphic (Fig.7). 

 

TABLE I.  CALCULATED LTI RATIOS 

Index i Scalars ai Scalars bi 

0  0.5395 

1 -0.0009 -0.1391 

2 0.0013 0.1447 

3 -0.0004 0.0971 

4 0.0178 0.0403 

5 0.0769 0.0225 

6 0.0725 -0.0195 

7 -0.0323 -0.0148 

8 0.014 -0.0361 

9 0.0012 0.5395 

 

Function (1) can be used in full recursion mode therefore 
providing sensor less prediction in the same manner as transfer 
function approach. The main difference is in calibration 
process and amount of CPU required. The transfer function 
requires start and stop sequence of drives to calibrate where 
ARAM model can use any stochastic sequence of control 
signals. Calibration of transfer function does not consume any 
additional CPU resources but ARAM requires solving huge 
equation system having hundreds of equations. 

ARAM model can be used with sensor data as well. 
Therefore      to      are historical sensor readings and    is 

model output. This approach works as a filter fitting sensor 
data to the model; therefore calculated robot position is more 
noise resistant and provides better position tracking accuracy 
compared with pure odometry (Table 1). 

TABLE II.  POSITION TRACKING ACCURACY PER MODEL 

Model Average offset [m] Standard deviation 

[m] 

Odometry 0.068 0.027 

Moving-average 0.332 0.095 

ARMA 0.258 0.021 

 

Robot generates motion plan and executes it without any 

feedback when sensor less model is used, thereby running in 

open loop mode. Standard deviation in this case (Table II) 

depends only on environment because signal provided to drives 

every run is the same. Variance in this case is bigger compared 

to pure odometry, but still maintains a reasonable range. 

IV. CONCLUSIONS 

Robot dynamics model usually is difficult to build as there 

is significant uncertainty about environment. This paper 

proposes use of simple linear time invariant model as a 

differential drive robot dynamic model. The main focus in this 

approach is on auto calibration. If the calibration can be 

performed seamless during robot operation, even the simple 

model provides good accuracy. 

Experimental setup was made to test auto calibration and 

measure model accuracy in physical environment. 

Experimental results (Table II) show low variance even in 

sensor-less mode, where precision is equivalent to the 

traditional sensor-based approach. Purposed model is 

ISSN: 2766-9823 Volume 3, 2021

58



applicable as a back-up positioning method in domains, where 

high reliability is required or cost effectiveness is crucial. 

Model includes kinematics and dynamics constrains, therefore 

can be used for path planning, simulation and fault detection. 

Positioning precision can be improved by applying the 

ARMA model. The model includes prior knowledge of robot 

dynamics by ratios calculated during calibration. Such model 

can be used as a filter to discard faulty sensor readings. The 

faulty sensor data do not fit model therefore can be easily 

discovered and discarded. Moreover, comparing model output 

with sensor signals will notify when environment has 

significantly changed and recalibration is required. 

Our future research will focus on static deviation from the 

planned trajectory. As it is shown in Table II, the average offset 

after loop closure for linear models are higher than sensor 

based approach can provide. This side effect is caused by 

nonlinear effects currently absent in our model. 
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