
Art Rendered using Rubik’s Cubes: ARRC 256

Vasile Dan

Department of Automation,

Technical University of Cluj-

Napoca

Cluj-Napoca, Romania

vasidan.mdt@gmail.com,

Gabriel Harja

Department of Automation,

Technical University of Cluj-

Napoca

Cluj-Napoca, Romania

Gabriel.Harja@aut.utcluj.ro,

Ioan Nașcu

Department of Automation,

Technical University of Cluj-

Napoca

Cluj-Napoca, Romania

Ioan.Nascu@aut.utcluj.ro

Abstract— Mosaics are decorative images and patterns that

can be created using small pieces of colored stone, ceramic,

glass, or other materials. Creating a mosaic requires patience

and time. This paper describes a robot that creates a mosaic

using 256 Rubik’s cubes. The overall process is controlled by a

laptop and three Arduino Due boards. Image dithering

algorithm is used to reduce the color palette, to the 6 colors of

the Rubik’s cube. A custom user interface is used to manually

create an image or to upload an existing image. The solutions,

for one face of every cube, are generated by a genetic

algorithm and a permutation-based algorithm.

Keywords-Rubik’s cube, dithering, mosaic, genetic algorithm

I. INTRODUCTION

Any form of art requires hard work, patience, and time.
Small pieces of colored stone, ceramic, or glass are used to
create mosaics, that are lasting more than paintings [1].
Rubik’s cube is a complex 3D puzzle that has different
colors on each face. These are divided in 9 squares, that can
be permuted and scrambled. The maximum number of
moves required to solve a scrambled cube is 20 – known as
God’s Number [2].

Rubik’s cube has determined people to create
autonomous robots, to obtain shortest time for solving it.
These robots can solve the cube under one second. Engineer
Alber Beer from Germany built the Sub1 robot, that can
solve the cube in 0.887 seconds [3]. Ben Katz built a robot
that solved the cube in only 0.38 seconds [4]. In these two
cases, the cubes were slightly modified for griping purpose.
There are robots that can solve unmodified 3x3 cubes and
cubes with more than three layers. MultiCuber 999 is a robot
that can solve a cube with 9 layers [5]. In [6], the authors are
using a Rubik’s cube as a performance controller for music.

Many researchers have been involved in developing the
algorithms that generate solutions for a scrambled Rubik’s
cube as a new research domain. In [7] the author has
proposed an approach based on simulated annealing and
genetic algorithm. In [8] the authors have discussed an
algorithm that combines group theory and genetic algorithm.
People have developed autonomous robots for creating
mosaics from colored stone, ceramic, or glass. Robot Mosaic
[9] and Colisium-SM [10] are two solution for creating a
mosaic. In both cases, stepper motors and pneumatic systems
are used for transporting the pieces.

One face of one Rubik’s cube has 9 squares, that can be
used to create a pattern. Using a predefined number of cubes,
high resolution images can be created. This paper deals with
the process of creating a mosaic using Rubik’s cubes. The
image for the mosaic can be chosen from a PC location or
can be created by using the interface of the software,
developed in C#. The genetic algorithm and the permutation-
based algorithm will generate a solution for each cube. A
specific pattern, from the mosaic, is rendered on the top face
of the cube. A mechanical structure was design to
manipulate the cubes and its faces, using stepper motors as
actuators.

The paper is organized as follows: the next section
presents an abstract of previous work. Section III gives an
overall description of the hardware implementation and
mosaic image processing. Section IV presents the solving
algorithm, while last section summarizes the results and
conclusions.

II. PREVIOUS WORK

ARCAS (Advanced Rubik’s Cube Algorithmic Solver)
main goal is to solve the Rubik's cube in the shortest possible
time. Two solving methods are implemented: Kociemba’s
algorithm and blindfolded methods, M2 and Old Pochmann.
Four webcams are used for color recognition of the cube
pieces. For controlling the robot, a desktop application in C#
was implemented. Also, besides solving the cube, ARCAS
can randomize patterns on the cube faces [11].

Figure 1. ARCAS structure.

ISSN: 2766-9823 Volume 2, 2020

42

The processing units of ARCAS are a PC and an Arduino
Due board. To rotate the cube faces, 6 stepper motors were
used. The arms of the robot can grip the cube using a rack
and pinion mechanism and two additional stepper motors.
The solving time is visible on the 4 digits of the 7 segments
display, as shown in Figure 1.

III. ARRC STRUCTURE DESCRIPTION

A. Hardware Implementation

The robot consists of three main parts. Each of them will
be controlled by a microcontroller, as shown in Figure 3.

1) The stack of cubes, that will be used to make the

mosaic.

2) The robot arms, that will rotate the faces of the cube.

3) The frame, where the cubes will be placed to create

the mosaic.
The 3 Arduino Due boards will communicate with each

other using the RX and TX pins. The pin on which the serial
data is received is RX, and the serial data is transmitted on
the TX pin. An Arduino Due board that controls the robot
arms, Figure 3. (2), is connected to the laptop. The solutions
for each cube are sent, from the laptop to the board, in a
string that will be decoded by the Arduino Due.

Hall effect proximity sensors are used to calibrate the
stepper motors. This will allow the steppers that are carrying
the cubes to be repositioned to the home position, with
minimal errors. The Nema 17 stepper motors angle of
rotation and speed are controlled by DRV8825 driver,
depending on the moves that need to be made.

In Figure 2. is depicted the block diagram of the project.

The maximum size of the mosaic will be 48x48 pixels,
for which 256 cubes will be used, 16 horizontally and 16
vertically, each side of the cube having 3 pixels. The cubes
will be stored in a frame of 8x8x4, as shown in Figure 3. (1).

Figure 2. Block diagram of the project.

Figure 3. ARRC 256 Structure: (1) The stack of cubes, (2) The robot

arms, (3) The frame for mosaic.

The extraction of the cubes from the frames will be done
with the help of a mechanism, based on stepper motors. The
cubes will be transported to the central part of the robot,
where they will be taken over by the 6 arms, to rotate the
faces.

In the central part of the robot, responsible for solving the
cube, Figure 3. (2), the faces of the cube will be rotated to
create a model on the top face accordingly to the model of
the mosaic. The modified cubes will be placed on a frame,
Figure 3. (3), where the mosaic will be made. Two
mechanisms will slide the cubes on the horizontal axes. A
group of cubes, up to 16, will be slid to create the image,
layer by layer.

The final structure of the robot, can be seen in Figure 3.

B. Mosaic Image Processing

To create a mosaic, a software graphical user interface
has been implemented to upload an existing image or to
draw an image. The window where the image will be drawn
is represented by a matrix of 48x48 pixels, as in Figure 4.

Figure 4. ARC 256 Drawing Interface.

ISSN: 2766-9823 Volume 2, 2020

43

Figure 5. Image conversion: (a) Initial drawn image; (b) Unused pixels

conversions; (c) Final image.

The color of the pixel can be modified by selecting one
of the 6 available colors and then pressing left click. Further,
multiple pixels can be changed by pressing and holding the
left click and hovering the mouse over them. The pixels will
change according to the selected color. The drawn image
will be prepared by converting the unused gray pixels, into
black pixels. There will be a high contrast to the cube colors
and the image will be extracted by generating the bounding
box. Thus, it will be possible to create a mosaic smaller than
48 x 48 pixels.

After the bounding box is found, the length and the width
of the image are checked, so that the number of pixels is a
multiple of 3. Otherwise, extra layers (rows or columns) of
white pixels will be added. The gray pixels inside the
bounding box will also be modified into white pixels. In
Figure 5. a layer of white pixels has been added on the rows,
at the bottom, and two layers of white pixels on the columns,
on the right side of the image.

The mosaic can be created using an existing image, that
can be uploaded and then converted, according to the color
palette of the cube. The uploaded image is resized to
300x300 pixels. To preserve the aspect ratio of the image,
the longest edge will be resized to 300 pixels, and the other
edge gaps will be filled with black pixels. The entire image
or a region of interest (ROI) can be used, as shown in Figure
6. The cropped image is converted so that the maximum size
is 48 x 48 pixels. The color palette can have between 2 and 6
colors. To narrow the color palette, a filtering process, called
"dithering", was applied [12]. This process consists of
reading the RGB (red, green, blue) values of each pixel and
modifying them with the closest values from the color
palette. The value of the pixels is modified according to the
threshold distance from the selected colors, as in Figure 7.

Figure 6. (a) Uploaded image; (b) Cropped image.

Figure 7. Dithering: (a) Uploaded image; (b) Filtered image – threshold

270; (c) Filtered image – threshold 230; (d) Filtered image – threshold 200.

The threshold can be modified from the user interface
using a slider or typing the desired value in a text box. The
filtered image is updated instantly, thus the best value of the
threshold can be chosen. The converted image can be
adjusted manually by changing the color of the pixels.

IV. ONE FACE ALGORITHM

The top face of the cube represents 9 pixels of the image.
The position of other pieces of the cube is irrelevant. The
solutions, for each top face of the cubes, are generated by the
one face algorithm.

To identify each piece, they are marked with letters from
“A” to “X”. The corners are marked in capital letters and the
edges, in lower case letters, from “a” to “x”. The centers are
not marked, as shown in Figure 8. The faces of the cube are
notated with letters: U (Up), D (Down), F (Front), B (Back),
L (Left) and R (Right). The faces can be rotated as follow:

• 90°, clockwise rotation (ex. F)

• -90°, counterclockwise rotation (ex. F’)

• 180°, two 90° rotations (ex. F2)

Figure 8. Cube notations.

ISSN: 2766-9823 Volume 2, 2020

44

The solution of the algorithm will be a string of letters,
depending on the top face pattern of the cube. For example:
L’ D2 L, will permute the front-bottom-right corner to the
top-back-left position. The other pieces of the top face are in
the same position, before and after applying the three moves,
as shown in Figure 9.

To create a model on one face, the pieces of the cube will
be permuted (the center is fixed). Each of these pieces can
have one of the 6 colors of the cube. The position of the
pieces differs and for a certain color, there will be a different
set of moves. The faces of the cube have 4 corners and 4
edges. For each sticker of one face, there are maximum 4
different set of moves, with a certain length. These sets of
moves are predefined in the code. Thus, the order of going
through the 8 stickers, determines the length of the final
solution.

The one face algorithm is a combination of a genetic
algorithm and an algorithm based on permutation, which will
be presented in the following sections.

A. Genetic Algorithm

The stickers of the top face, are noted from 0 to 7 starting
from the top left corner, as shown in Figure 10. The
chromosome consists of 8 genes, the stickers on the top of
the cube, each represented in 3 bits. In total, the chromosome
will have 24 bits. The genotype consists of the numbers 0, 1,
2, 3, 4, 5, 6 and 7.

When the genetic algorithm is initialized, several
different chromosomes are created. The mapping is realized
by assigning a set of moves to the 8 genes. For each gene,
there are maximum 4 variants. The variant with the fewest
moves is chosen. If there are more variants with the same
number of minimum moves, a random variant is chosen, as
show in Figure 11.

Figure 9. Corner permutation: 1. Initial cube; 2. Cube after the L’ move;

3. Cube after the D2 move; 4 Cube after the L move.

Figure 10. Genetic algorithm top face notations.

In the example above, the chosen pattern is red-blue-red-
white-blue-white-white-white-white (genes from 0 through 7
and the center). The last set of variants is permuting the
front-top-right (red-white-blue) corner to the top-back-right
corner (gene 2), using the following moves: (F B’) D (B F’).
While permuting the red-white-blue corner, in his place
came the blue-orange-yellow corner. In this example, for
gene 4 was needed a blue color and no further moves are
required. If the gene 4 should have been yellow, a new set of
variants would have been generated. The algorithm is
excluding previous genes, 0 and 1. For that reason, there are
only 3 variants in the last set.

After mapping, the performance of the individuals is
calculated as follows:

 (1.1)

Where, is the sum of the chromosome, I represents the
individual, and k represents the gene, the set of moves for
permuting the stickers. The performance function, which
calculates the minimum length of the chromosome, is as
follows:

 (1.2)

The selection of individuals is made based on the
performance function. Elitism selection, where 2 or 3 elites
are chosen: individuals with the shortest length, move on to
the next stage.

Figure 11. Genetic Algorithm Mapping Example.

ISSN: 2766-9823 Volume 2, 2020

45

Roulette wheel selection: the probability of the
individuals being chosen to create offspring is directly
proportional to the performance given by the F function.

The genetic operators applied to create offspring are:

1) Crossover, where two parents are divided, and a

viable solution is generated. In this case, no duplicate genes

are allowed.

2) Mutation, where the chromosome changes one or

more values. In this case, two values are swapped.
In Figure 12. , the genetic algorithm has generated 10

solution. The first generation has 38 moves towards the 11
generation, that has 33 moves.

B. Permutation-based Algorithm

The steps of the permutation-based algorithm are as
follows:

1) Calculating the solution for the edges: the 4 edges of

the top face are selected, all 24 solutions (4!) are calculated

and the solution with the fewest moves is chosen.

2) Calculating the solution for the corners: the

procedure is the same as at the edges.

3) The solutions from step 1 and 2 are merged.

The difference from the genetic algorithm is, the edges
are solved first and then the corners. This approach was
chosen because, the length of the algorithm for solving the
edges varies between one move and 4 moves. The
disadvantage is that the corners of the upper face will also be
permuted. Thus, with this approach it can happen that certain
corners are exchanged correctly.

The one face algorithm consists of the two algorithms:
the genetic algorithm, presented above, and the permutation-
based algorithm. Each of these algorithms are generating one
solution. The solution with the fewest moves is chosen and
used to create the pattern of the face.

Figure 12. Genetic algorithm solution for a specific pattern.

The genetic algorithm offers the shortest solution when
only the edges need to be permuted. The permutation-based
algorithm offers the optimal solution when both corners and
edges need to be permuted. Both algorithms will generate an
optimal solution, when only corners need to be permuted.

V. CONCLUSIONS

In this project, the aim was to make a mosaic using
several Rubik's cubes. The mosaic image can be drawn by
the user or an existing image can be uploaded. A genetic
algorithm and a permutation-based algorithm were used to
generate the solution for the mosaic.

The physical assembly was realized successfully. The
components used to create the robot are: 26 stepper motors, 6
hall effect sensors, 3 Arduino Due boards, a power supply
unit and a laptop. ARRC 256 can be used with the desktop
application, developed in C#.

The algorithms implemented in the application are
developed independently of the physical assembly, so that
the application can be used without connecting it to the
robot. Thus, the algorithms implemented for this work can be
incorporated in other applications such as a webpage or a
mobile application.

REFERENCES

[1] F. Stanco, S. Battiato and G. Gallo, Digital Imaging for Cultural

Heritage Preservation, Boca Raton: CRC Press, 2011.

[2] "God's Number is 20," [Online]. Available: http://www.cube20.org/.

[Accessed 15 11 2020].

[3] M. Matisons, "3Dprint," 17 Februarie 2016. [Online]. Available:

https://3dprint.com/120112/sub1-robot-rubiks-cube/7/. [Accessed 03

December 2020].

[4] [Online]. Available: http://build-its-
inprogress.blogspot.com/2018/03/the-rubiks-contraption.html.

[Accessed 03 December 2020].

[5] A. Liszewski, "Gizmodo," 22 Decembrie 2016. [Online]. Available:
https://gizmodo.com/a-lego-contraption-that-solves-giant-9x9x9-

rubiks-cubes-1790397289. [Accessed 03 December 2020].

[6] R. Polfreman and B. Oliver, "Rubik's Cube, Music's Cube," pp. 493-

494, 2017

[7] S. Saeidi, "Solving the Rubik’s Cube Using Simulated Annealing and

Genetic Algorithm," International Journal of Education and

Management Engineering, vol. 8, 2018.

[8] A. Darbandi and S. A. Mirroshandel, "A Novel Rubik’s Cube

Problem Solver by Combining Group Theory and Genetic

Algorithm," SN Computer Science, vol. 1, no. 1, 2019.

[9] "Robot Mosaic," [Online]. Available: https://robot-mosaic.com/en/.

[Accessed 04 December 2020].

[10] [Online]. Available: https://grabcad.com/library/mosaic-tile-layer-

robot-1. [Accessed 02 December 2020].

[11] V. Dan, G. Harja and I. Nascu, “Advanced Rubik's Cube Algorithmic

Solver,” unpublished.

[12] L. Velho, A. Frery and J. Gomes, “Image Processing for Computer

Graphics and Vision,” Springer, January 2008.

ISSN: 2766-9823 Volume 2, 2020

46

AUTHORS’ BACKGROUND

Your Name Title* Research Field Personal website

Vasile Dan Phd candidate Embedded systems, Robotics, Control
Engineering

Gabriel Harja Assistant
Professor

Embedded systems, Modelling and
Control Engineering, Wastewater
Treatment

Ioan Nascu Professor Adaptive Control, Self-Tunning,
Model Based Predictive Control.

ISSN: 2766-9823 Volume 2, 2020

47

