
 

 

 

Abstract—Exo-atmospheric guidance is a nonlinear finite-
horizon optimal control problem with constraints on endpoint and 
control signals. The nonlinear optimization is iterative and takes a 
substantial amount of time to converge. Pseudospectral (PS) 
methods, due to coarse discretization, are favored to be a good 
choice for reducing the computation load. In this respect, the 
Legendre-Gauss (LG) and Legendre- Gauss-Lobbato (LGL) 
techniques are tried. Moreover, the genetic algorithm (GA) is also 
utilized for reference.  In this case, the results show that LG PS 
indices are better than the GA both in terms of accuracy and 
convergence time. Nevertheless, while LGL PS performs faster than 
GA but actual (not approximate) system simulation is not accurate 
and further modifications are required for successful operation.  

Keywords—Optimal control, Intelligent optimization, Collocation 
methods, Legendre Pseudo-spectral, Guidance 

1 INTRODUCTION 

A global payload delivery flight consists of endo, exo, re-
entry, and terminal phases where each requires appropriate 
methods of guidance. In the exo-atmospheric part, the vehicle 
advances in the vacuum where it is controlled by divert-attitude 
control rather than by aerodynamic control surfaces. With no 
path constraints, the guidance objective is concluding the 
endpoint conditions [1] which is a finite horizon optimal control 
problem. In the direct formula, the original optimality equations 
are used while in indirect routine the reformulated equations by 
employing the Lagrange multiplier and the Hamiltonian function 
are employed. In any case, the problem is discretized and it is 
solved by iterative nonlinear programming algorithms.   

The global optimization methods find the solution by 
intelligently searching the problem space and are used to solve 
real-life complex problems arising from different fields such as 
economics, engineering, politics, management, and 
engineering.   Hyper-Spherical Search method has been used in 
[2] to tune PSS of power systems. In [3], the genetic algorithm 
has been practiced for optimal tuning of guidance law. 
Intelligent tinning of a robust μ-PID controller has been applied 
in [4].  

There are various classical optimization methods, which seek 
the optimal solution by tracing the derivative of the cost 
function. In all, the discretization step size is a problem where 
fine segmentation slows the convergence rate and coarse ones 
damage the correctness. Types of coarse splitting such as Gauss, 
Gauss–Lobatto, and Gauss-Radau are suggested in the so-called 
Pseudo-spectral methods that to some extent prevent perfection 
loss. Among them is the Gauss–Lobatto that gives the highest 
accuracy for polynomial integrands and produce significantly 

smaller mesh sizes. In [5], an optimal control problem is solved 
by discretizing the equations at a series of Legendre-Gauss-
Lobatto points, then the trajectory states are approximated by 
using local Hermite interpolating polynomials. A robust 
pseudospectral method is presented in [6] for milling 
operations  considering uncertainties in both modal parameters 
and cutting coefficients.  Multi-objective gearshift optimization 
with Legendre pseudo-spectral method for seamless two-speed 
transmission has been discussed in [7].  Apart from the global 
allocation methods, there are local ones that divide the integral 
range into multiple segments and for each segment, Gauss points 
are assigned [8]. 

Several vacuum guidance approaches have been published. 
The earliest one is the Iterative Guidance Mode which was 
designed for the Saturn class vehicles [9]. An application of the 
pseudo-spectral model predictive method for exo-atmospheric 
guidance has been discussed in [10]. Comparison of the 
Legendre–Gauss pseudospectral and Hermite–Legendre–Gauss–
Lobatto methods for low-thrust spacecraft trajectory 
optimization has been addressed in [11]. Time-energy optimal 
guidance strategy for realistic interceptor using the 
pseudospectral method is the subject of study in [12]. The 
optimal midcourse trajectory planning approach that considers 
the capture region of the terminal guidance and is based on the 
Gauss pseudospectral method has been detailed in [13]. 

In this paper, the exo-atmospheric guidance using an 
approximate solution by LG and LGL Pseudo-spectral methods 
are presented and the results are compared by the performance of 
the intelligent GA (Genetic algorithm). The study indicates that 
the LG PS outcome is promising but while the LGL PS method 
behaves faster than GA, its accuracy is not acceptable.  

The paper presentation is as follows. In Section 2, the vehicle 
flight dynamics and optimal control paradigms are briefly 
elaborated. The pseudo-spectral methods are discussed in short 
terms in Section 3. The intelligent control and numerical 
simulation results are detailed in Section 4 and lastly, the 
conclusion is presented in Section 5. 

2  EXO-ATMOSPHERIC OPTIMAL CONTROL 

A. Vehicle dynamics 
The entire flight path has been shown in Fig. 1. In the 

midcourse the atmospheric effects are low and flight in the 
vacuum is conducted with no affects from aerodynamic forces as  
it has been expressed by the following equations  [10], 
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where r is the radial distance from the center of the earth to the 
vehicle, v is the velocity, θ is the flight path angle, ψ is the 
heading angle, φ is the latitude, λ is the longitude, m is the mass 
of the vehicle, σ  is the bank angle α is the pitch angle of the jets 
command. 

 

Fig. 1.   Flight trajectory 

Considering the longitudinal motion (1) of the vehicle on a 
freeway while assuming no interaction with other vehicles, the 
state equation of the vehicle at instant t can be represented by 

 ( ) ( , )x t f x u=  (2) 

Because of the absence of atmosphere, the flight has no path 
constraints, but only limited by the physical constraint of control 
and endpoint conditions as follows: 
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B. Optimal control 
The finite horizon optimal control of the dynamic system (2) 

means minimizing the cost function, 

 ( ) ( )
0

, , ,min
ft

f f
u

t

J h x t g x t u dt= +   (4) 

 (.) ( ) ( ) ( ) ( )T Tg x t Qx t u t Ru t= +  

subject to the system constraints such  as, 

 ( ), ,x f x u t=  (5) 
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There are various ways to numerically solve an optimal 
control problem. In the direct method which is conceptually 
simpler, the original optimization formulation (4) is 
manipulated. Various discretization styles exist, most of them 
stemming from the vast field of numerical solution of 
differential equations; especially collocation methods have been 
popular, due to the high order of numerical accuracy they 
possess. 

In indirect methods, the problem is reformulated using the λ 
Lagrange multiplier and H Hamiltonian function as given below,  
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where the solution should satisfy the following Euler-
Lagrange equations,  
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Compared to the calculus of variations based indirect 
methods, direct methods do not require the derivation of the 1rst 
order necessary conditions and are less sensitive to the initial 
guess [11]. 

3 PSEDOSPECTRL METHODS 

Pseudo-spectral optimization methods solve dynamic 
optimization problems by discretizing the state-space, creating a 
discretized version of a continuous problem. The resulting 
discretized optimization problems are solved by standard codes 
of nonlinear optimization. These methods use orthogonal 
collocation points to achieve accurate quadrature 
approximations.  

f(t) function approximation:  
Nonlinear functions can be approximated by the summation 

of weighted basis polynomials as given below, 

 1

( ) ( )
N

k k
i

f t a tφ
=

≈
  

where ϕk  is the global basis functions and αk is the weights. For 
periodic signals, it is the Fourier series with a global 
trigonometric basis which can model the function perfectly. For 
nonperiodic signals, a polynomial basis has been found 
appropriate and so the method is called pseudo-spectral.  
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Similar to other nonlinear functions approximations, the 
objective is to determine the coefficients αk so the residual 
becomes zero at the set of collocation points. 

 ( ) 0, 1,...,iR t i N= =  

The basis function can be the Lagrange polynomials, 
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The Lagrange polynomials are advantageous because their 
coefficients are equal to the value of the approximating 
polynomial at the collocation points, 

 ( )k ka f t=  

Integral approximation and collocation points 
Quadrature method is a common approach for a definite 

integral approximation as expressed below, 

1 1 1

1 11 1 1

( ) ( ) ( ) ( ), ( )
N N

i i i i i i
i i

f t dt L t f t dt f t L t dtω ω
= =− − −

= ≈ =     

where ωi’s are the quadrature weights and ti’s are the 
quadrature points or nodes. For reducing the mash size while 
preserving the computation accuracy, Gauss, Gauss-Lobbot, and 
Gaus-Radu quadratures have been suggested. An example of a 7 
point Gauss and Gauss-Lobbto quadratures and their relevant 
weights have been shown in Fig. 2. 

 

Fig. 2.   The Gauss and Gauss-Lobbato points and weights 

The N collocation points exist in the domain [-1, 1], 
therefore, for a real problem the points are mapped onto a real-
time domain [ , ] using the following transformation, 
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ẋ Derivative approximation 
The derivative of the state, ẋ is approximated as the exact 

derivative of the interpolating Lagrange polynomials. So it is 
computed as below, 
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where Dki is the derivative of the Lagrange interpolating 
polynomials.  

In the following, two of the established methods are 
reviewed. 

A. Differential Legendre Gauss (DLG) PS control 
In this approach, the Gauss quadrature method is employed 

and the collocation points are determined as the zeros of the Nth 
degree Legendre polynomial PN where the weights are computed 
using, 
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In this respect, the discretized form of (4) is expressed by 
[14], 
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where the integral t0 to tf range is transformed to -1 to 1 band and 
the overall path is partitioned into N segments.    The initial and 
final point constraints (6) and the final value computation are 
simply defined by, 
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Discretization of ẋ is conducted using the following 
equation,   
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The first term is to consider the initial point which is not in the 
set of Gauss points. 

B. Legendre-Gauss-Lobatto (LGL) PS optimal control 
This method uses the Gauss-Lobbato quadrature method. 

The collocation points are the zeros of the derivative of the 
Legendre polynomial of degree N – 1 plus the two endpoints, -1, 
1 which are calculated as below [14],  
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Then the integral cost function (5) is approximated by, 
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The derivative matrix, D, composes of the derivative of the 
Lagrange polynomials at the GL points. Therefore, the 
resulting algebraic constraints are 
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The boundary constraints (6) are enforced using the 
boundary points of the approximating polynomial for the state, 
x1, and xN, 

 1 0( , , , ) 0N fx t x tφ =
 

4 SIMULATIONS 

The vehicle dynamics are simulated in MATLAB based on 
the model parameters borrowed from [10] that have been 
depicted in Table I.  

TABLE I.  The vehicle and flight parameters 

 Variables Initial condition Terminal condition 
r Altitude  118 km+Re   145 km+Re 
v Velocity  5400 m/sec  6700 m/sec 
θ Flight path angle 10°  4° 
ψ Azimuth angle  -0.03°  -0.1° 
φ Latitude  2°  2° 
 λ Longitude  0.0004°  2° 
m Vehicle mass   17000 kg   10000 kg 
Re  6378km  
T  890kN  
ṁ   -200kg/s  

  

The vehicle is expected to reach the final point at a fixed 
time with a minimum final error. Considering ṁ, the flight time 
is tf=35s. The flight cost function is defined by, 
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1
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f f f fJ x t x Q x t x
N
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= − −

=

  The algorithms are weighted up based on J and the 
convergence time. To have a comparison index, fist a GA 
algorithm is run and the results are used for the evaluation of the 
pseudospectral algorithms  

A. Test 1:GA-PSO 
Among the metaheuristic algorithms, the Genetic algorithm 

(GA) is inspired by the biological evolution process. The 
Genetic algorithm is an intelligent search algorithm that has been 

developed to imitate the mechanics of natural selection and 
natural genetics through the following steps [15, 16]: 

Generate a random initial population 
While stop conditions met 

Compute the fitness function, fi 
Normalize fi and rank them 
Select parents 
Do crossover 
Apply mutation 
Form a new population including Best solutions 

end 

 For applying GA to the exo-atmospheric guidance, the 
integral interval is partitioned into 6 equally spaced segments 
formed by 7 nodes. Matlab ga is used for executing the search 
for the optimal solution. After several runs, the average elapsed 
time of 21s is obtained with an average of J=2.27 for minim 
normalized endpoint error. The system states and the controls 
have been shown in Fig 3 where the initial and the endpoints are 
marked distinctively. The simulation is exact, not approximate as 
ode45 does not rely on the PS nodes, rather it uses whatever step 
sizes are required for accurate computation. 

 

Fig. 3.   Genetic algorithm result for optimal guidance 

B. Test 2: LG PS 
In this test, the DG PS method is used with N=7 equivalent 

to 8 segments. The elapsed time of the algorithm execution is 
11.5s. The optimization result for the approximate system is J 
=7e-8 which is perfect for the approximate system and objective 
function as is shown in Fig. 4. However, when the simulation of 
the exact system using the obtained control signal is performed, 
J rises to 3.7 which is failrly acceptable with respect to the GA 
result which is as low as 2.27. The exact system responses have 
been shown in Fig. 4 with dashed lines. Meanwhile, using the 
linear interpolated input rises the cost function to the 
unappropriate J=54. 

C. Tets 3:LGL PS 
 In another test, the Legendre Gauss Lobboto (LGL) PS 

optimal control is tried. The number of nodes is 7 which makes 6 
segments. It took 15s for the algorithm to converge to the 
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minimum of J= 3.33 which is pretty good. The result has been 
illustrated in Fig. 5. However, when an exact system simulation 
is conducted, utilizing the obtained control signal, the endpoint 
normalized error of J= 37 is obtained which is higher than the 
one obtained by GA. 

 

Fig. 4.   DG PS  Algorithm results: approximate (solid) and exact (dashed) 
system responses. 

 

Fig. 5.   LGL PS guidance a) approximated and b) exact system responses 

By increasing the number of nodes to 40, as is expected 
better results are obtained at the cost of higher convergence time 
which mounts to 52.71s. In this test, J=6.53 is obtained from the 
simulation of the approximate system, and J = 9.5175 for its real 
counterpart. 

CONCLUSION 

In this paper, the pseudospectral methods of optimal control 
are used for exo-atmospheric guidance. The algorithm accuracy 
and convergence time are compared with the intelligent GA 

algorithm. The LG PS is %50 faster than GA and both almost 
meet the endpoint similarly. On the other hand, the LGLPS 
overtakes the GA algorithm in converges rate but fails in 
providing accurate results.  
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